KGB-DOC-01/09

Revision: 1.7

2006-11-07

User’s manual

Mihael Kadunc

Obyject Explorer

User’s manual

Mihael Kadunc

Josef Stefan Institute, Ljubljana
Gasper Tkacik

Josef Stefan Institute, Ljubljana
Matej Sekoranja

Josef Stefan Institute, Ljubljana

Keywords:
Author Signature: Date: 6.7.2001
Approved by: Signature:
Institute: Date:
Released by: Signature:

Institute: Date:

ALMA Object explorer

Change Record
REVISION DATE | AUTHOR | SECTIONS/PAGES AFFECTED
REMARKS
1.0 2001-07-06 | Mihael Kadunc | All
Created
1.1 2001-09-09 | Mihael Kadunc | Al
Updated according to comments by Gianluca Chiozzi, ESO
1.2 2001-09-14 | Gasper Tkagik | Section 6
Added an explanation of Engine functionality.
1.3 2001-09-24 | Mihael Kadunc | Section 6
Updated package names to si.ijs.acs.”
1.4 2002-01-05 | Mihael Kadunc | Table of contents
Added table of contents according to ACS Remaining List doc-12
1.5 2002-02-13 | Mihael Kadunc | Sections 3-5
Updated for the new version of Object Explorer (1.1)
1.6. 2003-11-11 | Matej Sekoranja | Section 6.

Updated BACI plug section to match ACS 3.0 MACI IDL, added

objexp.pool_timeout .

1.7 2006-11-07 | Matej Sekoranja | Section 6.3, section 7.3 inserted.

Supported types update. Value conversion section added.

Revision: 1.6 Page 2 of 18

ALMA Object explorer

Revision: 1.6 Page 3 of 18

ALMA Object explorer

Table of Contents
I 1410 o (1o o o 5
P AN o] o Tz LT T oY= T 5
R 5 11T T TTaTe [0 o =T oa a4 o] [o] (=T 5
L 11 11 TR 3 o o 6
i 1T o U1 U PP PPPRPPPP 6
O T 1= PP UPPR 6
= P 6
i IEC =l o T TN 0 1T o [0 PRSPPI 7
e @ I =T RO PP PR 7
2 B TCY- Vo] o I = U (o] o P PP 7
- oo 1= J U U OP PP URRPO 7
B2 W @] o] o U=Ted A oTo) 01U o N 1 4= o 1V T 8
4.3 Operations and AttHDULES lISES......coe e 8
i T IO o T=T= Vo] oI O PPEPPPPRO 8
4.3.2 ADULES. ... e 8
R TS0 (=) = Y- USSR 9
4.5 MESSAGE tOXE @@, .. eeiiiuiieii ittt ettt ettt et e e b et e e b b e e e e e e e e e e naer e e eeeeaas 9
5 RemoteReSPONSE WINAOW......ciiiieermismemiisssrissssnnssssessssss s sssssss s sas s snsssssssssass sessassssssssnssennssnnnes 10
5.1.1 Text OULPUL PANEL......eee e e 10
B2 Trend PANEL.....ooo e 10
5.1.3 OperationNs PANEL......cccuuviiiie ittt a e e e e e aaaas 11
0] o[- 1T T T 12
6.1 Parameters di@log... ... uuei it 12
2 g (o g o |- oo PP PPPPPPPPR 12
6.3 Remote AcCesSDESIIOY AIAlOQ. ... uieiiiiiiiiiie e 13
7 Object EXPIOrer ENQINe........ciccoiiiiemiiiismsiisssssnsssssssssess s ssssssssss ssssass s ssms s ssss snsssms s s nesssnnssssnes 13
0 T O Y=Y V71PN 13
T2 BACH ENQINE... ittt e ettt e e bt e e ettt e e e ae e e e e bee e e ebeeeeeaaeeeeaaeannnnrneees 14
7.3 VaAlUE CONVEISION......eiiiitieeeiteee ettt ettt ettt e e ettt e ettt e e sttt e e aabe e e e aabe e e e sabeeesaabsseeeeeeaeeeeeeeaaannnne 15
7.4 Supported IDL types, IDL2BACT M@PPING....uriiirrierireeeeirieeesieee e ssreee e e e 16
AT =11 o =Tl <3RS 18

Revision: 1.6 Page 4 of 18

ALMA Object explorer

1 Introduction

Object Explorer (OE) is a generic tool used for low-level inspection of objects in a software
environment like BACI or AbeansR2. It can be used as a debugging or testing tool by the
developers and maintainers of a control system.

Basically, OE is split into two parts:

» the GUI part (si.ijs.acs.objectexplorer package), which is independent of the inspected
control system

* the Engine, which is different for each control system and communicates with object
servers. Both parts communicate through interfaces defined in the
si.ijs.acs.objectexplorer.engine package. The main part of the engine is its RemoteAccess
class, which provides the connection to the inspected system.

2 Application overview

User connects to a remote system by clicking the Connect option in File menu and selecting the
type of remote access he would like to use. Objects are shown in the tree below the button. By
selecting an object, its operations and attributes are shown in the lists on the right side of the
window. User invokes operations and inspects attributes by double-clicking on them in the lists.
Operations that require parameters will show a Parameter window, and the user is asked to insert
parameter values into appropriate fields. Results of these actions will be reported to the Result
text area or to the RemoteResponse window.

There are two different windows in the OE application — OF main window, used for connecting
to objects, invoking their operations and inspecting attributes, and RemoteResponse window,
where responses of the invocations are shown.

There is also the Error dialog, which appears every time an exception occurs, Parameters dialog
which is used for acquiring parameters for method invocations, and RemoteAccessDestroy dialog
which appears when OE is disconnecting from the control system and monitors the status of the
disconnecting process.

3 Running Object Explorer

Object explorer can be started in various ways in the ACS environment:

e Commnad line

Revision: 1.6 Page 5 of 18

ALMA Object explorer

e Command center
e Web start
e Javaclass

4 Main window

ggﬂbiect Explorer M E|

Object PBEND_E.D1: Readback opera] atfributes

Beamlines
Booster
Distribution

Estraction Line

@ FluorescentScreen
B InfoSerer
-8 PowerSupply
&-[@ PBEND_E.01

LiL]

L PEEND_E.0Ll: Readback.Identifier
|7 --» Return value: si.ijs.anka.abeans.PropertysliIdentifiahlelmpl@ezo
5

(#i.ij=.anka. abeans. Propertysl$IdentifiableInpl)

|getNane: readback

|getFulllame: PBEND_E.0l:readback

|getShortlane: PEEND _E.01:readback

|getType: 1

|getParent: si.ijs.anka.abeans.ibeanliIdentifiableTupl@6c0d
|isDebug: true

|getIdentified: PEEND_E.01:readhack

[12]
FEEND_E.01: Readback.Format
--» Return value: %9.4f

[13]
FEEND_E.01: Readback.Nane
--» Return value: readback

OE window is divided into four sections: Object tree, lists of object’s members, message text area
and results text area. There are also the menus at the top of the window.

41 Menus

411 File

File menu provides a connect menu item which is used to select the type of the remote access
and connect to remote system (Currently supported options are BACI and AbeansR?2) , and exit
option, which closes the window and exits the program in the same way as if the application was
exited by closing the main window.

412 View
In the View menu you can choose the following:

Revision: 1.6 Page 6 of 18

ALMA Object explorer

* Expand result data: If a result of an action (Operation or Attribute invocation) is not a
primitive type (or a wrapper object of one) and this option is checked, OE tries to find all the
members of this object recursively and prints a hierarchical representation of the object to
the result text area. Otherwise only object’s toString() representation is printed. This option
is not checked by default.

* Invocation response in a separate window: Some invocations (e.g. monitors) send
responses continuously, and in order to make the responses clearer, invocations that produce
more than one response are filtered out and shown in a separate RemoteResponse window. If
this option is not checked, all invocation output goes to the result text area. Option is
checked by default.

* Debug to console: If this option is checked (default), all debug from OE GUI and

engine is printed to the console. Debug is ignored otherwise.

41.3 Engine menu
appears when OE is connected to the engine. It is engine-specific, allowing user to configure
engine and control its behavior.

42 OE Tree

4.21 Search Button

Restarts the remote session: connects to the selected engine by creating and initializing a
RemoteAccess class, and searches for the root nodes in the system (domains or other object
groups). If another RemoteAccess is already present, OE destroys it allowing it to disconnect
from the remote server, before starting a new session. All RemoteResponse windows are closed
upon disconnection. RemoteAccessDestroy dialog is shown.

4.2.2 Nodes

Nodes in the tree represent object groups, objects, their properties and invocations. When a node
is expanded for the first time, the engine searches for its subnodes. After that nodes cannot be
removed from the tree and they can not be refreshed. In order to refresh the whole tree properly,
user should press the Start Search button again.

* Objects and properties are introspectable nodes — when user clicks on one of them, its
operations and attributes are displayed. They also support connecting and disconnecting:
User can connect to an object either by right-clicking on the node and selecting connect on
the popup menu, or by selecting the node in the tree. Connected nodes are displayed with a
different color and in bold font. To disconnect an object, right-click on the node that
represents it and select disconnect on the popup menu. Even if an object is disconnected, its
node still exists in the tree. Introspectable nodes cannot be removed from the tree after they
have been loaded.

* Invocations are simple introspectable nodes — they have operations and attributes, but
they cannot be connected to or disconnected. They can, however, be removed from the tree,
as they represent only temporary objects. There is no special support for removing

Revision: 1.6 Page 7 of 18

ALMA Object explorer

invocations in the OE GUI part. Invocations are removed by the engine when the object
represented by them is destroyed or they are not needed by the engine anymore (usually
engine provides a method to destroy an invocation). Invocations report remote responses
which are printed in the remote response window.

* Other nodes in the tree are used as containers for the object nodes and are not
controllable in any way.

4.2.3 Connect popup menu
This popup menu appears when user right-clicks on an introspectable node. It shows the object’s
name and allows user to connect or disconnect the object.

4.3 Operations and Attributes lists

The operations and attributes lists show the selected object’s operations (methods) and attributes
(fields). When user selects an introspectable object in the tree, its members are found and listed in
the two lists. If a node is clicked while the engine searches for the members of another node, the
last selection is ignored and members of the node clicked first are displayed.

A label above the lists displays the selected object’s name. Next to the label there is a check box
which toggles the display of special operations and attributes.

4.31 Operations

Operations (methods) are displayed in the left list, represented by their name and parameters
types in parentheses. Parameters that are provided by the engine and do not have to be entered by
the user are enclosed in <> signs. Array types are represented with a set of [] for each dimension
of the array.

To invoke an operation, double-click on it in the list. If no user entry is required, it will be
invoked immediately, otherwise a Parameters dialog will appear and operation will be invoked
after the user clicks the Invoke button. Operation results (return values) are printed into the
Result text area, or into the RemoteResponse window if more than one response is received.

Invocations are objects that are temporarily created when user invokes an operation and are
capable of reporting multiple responses. A node representing invocation is displayed in the OE
tree as a subnode of the object whose operation caused it. They are removed from the tree when
they are no longer needed, i.e. when engine knows they would not produce responses any more.

4.3.2 Attributes

Attributes (fields) are displayed in the right list, represented by the name. Double-click retrieves
the attribute value and prints it into the Result text area. Currently, attributes can only be read,
setting their values is not implemented yet. Usually objects will have methods used to set their
attributes.

Revision: 1.6 Page 8 of 18

ALMA Object explorer

44 Result text area

Result text area is displayed in the lower-right corner of the OE main window. It contains results
from invoked operations and inspected attributes. A result report consists of a serial number, a
string representing the object followed by the operation/attribute name, and return value.
Auxiliary return values are parameters, passed to the method either by the user or the engine.

Return values are displayed by their String representation or a hierarchical list of attributes — as
specified by the user in the View menu.

Maximum number of lines displayed in the text area is 1000. If the output is longer than that, the
text is trimmed at the beginning.

Text in the text area is not editable (may be on some platforms). However, user can copy the text
to the clipboard by typing CONTROL + C.

By clicking the right mouse button on the text area a popup menu with two options is displayed:
* Save — the contents of the text area are saved to a file specified by the user.

* Expand to dialog — the text area is removed from the main window and displayed in a
separate dialog window. It can be placed into the OE window again by clicking Dock in
the popup menu or closing the dialog window

4.5 Message text area
Message text area displays messages reported by the GUI or OE engine. When an error occurs, a
message is also printed here. Maximum number of lines printed is 1000.

The popup menu on this text area is the same as on the Result text area.

Revision: 1.6 Page 9 of 18

ALMA Object explorer

5 RemoteResponse window

»E% [16] PBEHD_E.0: Readback: PropertyChangelistener

Serial Number: 42 . no. of results: 500

Message: property changed ‘ | Dizable output

Text output | Trend | Cperations |

I il il A Lo ok M e Wl e j
data zource name: readback

event atring: PEEND E.0Ol:readback Walue: 115.5692834622246 Time: 1013460285347

[lE:d2] =—=— e e o
--> Response for: PEEND_E.0l: Readback: PropertyChangeliztener
--» Mezsage: property changed
--» Parameters:
new walue: 126.17164263823607
old wvalue: null
device serwver time: 1013460256349
property name: latestReceiwedValue
data source name: readback
event string: PEEND_E.0l:readback Walue: 126.17164263823607 Time: 1013450286349

RemoteResponse window shows results of a single invocation. The title bar displays its name and
serial number. Two labels display the serial number and the message of the last response
received. User can specify the number of responses shown by the window in the max. no. of
results text field (to prevent excessive memory consumption). To change this number, click on
the text field and write a number (must be between 1 and 10”). Then press enter to update the
value. If an invalid number is typed the old value is restored. User can disable all graphical output
order to free CPU time by clicking the Disable output button.

User can not close the RemoteResponse window while the invocation is still active (i.e. not
destroyed by the engine). See engine specifications (section 6 of this document) to find out how
to destroy invocations.

To display responses and manipulate the invocation three panel are available in the window:

511 Text output panel

(displayed in the above picture) shows the latest remote responses. Each response starts with its
invocation name, serial number and message. Then the response data is enumerated. Old
responses are deleted from the text area (according to the max. no. of results specified by the
user). When the window is minimized, all responses are buffered and printed to the text area only
upon restoring the window.

Popup menu on the text area offers Save and Expand result data options, which allow user to
save the text in the area to a file and to expand the data returned by responses.

51.2 Trend panel

Revision: 1.6 Page 10 of 18

ALMA Object explorer

Text output Trend | Operations |

*f values
[tirne] 159,984

device servertime y 1000

Hwalues

[time]
new value

rer tirme 1000

40,00
09:44:00 09:47:39

Trend panel shows the receieved data in a trend graph. User can select the desired Y and X value
shown from the lists on the left. Values that can be chosen are [time], which is the system time at
the arrival of response to the window, and other numerical data contained in the remote response.
Number of points shown on the trend is specified by the max. no. of results text field. Scale of the
trend chart is determined by the values as they arrive.

51.3 Operations panel

Text output| Trend Operations |

set_value_trigger (double, b |boolean¥alue: false L4
get_value_trigger { =double=

set_timer_triggeri long) S
get_timer_trigger{ <long=) | |FEEND B 01 : readback : create_monitor.suspend

suspend () --% Return value: null
resume { --» Timeout raised by the engine while waiting for response.
destray {)
4 -----------------------"--\----\---—-—-~—\~—-————————(—(—(——(—(———
FEENLD _E_01 : readback : create_monitor.resume
--» Return walue: null
--» Timeout raised by the engine while waiting for response.
4 | 3 -

Operations panel shows all the operations of the invocation that produces remote responses. User
can invoke operations in a similar manner as in the operations list in the main window of Object
Explorer. Results are printed in the text area next to the list.

Revision: 1.6 Page 11 of 18

ALMA Object explorer
6 OE dialogs

6.1 Parameters dialog
E%E'PBEND_E.IH rebind [ConnectionParameters]

arg1 class sidjs.ank (ConnectionParameters

Constructor parameter 1 class jz § FS_GlEm 0,01

Constructor parameter 2 class jz ing
Constructor parameter 3 class javalang String
Constructor parameter 4 int 148

Parameters dialog is shown when an operation, which requires user input, is invoked. It consists
of three columns, showing name and type of the parameter, and a component where user specifies
the parameter value:

* primitive types (except booleans) and strings are entered into a text field as strings and
converted into appropriate values.

* booleans are entered by checking (true) or unchecking (false) a checkbox

* enums (if OE can recognize them) are entered by selecting the appropriate value in a
combo box

e arrays of primitive types are entered into a text area, each line representing one field in
array.

* structs and other (simple) objects can be provided by entering object’s constructor
parameters into displayed components.

* interfaces and more complex objects can not be passed as a parameter to operation

To invoke the operation when all parameters are entered, click the Invoke button. An error will
occur if parameter values are incorrect.

To cancel invocation click the Cancel button or close the Parameters dialog

6.2 Error dialog

Revision: 1.6 Page 12 of 18

ALMA Object explorer

E&f’,ﬂ'ﬂhiect Explorer error

Cannot constructclass si.ijs.anka.abeans.Property
Java.lang.InstantiationException: sifjs/anka/abeans/Property

Error dialog appears when an exception is caught either by the GUI or engine. It displays the
error message and exception type. User can select the message in the text area and copy it to
clipboard. Exception stack trace is printed to console. To close the error dialog, click the OK
button.

Error dialog is modal, so it stops the current thread, preventing multiple dialogs to appear at a
time. If another thread raises an error it is also printed out in the same Error dialog.

6.3 RemoteAccessDestroy dialog

—

This dialog is shown when OE is closing or user has started a new session, causing the engine’s

RemoteAccess class to disconnect from the remote system. RemoteAccessDestroy dialog
prevents from improper destroy and disconnect of the RemoteAccess class, while allowing user
to terminate the application normally if the disconnect fails. User can terminate the application or
continue with a new session by clicking the Terminate button.

Errors, that occur during the destroy process, do not show an error dialog. The
RemoteAccessDestroy dialog indicates how many errors occurred and their exception stack trace
is written into the console.

RemoteAccessDestroy dialog closes when the destroy procedure ends, unless there are any
errors. In this case user should click the Close button to close the window.

7 Object Explorer Engine

71 Overview
The Object Explorer GUI is independent of the control system communication protocol
with which the OE communicates. The part of the Object Explorer that depends on the
client-server communication architecture (e.g. BACI CORBA, simulator) is called an
Engine. All engines implement a common set of interfaces, declared in the
si.ijs.acs.objectexplorer.engine package. The only class accessed directly by the OE
GUI is the RemoteAccess class, which serves as a factory for other instances of types
declared in si.ijs.acs.objectexplorer.engine package. The connection to the remote

Revision: 1.6 Page 13 of 18

ALMA

7.2

Object explorer

server is kept alive as long as the OE GUI keeps the RemoteAccess instance alive. In
practice, this is as long as the user does not press the “Start Search” button again.

BACI Engine

BACI engine consists of an implementation of interfaces specified in
si.ijs.acs.objectexplorer.engine. BACIRemoteAccess is responsible for establishing
a connection to MACI Managers using CORBA. The same class performs the following
functionality:

* It uses either the manager and repository specified in the BACI Engine [J
Manager & IR corbaloc menu or the corbalocs specified as the command line
parameters using the -DACS.manager and —DACS.repository options. The

corbaloc parameters are always given in the form:

corbaloc::<server>:port/<ID>

where ID is Manager for the manager corbaloc and DefaultRepository for the
Interface Repository. As soon as these parameters are specified, the
BACIRemoteAccess connects to the server and the interface repository.

* After the connection has been established, the BACIRemoteAccess will query
the Manager to obtain a list of component names, which the OE GUI will
subsequently display in the tree on the left. When an entity is selected in the tree,
the BACIRemoteAccess will establish a connection to the remote entity (either
a BACI Component or a BACI Property). Furthermore, CORBA introspection
will be used to determine BACI compliance and identify BACI design patterns,
such as actions, static items etc.

* BACIRemoteAccess will also use CORBA DII to invoke operations on the
remote objects and will ask OE GUI to query the users to enter the operation
parameters.

* BACIRemoteAccess will finally perform the disconnection and deallocation of
the resources, if the OE GUI destroys the engine.

BACI Engine checks also for -Dobjexp.pool_timeout property that defines CORBA DII
response poll timeout in milliseconds. (Default is 5000ms.)

In order for the BACI engine to function properly, the following Java components must
be properly installed and configured:

1. Manager and repository corbalocs must be specified.
2. OE must be compiled to the jar file and present in the classpath.

3. MACI IDL must be compiled to a jar using IDL to Java compiler and present in
the classpath.

Revision: 1.6 Page 14 of 18

ALMA

7.3

Object explorer

4. IDLs for all BACI Components must be compiled to a jar using IDL to Java
compiler and present in the classpath

5. Orbacus Interface Repository (irep executable) must be loaded. IDLs of MACI
and all BACI Components must be loaded into the repository using the irfeed
executable.

Technical note: This is an explanation for the required presence of IDL to Java compiled
IDLs for all BACI Components. BACI engine will use these java classes only insofar a
BACI Component or Property declares an operation or attribute that passes a complex
data type as a parameter. Complex data types supported by BACI engine are structures
and enums. In other words, if a Component or a Property passes a user-defined structure
as parameter in any operation, the BACI engine will need IDL to Java compiled java
stubs for that structure or enum. BACI engine will use Java introspection to load the
stubs, query the user to provide instance data for the struct or the enum, instantiate the
stub and pass it as an argument to the remote method through CORBA DII. It would be
possible to avoid having to provide Java stubs for BACI Components, if CORBA
DynAny would be used instead of Java Introspection. Although this is possible, it is quite
complicated and considerably slower.

Value conversion

Object explorer engine supports automatic value conversion. It is made to be completely
generic, so even converting e.g. degress (double type) to dd:mm:ss (converter defined
structure containing dd, mm, ss) is supported.

An additional property needs to be specified -Dobjexp.converters=<config file>, where

value is file name which contains a list of classes implementing Converter instance.
File looks like this (it is located in objexp/test as an example).

list of classes implementing si.ijs.acs.objectexplorer.engine.Converter interface
si.ijs.acs.objectexplorer.engine.BACI.converters.BACIDouble1000Multiplier
si.ijs.acs.objectexplorer.engine.BACIl.converters.BACIDegreesToDDMMSSConv
erter

In this way objexp is fully extensible.

Conversion can be enabled per inspectable instance - in ACS case: component or
property. To enable it right-click over property and select converter in "convert" menu.

Since converters are completely BACI independed, there is a BACIConverterSupport
abstract class which helps programmers to write only a minimum set of methods and

Revision: 1.6 Page 15 of 18

ALMA

Object explorer

conversion will be applied on all methods related to property value (all get methods, all

set methods, history, set/get_value_trigger, units).

7.4 Supported IDL types, IDL2BACI mapping
As of now, the BACI engine for Object explorer supports the following IDL defined

types:

IDL type (IDL type code kind) TCKind

Action taken by OE when packing (as a
method argument) / unpacking (as a method
return value) arguments of this type

any return: recursively unpacks the contents of
any
argument: not handled by the OE
void return & argument: none
null return & argument: maps to Java null
objref return: unpacks to Java java.lang.Object

instance, use introspection to display the
accessible fields

argument: not handled by the OE, unless
one of the predefined BACI types (e.g.
Callback)

struct, alias, enum

return: loads Java stub, extracts packed
value by calling “extract” method on the
stub. struct retuned by this method is
further only introspected and not managed
anymore (no conversion is done by objexp)
— enums are not converted to its name,
octet not converted to short type to handle
it as unsigned type.

enums are converted to its name using
introspection on Java stubs.

argument: loads Java stub, uses
introspection to create a new instance and
pass it to the remote call

double argument & return: maps to Java double
float argument & return: maps to Java float
Revision: 1.6 Page 16 of 18

ALMA

Object explorer

octet

argument: maps to Java byte

return: maps to Java short to handle it as

unsigned type

longlong, ulonglong

argument & return:

maps to Java long

ulong, long

argument & return:

maps to Java int

short, ushort

argument & return:

maps to Java short

string argument & return: maps to Java String

char argument & return: maps to Java char

boolean argument & return: maps to Java
boolean

other lllegalArgumentException raised by

BACI engine

Note: IDL treats sequences as type alias, because they are defined using the typedef

syntax.

BACIIntrospector class uses CORBA introspection to determine design patterns in IDL
interfaces that comply with the design patterns defined in the BACI document.

BACIIntrospector uses the following rules to determine the nature of the design pattern:

1. If the interface inherits from ACS::Component and is returned by the Manager

on the component query, it is considered to represent a BACI Component.

2. If the interface is contained within a BACI Component and inherits from
ACS::Property, it is considered to represent the BACI Property.

3. If an interface declares a method, that returns an instance of ACS::Subscription

and takes exactly one argument of type inheriting from ACS::Callback,

followed by an argument of type ACS::CBDescln, the method is considered to
represent a Invocation, i.e. an action whose duration is unlimited and whose

progress will be monitored by a callback (examples are BACI Events and BACI

Monitors).

4. If an interface declares an IDL attribute of type readonly, or a method with

signature <return value> get<property name>(), and the return value does not

Revision: 1.6

Page 17 of 18

ALMA Object explorer

inherit from ACS::Property, this method is considered to be a BACI static item
accessor.

5. If an interface declares a method with void return type and variable number of
parameters, exactly one of which inherits from ACS::Callback, this one being

followed by an ACS::CBDescln parameter, such method is recognized as a
BACI Action.

6. All other methods are invoked and have their parameters packed / unpacked
verbatim, with BACI engine making no assumptions about the method behavior.

The contents of the tree are described in Section 3 of this document. BAClIntrospector
and BACIRemoteAccess will place, upon making the above analysis:

e BACI Components into the OE tree as Introspectable nodes.

* BACI Properties into the OE tree as Introspectable nodes, children of
the corresponding BACI Component nodes. The lifecycle of BACI
Property nodes is dependent on the lifecycle of the BACI Component
nodes.

* Invocations, as soon as they are created, into the OE tree as
Simplelntrospectable nodes, children of their corresponding
Introspectable nodes.

* BACI Actions, methods used verbatim under the Operations list.

¢ BACI static data item accessors under the Attributes list.

75 Callbacks
BACI engine implements BACI callbacks as a CORBA DSI (Dynamic Skeleton
Interface) server. This means that OE is capable of unpacking any callback if its interface
is present in the interface repository. The callback message will be the name of the
method in the callback interface invoked by the server (e.g. “working” or “done”). The
callback parameters will be a list of all parameters passed to the callback method.
Because DSI is used to unpack callbacks, the OE cannot handle many callbacks set to
high refresh rates simultaneously, especially since the rendering of the results also takes a
considerable amount of CPU time.

Revision: 1.6 Page 18 of 18

	1 Introduction
	2 Application overview
	3 Running Object Explorer
	4 Main window
	4.1 Menus
	4.1.1 File
	4.1.2 View
	4.1.3 Engine menu

	4.2 OE Tree
	4.2.1 Search Button
	4.2.2 Nodes
	4.2.3 Connect popup menu

	4.3 Operations and Attributes lists
	4.3.1 Operations
	4.3.2 Attributes

	4.4 Result text area
	4.5 Message text area

	5 RemoteResponse window
	5.1.1 Text output panel
	5.1.2 Trend panel
	5.1.3 Operations panel

	6 OE dialogs
	6.1 Parameters dialog
	6.2 Error dialog
	6.3 RemoteAccessDestroy dialog

	7 Object Explorer Engine
	7.1 Overview
	7.2 BACI Engine
	7.3 Value conversion
	7.4 Supported IDL types, IDL2BACI mapping
	7.5 Callbacks

