
Atacama
Large
Millimeter
Array

ALMA-NNNNN

Revision: 1.1

2016-04-21

User Manual

Bogdan
Jeram

Approved by: Date: Signature:

Bulk Data NT

User Manual and How-to Manual

Bogdan Jeram
ESO

Keywords:

Owner Bogdan Jeram (bjeram@eso.org)

ALMA Bulk Data NT

Change Record

REVISION DATE AUTHOR SECTION/PAGE
AFFECTED

REMARKS

1.0 24-07-2013 B. Jeram All Created.

Create Date:2013-07-23 Author: Bogdan Jeram
Bulk_Data_NT Page 2 of 12

ALMA Bulk Data NT

Table of Contents

1 OVERVIEW...4

2 DESIGN AND IMPLEMENTATION..4

2.1 BASIC CONCEPTS..4
2.2 C++ API...5

2.2.1 Sender stream – class BulkDataNTSenderStream..5
2.2.2 Sender flow - class BulkDataNTSenderFlow..5
2.2.3 Sender flow status callback – class
BulkDataNTSenderFlowStatusCallback..6
2.2.4 Receiver stream – class BulkDataNTReceiverStream<>......................................6
2.2.5 Receiver flow – class BulkDataNTReceiverFlow...7
2.2.6 Receiver callback – class BulkDataNTCallback..7
2.2.7 Configuration classes..8

2.3 ACS COMPONENT (IDL)..9
2.3.1 Sender component - IDL: BulkDataSender and C+
+:BulkDataNTSenderImpl...9
2.3.2 Receiver component - IDL: BulkDataReceiver and C+
+:BulkDataNTReceiverImpl< TCallback>...9

2.4 CONFIGURATION DATA BASE (CDB)...10
2.4.1 Reading stream/flow configuration using C++ API..11

Create Date:2013-07-23 Author: Bogdan Jeram
Bulk_Data_NT Page 3 of 12

ALMA Bulk Data NT

1 Overview

The ACS bulk data is a software subsystem – ACS package which allows to transfer
bigger amount of data from many senders to one receiver, from one sender to many
receivers, and if needed also from many senders to many receivers.

First version of the bulk data was based on the TAO Audio/Video Streaming Service,
which, in turn, implements the OMG CORBA Audio/Video Streaming Service
specifications. Later the bulk data was re-implemented with DDS (Data Distribution
Service) technology in particular with RTI implementation of OMG DDS
specification. We refer to this this version of the bulk data as to bulk data new
technology, or short bulk data NT. The bulk data was designed to keep the underlying
details away from the end user, what means that for end user does not have to
understand the details of DDS, or A/V streaming.

At the moment the bulk data NT is implemented just in C++ programming language.
However, if needed, an implementation in other programming languages like Java
can be added.

Although the BDNT is based on ALMA requirements, it was designed and
implemented in a way that is generic, and can be used also for other cases.

This document describes the bulk data NT and shows how to use it, configuring …

2 Design and Implementation

2.1 Basic concepts

The entity that sends data out we refer to as a sender, and there is a contra part entity
called receiver, which, as name suggests, receives data. The data are transferred from
the sender(s) to the receiver(s) on so called flow. One or more flows is/are organized
inside a concept calling a stream. There is a sender stream, and flow and receiver
stream, and flow. We refer to each stream and flow with a name. A specific data
transfer path is defined with the combination of stream and flow name.

Besides bulk data defines a high level protocol for transmitting the data:

First a parameter has to be sent – a sequence of octets of arbitrary data that should be
interpreted by the application that uses bulk data.
After, the data in form of one or more octet sequences can be sent.
At the end it is necessary to inform receiver(s) that no more data will be sent.
In case of bulk data NT that is based on DDS the data are transmitted in chunks –
frames of a size of 64000bytes.

The implementation of Bulk Data NT comes in two flavors:

 C++ API

 ACS component (IDL) which internal uses C++ API

Create Date:2013-07-23 Author: Bogdan Jeram
Bulk_Data_NT Page 4 of 12

ALMA Bulk Data NT
2.2 C++ API

For each concept described in 2.1 there exists a corresponding C++ class which is going to be
described in this section.

bulkDataNTReceiverStream and bulkDataNTSenderStream are classes that
represent sender or receiver stream, and they both inherits from common base class
BulkDataNTStream. If we want to create a stream we have to insatiate an object of stream
class.

Similar we have for receiver and sender flows corresponding classes:
bulkDataNTReceiverFlow and bulkDataNTSenderFlow.

2.2.1 Sender stream – class BulkDataNTSenderStream

The sender stream class represents sender stream.

Sender stream constructor. As first parameter it takes the (sender) stream name.
Optional it is possible to give configuration (SenderStreamConfiguration) as
second parameter; otherwise a default sender stream configuration is used:

BulkDataNTSenderStream(const char *name, const
SenderStreamConfiguration &)

A method to create a new sender flow (BulkDataNTSenderFlow) on the sender
stream. As first parameter it takes (receiver) flow name. Optional is possible to
provide also sender flow configuration (SenderFlowConfiguration), a sender
flow status callback (BulkDataNTSenderFlowStatusCallback), and a flag if the
callback should be deleted with the flow.

BulkDataNTSenderFlow* createFlow(const char *flowName, const
SenderFlowConfiguration &cfg,
BulkDataNTSenderFlowStatusCallback *cb,
bool releaseCB)

An already created sender flow can be retrieved from the sender stream using flow name with
the following method:

BulkDataNTSenderFlow * getFlow(const char *flowName)

2.2.2 Sender flow - class BulkDataNTSenderFlow

A sender flow is represented with class BulkDataNTSenderFlow. A new sender
flow object can be created by invoking createFlow method on a sender stream
object (BulkDataNTSenderStream). The class provides three methods to send data
according to the bulk data protocol:

At the beginning of the transmition we send to the receiver(s) so called “parameter”
by invoking method:
void startSend(const unsigned char *param, size_t len)
In case of a problem (timeout, or wrong order) an exception of type:

Create Date:2013-07-23 Author: Bogdan Jeram
Bulk_Data_NT Page 5 of 12

ALMA Bulk Data NT
StartSendErrorExImpl is thrown, which contains an error trace with the details
(timeout, wrong order,..) of the error.

Data we sent to the receivers(s) by calling method:
void sendData(const unsigned char *buffer, size_t len)
one or several times. In case of a problem (timeout, wrong order – invoking
sendData before startSend) an exception of type: SendDataErrorExImpl is
thrown, which contains a detailed error trace.

We finish the transmition by invoking method:
void stopSend()

We can get the number of so far connected receiver on the particular flow by
invoking:
unsigned int getNumberOfReceivers()

The name of the flow can be retrieved with:

std::string getName()

The sender flow object(s) is/are destroyed when the containing sender stream object
is destroyed, but it can be also destroyed explicitly by invoking C++ delete.

2.2.3 Sender flow status callback – class BulkDataNTSenderFlowStatusCallback

We can get asynchronously (via callback) informed about different status changes in
the sender flow, by providing an optional, so called sender flow status callback
object, when we create a sender flow object. In this way we can get informed about
an error, and new connection/disconnection of a receiver. A user has to create a new
class that derives from BulkDataNTSenderFlowStatusCallback) and implement
one, or all of the following methods:

virtual void onError(ACSErr::CompletionImpl &error)
to get notification about an error container in an error completion.

virtual void onReceiverConnect(unsigned short totalRcvs)
to get notification about a newly connected receiver, with the total number of
connected receivers.

virtual void onReceiverDisconnect(unsigned short totalRcvs)
to get notification that a receiver has disconnected, with the number of the receivers
that remains connected.

The information (the name) about the stream/flow that invokes the callback can be
retrieved with methods:

const char* getFlowName()

const char* getStreamName()

2.2.4 Receiver stream – class BulkDataNTReceiverStream<>

The receiver stream is implemented with a template class, where as the template
parameter can be given a class that implements receiver callback.

Create Date:2013-07-23 Author: Bogdan Jeram
Bulk_Data_NT Page 6 of 12

ALMA Bulk Data NT
Similar to sender stream we can create a receiver stream object by giving a receiver
stream name, and optional receiver stream configuration
(ReceiverStreamConfiguration):

BulkDataNTReceiverStream(const char *streamName,
const ReceiverStreamConfiguration &c)

There is also a possibility to specify the receiver name, so that we can distinguish
between different receivers. The receiver name can be given as first parameter, the
rest is the same as for the other constructor:

BulkDataNTReceiverStream(const char *receiverName,
const char *streamName,
const ReceiverStreamConfiguration &c)

The same way as for sender case we can create a new receiver flow by invoking
createFlow method which takes as the first parameter receiver flow name. In
addition can be optionally passed: a receiver flow configuration
(ReceiverFlowConfiguration), a receiver callback, and a flag if the receiver
callback has to be deleted together with the flow.

BulkDataNTReceiverFlow * createFlow(const char *flowName, const
ReceiverFlowConfiguration
&cfg, BulkDataNTCallback
*cb, bool releaseCB)

If the (receiver) callback object is given it is used for the callbacks when data arrive,
if the callback is not specified, or it is 0, an object from the template parameter is
created. In this way is given a flexibility to create a callback object before with
arbitrary constructor.

An already created receiver flow can be retrieved from the receiver stream using flow name
with the following method:

BulkDataNTReceiverFlow * getFlow(const char *flowName)

2.2.5 Receiver flow – class BulkDataNTReceiverFlow

A receiver flow is represented with class BulkDataNTReceiverFlow. A new
receiver flow object can be created by invoking createFlow method on a receiver
stream object (BulkDataNTReceiverStream). At the construction time it is possible to
provide a receiver callback object, otherwise the receiver stream class creates one using class
given as template parameter. The callback object can be retrieved at any time by invoking:

BulkDataNTCallback * getCallbackObject()

or template version:

template<class T> T * getCallback()

2.2.6 Receiver callback – class BulkDataNTCallback

Class BulkDataNTCallback, more precise, its implementation provides the way that
the data are received, and the notification of different receiver’s event like errors. For

Create Date:2013-07-23 Author: Bogdan Jeram
Bulk_Data_NT Page 7 of 12

ALMA Bulk Data NT
the data transmitting the three methods that reflects the bulk data protocol, have to be
implemented.

virtual int cbStart(unsigned char *userParam_p, unsigned int
size=0
which is called when the parameter data arrives to the sender. This method
corresponds to sender flow method startSend.

When the data arrives to the receiver side (to the receiver flow) the method:
virtual int cbReceive(unsigned char *frame_p, unsigned int
size)=0
is invoked. The method corresponds to the sendData method of the sender flow. For
larger data (bigger than 64k) this method is invoked several times.

At the end of transmission it is called:
virtual int cbStop ()

In addition the receiver callback mechanism gives to the user a possibility to get
notified about possible errors:
virtual void onError(ACSErr::CompletionImpl &error)
The method is called when an error happens in the flow's callback
(cbStart/cbReceive/cbStop). The error is contained in the error completion.

A separate callback method that is invoked in case of the data is lost:
virtual void onDataLost(unsigned long frameCount, unsigned
long totalFrames, ACSErr::CompletionImpl &error)
which gives to the user information about at which frame the data lost
occurred(frameCount), and what is the total number of the
occurrence(totalFrames).

Notification about a new sender connection, or disconnection is done by calling:
virtual void onSenderConnect()
virtual void onSenderDisconnect()

In the implementation of the receiver callback class can be useful to get information
about the stream/flow and receiver for what can be used methods:
const char * getStreamName()
const char * getFlowName()
const char * getReceiverName()

2.2.7 Configuration classes

We could see that when we create a stream or flow we can give also a configuration.
For this purpose there have been introduced 4 classes:

 SenderStreamConfiguration

 SenderFlowConfiguration

 ReceiverStreamConfiguration

 ReceiverFlowConfiguration

Create Date:2013-07-23 Author: Bogdan Jeram
Bulk_Data_NT Page 8 of 12

ALMA Bulk Data NT
Those classes contain member attributes per configuration. The values can be fed in
different way: grammatically with setter methods, or from CDB using configuration
parse what is explained in details in section: 2.4.1.

2.3 ACS component (IDL)

2.3.1 Sender component - IDL: BulkDataSender and C++:BulkDataNTSenderImpl

BulkDataNTSenderImpl is an abstract class which provides the implementation of
the sender component - BulkDataSender IDL. It implements two methods:

void connect(bulkdata::BulkDataReceiver_ptr receiverObj_p)
For backward compatible reason (with A/V version of bulk data) it takes as parameter
reference to a receiver, which is ignored. The method reads streams and flows
information from configuration data base, and creates corresponding sender streams’
and sender flows’ objects.
void disconnect()
It deletes all sender streams’ and flows’ objects created in connect method.

In order to create a new sender component, the user can either create a new IDL
interface which inherits from the interface BulkDataSender (using in this way the
connect and disconnect method of the base class), or creating a completely new
one. The implementation of the component/IDL can in this case inherit from
BulkDataSenderImpl and provide the implementation of the three methods from
IDL:
 startSend is used to start the data transfer (e.g. send parameters to the

receiver(s), open files, etc.)
 paceData the user sends the bulk of the data to the receiver(s)
 stopSend ends the data trasfer (e.g. close the open files, etc.).

To actually send the data, the respective methods of the BulkDataNTSenderFlow
class for each flow have to be called inside the three methods described above. In
particular, the user has to call:

 getSenderStream(“Stream1”)->getFlow(“FlowA”)->startSend(…) in
startSend

 getSenderStream(“Stream1”)->getFlow(“FlowA”)->sendData(…) in
paceData

 getSenderStream(“Stream1”)->getFlow(“FlowA”)->stopSend(…) in
stopSend

BulkDataNTSenderStream *getSenderStream(const char *name) returns
the sender stream for the name (in our example “Stream1”) which has to be created in
the connect method using information from CDB. If we have more streams in the
sender component we have to “loop” over all of them.

2.3.2 Receiver component - IDL: BulkDataReceiver and C+
+:BulkDataNTReceiverImpl< TCallback>

The class BulkDataNTReceiverImpl<TCallback> implements the receiver
component – BulkDataReceiver IDL. It implements following (IDL) methods:

Create Date:2013-07-23 Author: Bogdan Jeram
Bulk_Data_NT Page 9 of 12

ALMA Bulk Data NT
void openReceiver()
The method reads streams and flows information from configuration data base, and
creates all corresponding receiver streams’, and receiver flows’ objects.
If someone wants to “open” just particular stream and its flows that are defined in the
CDB it can be used:
void openReceiverStream(const char *stream_name)

All the receiver streams and flows can be “closed” - destroyed by calling IDL
method:
void closeReceiver()

If we want to “close” just a particular stream and its flows we can use:
void closeReceiverStream(const char *stream_name)

The Receiver can receive data only using a callback mechanism (see section 2.2.6).
The template class BulkDataNTReceiverImpl<TCallback> provides the hook
for the receiver callback. TCallback is a class which must inherit from
BulkDataCallback and must implement the three methods cbStart(),
cbReceive() and cbStop(). As it is described in section: 2.2.6: cbStart() is
called automatically by the bulk data when the sender calls startSend(),
cbReceive() when it calls paceData() or sendData(), and cbStop() when it
calls stopSend().

2.4 Configuration data base (CDB)

Primary the configuration in CDB for the bulk data NT was ment to be used for
configuring stream/flows that receiver/sender bulk data component is going to create,
but configuration can be used/read also directly from C++.

Sender and receiver components reads information about which streams and flows
should be created from the configuration data base – CDB. There is also possible to
give additional configuration like timeout, for a particular stream/flow. The
configuration is given in XML format, where there is an XML element for each
stream (SenderStream or ReceiverStream), which can contain one or more flow
XML elements (SenderFlow or ReceiverFlow). Stream and flow configuration
can be specified using XML attributes in either stream or flow element.

An example of a configuration for two streams: Array1Stream and Array2Stream
with 2 flows each: SpectralData, WVR for a sender component:

<SenderStream Name="Array1Stream">
 <SenderFlow Name="SpectralData"/>
 <SenderFlow Name="WVR"/>
</SenderStream >
<SenderStream Name="Array2Stream">
 <SenderFlow Name="SpectralData"/>
 <SenderFlow Name="WVR"/>
</SenderStream >

and corresponding configuration for receiver component(s):

<ReceiverStream Name="Array1Stream">
 <ReceiverFlow Name="SpectralData"/>
 <ReceiverFlow Name="WVR"/>

Create Date:2013-07-23 Author: Bogdan Jeram
Bulk_Data_NT Page 10 of 12

ALMA Bulk Data NT
</ReceiverStream >
<ReceiverStream Name="Array2Stream">
 <ReceiverFlow Name="SpectralData"/>
 <ReceiverFlow Name="WVR"/>
</ReceiverStream >

As we can see we have to give to sender and receiver the same names for stream and
flows to be able to establish the communication between them.

2.4.1 Reading stream/flow configuration using C++ API

If the CDB configuration is used in for defineing and configuring streams and flows
inside a component the names of the stream and flows are equal to the corresponding
names in the CDB. We can say that the stream/flow name and the configuration name
are bound together.
With the new bulk data it is possible to distinguish between stream/flow name and the
configuration name. For this purpose it was added functionality to easy use the CDB
configuration also directly from C++ API. In such a way we can for example define a
default configuration(s) for streams/flows that can be used in someone’s
application/component.
As described in section 2.2.7 there are defined 4 classes which instance represents
configuring for a stream/flow. The configuration can be feed by invoking proper
setter method(s), or it can be read from CDB.

The best is to look into an example how to retrieve a (default) configuration = how to
use the C++ API:
Let's assume that we have in CDB (alma branch) under folder DefaultCorrBDNTCfg
in file DefaultCorrBDNTCfg.xml following configuration:
...
<ReceiverStream Name="DefaultCORRStreamCfg">
 <ReceiverFlow Name="DefaultCORRSpectralDataFlowCfg"
 cbReceiveProcessTimeoutSec="0.02"
 >
 </ReceiverFlow>
 <ReceiverFlow Name="DefaultCORRXYZFlowCfg"/>
 </ReceiverStream>
..

and we would like to use this configuration for our stream(s) and flow(s).
First we have to obtain/read the (XML) data, in the standard way from the CDB:

CDB::DAL_ptr dal_p = getContainerServices()->getCDB();
ACE_CString CDBpath="alma/";
CDBpath += "DefaultCorrBDNTCfg"; //node name in CDB like
char *xmlNode = dal_p->get_DAO(CDBpath.c_str());

So now we have the configuration XML string from CDB which should be fed to the
parser:

BulkDataConfigurationParser *parser_m =
new BulkDataConfigurationParser("DefaultCorrBDNTCfg");
//if you want to have more than one BulkDataConfigurationParser (=more
than one cfg node in CDB), should each have unique name / could be
component name.
parser_m->parseReceiverConfig(xmlNode); //xmlNode can be also a
XML string

Create Date:2013-07-23 Author: Bogdan Jeram
Bulk_Data_NT Page 11 of 12

ALMA Bulk Data NT
Now, we have to obtain proper the configuration from the parser, in this case for
ReceiverStream (ReceiverStreamConfiguration) and ReceiverFlow
(ReceiverFlowConfiguration), but it is equivalent for the sender side
(SenderStreamConfiguration / SenderFlowConfiguration)

ReceiverStreamConfiguration* rcvStrCfg =
parser_m->getReceiverStreamConfiguration("DefaultCORRStreamCfg");
// get Receiver Stream cfg
// now we create receiver stream with the configuration
BulkDataNTReceiverStream<MyCallback> *stream =
new BulkDataNTReceiverStream<MyCallback>("MyStream", *rcvStrCfg);

And similar we get the configuration for the ReceiverFlow:
ReceiverFlowConfiguration *rcvSpecDataFlowCfg =
parser_m->getReceiverFlowConfiguration("DefaultCORRStreamCfg",
"DefaultCORRSpectralDataFlowCfg");

BulkDataNTReceiverFlow * specDataFlow =
stream->createFlow("SpectralDataFlow", *rcvSpecDataFlowCfg);

Create Date:2013-07-23 Author: Bogdan Jeram
Bulk_Data_NT Page 12 of 12

	1 Overview
	2 Design and Implementation
	2.1 Basic concepts
	2.2 C++ API
	2.2.1 Sender stream – class BulkDataNTSenderStream
	2.2.2 Sender flow - class BulkDataNTSenderFlow
	2.2.3 Sender flow status callback – class BulkDataNTSenderFlowStatusCallback
	2.2.4 Receiver stream – class BulkDataNTReceiverStream<>
	2.2.5 Receiver flow – class BulkDataNTReceiverFlow
	2.2.6 Receiver callback – class BulkDataNTCallback
	2.2.7 Configuration classes

	2.3 ACS component (IDL)
	2.3.1 Sender component - IDL: BulkDataSender and C++:BulkDataNTSenderImpl
	2.3.2 Receiver component - IDL: BulkDataReceiver and C++:BulkDataNTReceiverImpl< TCallback>

	2.4 Configuration data base (CDB)
	2.4.1 Reading stream/flow configuration using C++ API

