ALMA-NNNNN

Revision: 5.0.3

2009-04-30

Software
Design

ACS Notification Channel Module
Software Design & Tutorial)

Software Design and How-to Manual

Jim Pisano
National Radio Astronomy Observatory
David Fugate
University of Calgary
Sohaila Lucero

— e N —~

Owner David Fugate (dfugate @ucalgary.ca)

Approved by: Date: Signature:

ALMA Notification Channel Module Software Design & Tutorial)

Change Record
REVISION DATE AUTHOR |SECTION/PAGE REMARKS
ALDDLDOCTTEIN

2.0 10-12-2002 | D. Fugate All Revised for ACS 2.0
release.

2.0.1 28-02-2003 | D. Fugate All Design now reflects
current
implementation.

21.1 17-03-2003 | D. Fugate All Added diagrams.

21.2 09-06-2003 | D. Fugate All Made changes
reflecting comments.

3.0.0 17-11-2003 | D. Fugate All Revised for ACS 3.0
release.

3.0.1.0 24-11-2003 | D. Fugate All Changes regarding
comments and C++
SimpleConsumer.

3.0.1.1 05-12-2003 | D. Fugate Java Simulations | Added documentation
contributed by
Scheduling
subsystem.

3.1.0 30-04-2004 | D. Fugate All Revised for ACS 3.1

4.0.0 09-11-2004 | D. Fugate All Revised for ACS 4.0

41.3 22-09-2005 | D. Fugate Deployment Section needed for
CDB channel props.

5.0.0 05-12-2005 | D. Fugate All Revised for 5.0

5.0.2 22-02-2006 | D. Fugate All Made changes
requested by
H.Sommer

5.0.3 08-03-2006 | D. Fugate Deployment Event handler
timeouts.

Create Date:2002-06-26 Author: David Fugate

Notification_Channel_Module_Software_Design.doc Page 2 of 22

ALMA Notification Channel Module Software Design & Tutorial)

Table of Contents

LI 1T V- 4
LIPS I e = 1= S 5
L2 AN o] o101V (oo - 5
1.8 REIEIEINCES. ... ettt e b e e e e a b e e e s ahb e e e e e e e e e e e e e e 6
P X o T 0 7= | o T 6
P2 B 2 (= To 01T =T 4 g T=T 0] (T T PPPR 6
P2 /(oo = TSP PRTTPPPRI 6
P2 B A= Lo g T gV TR T o TSP 7
R 7= 1 2= =T 10T () T 8
BT ALMA EVENTS. ..ttt ettt a et s bt e e e h bt e e e aa bt e e e b bt e e ekt e e e e aa bt e e e anbe e e e anre e e e aanntrneeeeeas 8
3.2 STTUCIUIEA EVENT ...ttt e e e s e e s e et e e e e e s sann e e s annnrr i neeees 8
4 Notification Service Properties.........ccucuiiiimiriimrinissniissss s ssssss s s sms s s s sms s s ssnssssas 10
5 Naming INfOrMatioN.........oocicmiiiiiiimr s s s 10
03 1= Lo o= o o T 3TN 11
6.1 Supplier (C++ and PYINON)....co ettt e e e e e e e e e s e eeee 11
6.2 SIMpleSUPPliEr (C+ AN JAVA)......ocueiieiiieie ettt sttt sbr e abe e e e sbe e e e s e annenneee 11
ORI SN o] o] =T (2 TP 11
S 00 1= 0 =T R 12
6.5 SIMPIECONSUMET (CA4) . iuuiieiiiiite ettt et et e e et e e e sbe e e s s b e e e e aabee e e abeeeeaabeeee e s e aaannnennees 12
A 1L 5= T3 o L= 12
O T 1= N 12
S B e 1 1] o] = U P P UTURPPPP 13
Lo O 0T T 1Y 14
9.1 EXAMPI..c. et e et e e e e e e e e e nne e e e e e e nrrnees 14
B O oV (T 4 TR T U o7 o 1 =T 15
Create Date:2002-06-26 Author: David Fugate

Notification_Channel_Module_Software_Design.doc Page 3 of 22

ALMA Notification Channel Module Software Design & Tutorial)

10,1 EXAMPI... et e e e e e e e e e e e e e e e nn e e e nnreeeaeaan 15
11 PYthON CONSUMIEKcveeiiiieieiiisessnsss s s s s s e e e e e s e e e m e e e R m e R e e e e e na R nnnnnns 15
L I I = Uy] o L= T PP PPTTOTTPPPPP 15
P = NV = TS o o [T . 16
L2 T = Uy] o= T U UPT PP 16
B T - 1T = T 00 3 1T 1 T 17
LRI I e T 1] o =TT T RSP PPPPPOPPPPTP 17
14 Java Wrapper Classes for the Notification Channel............cccooeeemiiimniennsse e 18
14.1 PaCKAQGE/NAMESPACE.ceuteeeiiieie ettt ettt ettt e bt e bt e e e e abe e e e aabe e e e aabe e e s sabeeeeanbeeeaanbeeeesnneeeaaanns 18
L2 =101 o1 g To] (oo 2 PP PPPRRTPPPRP 18
L 0 = 1T SRR 18
14.4 The Local Notification Channel...........c.ooiii e 19
14.5 Do they work With PYthon @nd Ca47...cecoeeieeiee et 19
LG = Ty o] (=T F PR P UPPPPPPPPPP 19

14.6.1 CORBA PUDBISNET ..ot e e 19

14.6.2 CORBA RECEIVET....cci ittt e e e e eeeeeeeens 19

L TR oY= I U] o)1 = PR 19

14.6.4 LOCAI RECEIVET.....ci ittt et e et e s s bbb eeeeeaaeens 19
15 Deployment INFOrmMation.........ccoceemmiirniinmimrirnns s s 19
15.1 Channel Properties and the ACS CDB..........ocri e 19

15.1.1 Debugging FUNCHONEAIIY.......cooiiiiiieie e 20

15.1.2 Event Handler TIMEOULS.oouiiiiiiii et 20
15.2 EVENE BIOWSETeeieiieee ittt ettt st st e e et e e s s et e s n e e e e se e e e s anre e e san s snnrn e e e e e aeeeeeennaans 21
16 KNOWN ProbIems........coceeiiiiiiiss i s s s s e s e e s n e e 21
LI o =T 3 T) 22

1 Overview

This document describes C++, Python, and Java classes that provide an interface to CORBA
notification channels and how to use them. Also, the design of these classes is discussed. A
developer who only wishes to learn how to use these classes should read the following: Data
Definition, Naming Information, IDL Example, and the section(s) on the specific language
he or she may be interested in using.

To implement a publish-subscribe mechanism using the TAO Notification Service with
structured events, there are a variety of steps that must be performed. The intent of the ACS
API is to hide the details of the Notification Service — for example, the supplier and consumer
proxies, notification channel factory, creating and attaching to the notification channel,

Create Date:2002-06-26 Author: David Fugate
Notification_Channel_Module_Software_Design.doc Page 4 of 22

ALMA

1.1

1.2

Acsnc
Acspy

Notification Channel Module Software Design & Tutorial)
publications of subscriptions and offers, etc. — and only expose the important parts which the
developer must define. The developer must define data to be published on the supplier side, a
function to handle incoming events for the consumer, and an IDL data structure shared by both
the supplier and consumer. For the developer willing to accept default values for most things,
the ACS classes provided can be instantiated as-is without the need for subclassing.

It is assumed that both the TAO notification and naming services are used for this design. The
acsStartORBSRVS script performs this functionality although it is possible to run the services
manually. Details on doing so are beyond the scope of this document though.

This design only covers a push notification channel whereby suppliers push data onto the
notification channel.

Disclaimers
* This document does not provide detailed information on the CORBA Notify Service,
the TAO group’s implementation of the Notify Service, or any other CORBA service
for that matter! It is only intended to discuss what ACS provides on top of these
services. Please see the references section if you’re interested in this type of
information.

* By no means is this document intended to be used on its own! The way you’ll gain the
most knowledge is by looking over the examples ACS provides in the acsexmpl,
jecontexmpl, and acspyexmpl CVS modules as well as the Doxygen and Pydoc generated
documentation for the APIs in conjunction with this tutorial.

* The examples presented within this document are incomplete and have substantial
blocks of code unrelated to notification channels missing. Again, please see the
complete examples ACS provides in the acsexmpl, jcontexmpl, and acspyexmpl CVS
modules.

* Regardless of what names are used within the examples, one should always follow the
Software Engineering group’s coding standards.

Abbrevations
ALMA Common Software Notification Channel module
ALMA Common Software Python module

CORBA Common Object Request Broker Architecture

ICD
Event
IDL

An ICD event is defined as the type of event sent between ALMA subsystems. Essentially this
is a user-defined IDL structure and has nothing to do with CORBA structured events.

Interface Definition Language

Jeontne Java Container Notification Channel module

MACI Management and Control Interfaces
NC Notification Channel
Create Date:2002-06-26 Author: David Fugate

Notification_Channel_Module_Software_Design.doc Page 5 of 22

ALMA Notification Channel Module Software Design & Tutorial)

1.3 References

[RO1] ACS Architecture 5.0
(http://www.eso.org/~almamgr/AlmaAcs/OnlineDocs/ACS ArchitectureNL.pdf)

[RO2] ACS Software Modules: “acsexmpl”, “acsnc”, “acspy”, “jcontnc”, and “nctest”

[RO3] Advanced CORBA Programming with C++ (Henning, Vinoski)

[R04] CORBA
(http://www.omg.org/technology/documents/formal/corba_iiop.htm)

[RO5] CORBA Event Service
(http://www.omg.org/technology/documents/formal/event_service.htm)

[RO6] CORBA Naming Service
(http://www.omg.org/technology/documents/formal/naming_service.htm)

[RO7] CORBA Notification Service
(http://www.omg.org/technology/documents/formal/notification_service.htm)

[ROS8] CORBA Trading Object Service
(http://www.omg.org/technology/documents/formal/trading_object_service.htm)

[R0O9] TAO Developers Guide version 1.2a

[R10] Notification Channel Implementation: Additions and Enhancements
(SCHEDULING\doc\NC-Additions.pdf in the ALMA CVS repository)

2 API Design

21 Requirements
* The ACS notification channel API must hide as much CORBA as possible.

* The possibility of setting the quality of service and administrative properties of
channels must exist.

¢ Event channels should never discard events and events should be delivered to
consumers in a timely manner.

* The API must be implemented in a high-performance manner to reduce the chances of
events being discarded.

e As far as names for channels, domains, etc. are concerned, there must be little to no
chance of suppliers and consumers confusing names.

2.2 Model
The following model depicts the ACS notification channel at the highest level.

Create Date:2002-06-26 Author: David Fugate
Notification_Channel_Module_Software_Design.doc Page 6 of 22

ALMA Notification Channel Module Software Design & Tutorial)

Run under any host.

Can be coded in _ _
C++, Java, or Python. The TAO Notification and

Implements abstract Naming services are run
CORBA class. from the same host.

Notification Channel (0-n)

Supplier Administrator (1-x per event channel)

Run under any host
and useable from
C++, Java, or Python.
Implements abstract
CORBA class.

Consumer Proxy (1 per supplier admin)
Corresponds to one
StructuredPushSupplier-derived object.

Consumer Administrator (1-x per event channel)

Supplier Proxy (1 per consumer admin)
Corresponds to one
StructuredPushConsumer-derived object.

Naming Context

(1 per nofification channel mapping it to a string)

2.3 Naming Service
For a consumer to subscribe to events on a given channel it first needs a reference to that
channel. While there are many different ways this reference could be obtained, the Naming
Service provides the safest and cleanest manner for doing so. The following diagram depicts
how remote notification channel objects will be arranged within the Naming Service:

Create Date:2002-06-26 Author: David Fugate
Notification_Channel_Module_Software_Design.doc Page 7 of 22

ALMA

3.1

3.2

Notification Channel Module Software Design & Tutorial)

TACO Maming Service

RootContaxi

id = Chanrel name
kind = “channels”

The CORBA Naming Context id, “Channel name”, is whatever name is given to the channel by
the developer. The kind of the Naming Context will always be “channels” differentiating event
channels from other objects registered with the Naming Service.

Data Definition

ALMA Events

Within ALMA software, an event is defined to be an instance of a user-defined IDL struct.
Most developers can safely skip the next section on CORBA structured events as this
information is hidden within the notification channel APIs.

For those who need to know which object was responsible for sending the event, the time the
event was sent, etc; take note that ACS embeds an acsnc::EventDescription IDL struct within
the remainder_of _body field (see below) of CORBA structured events. See acsnc.idl’s
Doxygen documentation for acsnc::EventDescription field explanations.

Structured Event
A structured event is the data that is transmitted from suppliers to consumers. For all intensive

purposes, there are only three useful fields in this data structure: domain_name, type_name, and
filterable_datal].

domain_name and type_name are used internally within the Notification Service. For a
consumer to receive an event on a given channel, it must be subscribed to that event’s
domain_name and type_name.

filterable_datal | is what the user needs to be concerned with. This PropertySeq (an array of
string/CORBA Any pairs) can be filtered directly from the TAO Notification Service using
Trader Constraint Language strings. A CORBA Any closely resembles a C++ void pointer and

Create Date:2002-06-26 Author: David Fugate
Notification_Channel_Module_Software_Design.doc Page 8 of 22

ALMA Notification Channel Module Software Design & Tutorial)
there are some stipulations on exactly what type of data can be packed into it. The data is
limited to simple CORBA types (int, float, string, etc.) or some form of IDL struct/sequence.
The reasoning behind this is quite simple: consumers can be written on any supported CORBA
platform and some forms of data cannot be extracted (e.g, a Java consumer trying to extract a
C++ void pointer is impossible). This is a restriction imposed by the CORBA specifications. In
the case of IDL structs or sequences, it is necessary to compile the IDL file to obtain
appropriate operators and/or helper classes to insert/extract CORBA Any data.

The other interesting fields of a structured event are: event_name, variable_header, and
remainder_of _body. All three are optionally specified and have little to do with the way events
are processed internally by the Notification Service. The developer should only be concerned
with the fact that these can be used if desired.

. Definition of a StructuredEvent

EventHeader header

FixedEventHeader fixed_header

_EventType event_type

string domain_name = “ALMA”

string type_name = dependent upon the ALMA event type

string event_name = *"

0 to n instances of Property structures
Propert

FilterableEventBody filterable_data (PropertySeq)

0 to n instances of Property structures

Property
string name = “almaData”

any remainder_of _body = acsnc::EventDescription IDL struct

Create Date:2002-06-26 Author: David Fugate
Notification_Channel_Module_Software_Design.doc Page 9 of 22

ALMA

Notification Channel Module Software Design & Tutorial)

4 Notification Service Properties

Quality of Service and Administrative properties are what sets the Notification Service apart

from the CORBA Event Service. The Notification Service specification describes various

properties which control how events, suppliers, consumers, and even channels behave under

various circumstances.

For your convenience, all properties are described in detail. Please note that some of these

properties have not yet been implemented by TAO though (see the Known Problems

section).

Quality of Service
EventReliability

ConnectionReliability

StopTime

Timeout

StartTime

PriorityOrder

OrderPolicy

DiscardPolicy
MaximumEventsPerConsume
’

MaximumBatchSize
Pacinglnterval

Administrative
MaxQueueLength
MaxConsumers
MaxSuppliers

RejectNewEvents

Handles the kind of guarantee that can be given for a specific event getting delivered to
a Consumer. Represented by BestEffort or Persistent.

Handles the kind of guarantee that can be given for the connections between the
Notification Channel and its clients. Can have the same values as EventReliability.
Specifies an absolute expiry date.

Specifies a relative expiry date.

Specifies an absolute time after which the event will be discarded.

Used to control the order of the events delivered to the consumers. Default value is 0
but ranges from —32767 to 32767.

Used by a proxy to arrange events in the dispatch queue. Can be the following values:
AnyOrder, FifoOrder, PriorityOrder, and DeadlineOrder.

Defines the order in which events are discarded when overflow of internal buffers
occur. Holds the same values as OrderPolicy plus an addition value: LifoOrder.
Defines a bound for the maximum number of events the channel will queue for a given
consumer. The default value is 0.

Irrelevant to the ACS API!

Irrelevant to the ACS API!

Specifies the maximum number of events the channel will queue internally before
starting to discard events.

Defines the maximum number of consumers that can be connected to a particular
channel.

Defines the maximum number of suppliers that can be connected to a particular
channel.

Defines how to handle events when the number of events exceeds MaxQueueLength
value. Set this Boolean value to true for IMPL_LIMIT exceptions to be thrown. A
false value implies events will be discarded silently.

5 Naming Information

Both the supplier and consumer must have agreed-upon names for the notification channel.

This section describes how suppliers and consumers discover the notification channel to use.

Create Date:2002-06-26

Notification_Channel_Module_Software_Design.doc

Author: David Fugate
Page 10 of 22

ALMA

6.1

6.2

6.3

Notification Channel Module Software Design & Tutorial)
There are three important names:

* Channel Name — the name of the channel created by a supplier or subscribed to
by a consumer. This name is registered with the Naming Service. The
developer sets this via supplier/consumer constructor parameters.

* Event Domain — “ALMA?”. Directly corresponds to the domain_name field in
a structured event. Hidden within the APIs.

* Event Type — identifies the type of an (ALMA) event. Corresponds to the
type_name field in a structured event. Hidden within the APIs which
automatically determines this name from the name of the ALMA event being
published.

At present, there are two recommendations regarding names usage:

e Channel names should be specified as constant strings in IDL. This is done to enforce
agreed-upon names between suppliers and consumers.

* Prepending the subsystem name to a given channel name reduces the chances of name
conflicts between subsystems. An example would be the Correlator subsystem creates
the “CORRdata” channel instead of just “data”.

Take special note that the Software Engineering group has made coding standards for

some of these names!

Class Descriptions

Supplier (C++ and Python)
This class provides the interface used to push CORBA structured events onto the notification
channel. It creates the channel (if it doesn’t exist) and hides most CORBA from the developer.

SimpleSupplier (C++ and Java)

SimpleSupplier is a subclass of Supplier designed specifically for publishing ALMA events. It
provides the interface used to push IDL structs onto the notification channel, creates the
channel (if it doesn’t exist), and hides all CORBA from the developer. In Python, the Supplier
class performs the same functionality as SimpleSupplier.

RTSupplier (C++)

RTSupplier, a subclass of Supplier, is basically identical to SimpleSupplier except that it is to be
used in real-time applications. In a nutshell, the publish method queues events locally and a
low-priority thread publishes events across the network.

Create Date:2002-06-26 Author: David Fugate
Notification_Channel_Module_Software_Design.doc Page 11 of 22

ALMA Notification Channel Module Software Design & Tutorial)

6.4 Consumer
This class provides the interface used to subscribe to CORBA structured events from the
notification channel. It is used by the data consumer and must be derived to overload
push_structured_event (in C++) or processEvent (in Java and Python) to get the
requested data. It should be noted that Consumer does not have to be subclassed in
Java/Python because those implementations use handler functions and receiver objects.
Consumer will create the channel if it does not already exist.

6.5 SimpleConsumer (C++)
SimpleConsumer is a concrete, templated implementation of Consumer which uses a single
handler function to process a single type of event. There is no need to subclass
SimpleConsumer and the Java and Python implementations of Consumer include identical
functionality.

7 IDL Example

The following excerpt from an IDL file defines channel names, struct definitions, etc. that will
be used for examples throughout this document. Please note that items in bold should be
adapted for your applications:

ACS/LGPL/CommonSoftware/acsexmpl/ws/idl/acsexmplFridge.midl:

1: #pragma prefix "alma"
2: module FRIDGE
3: {
4: enum TemperatureStatus { OVERREF, ATREF, BELOWREF};
5:
6: struct temperatureDataBlockEvent
78 {
8: float absoluteDiff;
9: TemperatureStatus status;
10: }i
11:
12: const string CHANNELNAME_FRIDGE = "fridge";
4 The actual temperature of the fridge can be over/at/below the desired temperature.

6-10 This defines the block of data that will be sent over the notification channel.
12 The channel name for use with all fridge suppliers and consumers.

8 C++ Supplier

In this tutorial, a SimpleSupplier example which publishes one event and then disconnects from
the channel is given. For specifics on Supplier functions, please see the Doxygen-generated
documentation of the acsnc module. Aside from that, C++ Supplier objects need to be

Create Date:2002-06-26 Author: David Fugate
Notification_Channel_Module_Software_Design.doc Page 12 of 22

ALMA Notification Channel Module Software Design & Tutorial)
instantiated from within the context of a component or after a MACI SimpleClient has been
created.

8.1 Example
Bolded code should be adapted for the developer’s particular needs. Note that all component
code has been omitted and the acsexmpl module contains the example in its entirety.

ACS/LGPL/CommonSoftware/acsexmpl/ws/src/acsexmplFridgelmpl.cpp:

1: #include <acsexmplFridgeS.h>

2: #include <acsncSimpleSupplier.h>

33

4: nc::SimpleSupplier *m_FridgeSupplier_p = 0;

53

6: m_FridgeSupplier_p = new nc::SimpleSupplier (FRIDGE: :CHANNELNAME_FRIDGE,
73 this);

8:

9: FRIDGE: :temperatureDataBlockEvent t_data;

10: t_data.absoluteDiff = (double)0.0;

11: t_data.status = FRIDGE: :ATREF;

123

13: m_FridgeSupplier_p->publishData<FRIDGE: :temperatureDataBlockEvent>(t_data);
14:

15: if (m_FridgeSupplier_p)

16: {

17: m_FridgeSupplier_p->disconnect();

18: m_FridgeSupplier_p=0;

19: }

1 A user-defined IDL structure is packed into all events. Therefore, the stub header must be included.
4 Declare a pointer for the SimpleSupplier class.

6-7 Create and initialize the SimpleSupplier instance.

6 The channel events will be published on.

7 A pointer to an ACSComponentlmpl is needed to pack the component’s name into the event.
9 Create a new temperatureDataBlockEvent that will be packed into an event.

10-11 Fill the fields of the temperatureDataBlockEvent with arbitrary data.

13 publishData is a blocking call that actually sends the structured event to consumers. The template
parameter is identical to the type of data being published.

15-19 TItis necessary to disconnect from the channel after we are done sending events to prevent remote
memory leaks from occurring. One should never delete the Supplier directly as it’s a CORBA object.

Create Date:2002-06-26 Author: David Fugate
Notification_Channel_Module_Software_Design.doc Page 13 of 22

ALMA Notification Channel Module Software Design & Tutorial)
9 C++ Consumer

A C++ SimpleConsumer utilizes a handler function for a single event type and does not have to
be overridden. C++ Consumer objects need to be instantiated from within the context of a
component or after a MACI SimpleClient has been created.

9.1 Example
The following depicts the usage of a SimpleConsumer. As always, bolded text should be

adapted for your particular needs and error handling has been omitted.

ACS/LGPL/CommonSoftware/acsexmpl/ws/src/acsexmplClientFridgeNC.cpp:

1: #include "acsexmplFridgeC.h"

2: //..

3: J/-——_—
4: void myHandlerFunction(FRIDGE: :temperatureDataBlockEvent joe, void *other)

5: {

6: ACS_SHORT_LOG((LM _INFO, "::myHandlerFunction(...): %f is the tempdiff.",

73 joe.absoluteDiff));

8: }

08 [[e e e e e e e e e e e e e e e e e e I
10: //.

11:

12: nc::SimpleConsumer<FRIDGE: : temperatureDataBlockEvent> *simpConsumer_p=0;
13: ACS_NEW_SIMPLE_CONSUMER (simpConsumer_p,

14: FRIDGE: : temperatureDataBlockEvent,
15: FRIDGE: : CHANNELNAME_FRIDGE,

16: myHandlerFunction,

17: (void *)0);

18: simpConsumer_p->consumerReady () ;

19:

20: ACE_Time_Value time(150);

21: client.run(time) ;

22: simpConsumer_p—->disconnect(); simpConsumer_p=0;
23: / /..

1 The client header stub generated by the IDL compiler is used to insert and extract user-defined IDL
structures to and from CORBA Any’s.
4-8 myHandlerFunction is a void function designed to manipulate one type of IDL struct/event, a

temperatureDataBlockEvent. Each time a temperatureDataBlockEvent event is received,
SimpleConsumer will call this function.

4 Handler functions must not return any value and shall take in two parameters: the user-defined IDL
structure defining ICD events and a void * whose value will always be identical to the void * on line 17.

6-7 Do something useful with the event.

12-17 A SimpleConsumer instance is created. Note that the ACS_NEW_SIMPLE _CONSUMER macro must be
used to do this!

12 Create a SimpleConsumer pointer using the event type FRIDGE: :temperatureDataBlockEvent for the
templated parameter.

13 simpConsumer_p is a pointer to an unallocated SimpleConsumer.

14 The second parameter is the type of event to be received (i.e., a user-defined IDL struct).
SimpleConsumers are only capable of receiving and processing a single type.

15 The name of the channel we will subscribe too. In this case it’s the “fridge” channel.

16 This function will be invoked each time an event is received.

Create Date:2002-06-26 Author: David Fugate

Notification_Channel_Module_Software_Design.doc Page 14 of 22

ALMA Notification Channel Module Software Design & Tutorial)

17

18
20-22
22

10

10.1

A void * that will be sent to the handler function (line 4) each time an event is received. It can very useful
to pass in an object for the void * which will perform some operation on the event from the handler
function.

Tell the channel we are ready to begin consuming events.

Run this example for 150 seconds and then disconnect the consumer from the channel.

Disconnect from the channel to prevent remote memory leaks from occurring. Do not delete the
Consumer!

Python Supplier

Python suppliers are very powerful in the fact that they do not have to be subclassed and act as
SimpleSupplier’s.

Example

The following depicts the full implementation of a Supplier which publishes one event and then
disconnects from the channel. As always, bolded text should be adapted for your particular
needs and error handling has been omitted.

ACS/LGPL/CommonSoftware/acspyexmpl/src/acspyexmplFridgeNCSupplier.py

O 0O J O Ul b W N -
=

#!/usr/bin/env python

import FRIDGE
from Acspy.Nc.Supplier import Supplier

Supplier (FRIDGE.CHANNELNAME_FRIDGE)

= FRIDGE.temperatureDataBlockEvent (3.7, FRIDGE.ATREF)
.publishEvent (h)

.disconnect ()

3 FRIDGE is the CORBA stub module generated by the IDL compiler. It contains the user-defined IDL
structure this script is designed to publish as well as the channel’s name.

6 This supplier will publish events to the “fridge” channel. Within a component, a second parameter (i.e.,
self) would also have to be passed.

7 Create an instance of the user-defined IDL structure to be published.

8 Publish the IDL structure created on line 7.

9 Disconnect from the notification channel.

11 Python Consumer
A Python consumer is by far the easiest to use of the ACS-supported CORBA language
mappings.

111 Example
The following depicts the full implementation of a Consumer. As always, bolded text should
be adapted for your particular needs and error handling has been omitted.

Create Date:2002-06-26 Author: David Fugate

Notification_Channel_Module_Software_Design.doc Page 15 of 22

ALMA Notification Channel Module Software Design & Tutorial)

ACS/LGPL/CommonSoftware/acspyexmpl/src/acspyexmplFridgeNCConsumer.py

W ~J O U WD

Ne}

15:

6-9

11
12

13

14
15

12

#!/usr/bin/env python
from time import sleep
import FRIDGE

from Acspy.Nc.Consumer import Consumer
,,
def fridgeDataHandler (some_param) :

tempDiff = some_param.absoluteDiff

print 'The temperature difference is', tempDiff
return

: g = Consumer (FRIDGE.CHANNELNAME_FRIDGE)

: g.addSubscription(FRIDGE.temperatureDataBlockEvent, fridgeDataHandler)
: g.consumerReady ()

: sleep(50)

g.disconnect ()

FRIDGE is the CORBA stub module generated by the IDL compiler. It contains the user-defined IDL
structure this script is designed to process as well as the channel’s name.

We must define a function which is capable of manipulating FRIDGE.temperatureDataBlockEvent’s.
This function will be invoked each time an event is received from the notification channel by registering
it with the consumer (line 12). Take note that someParam will always be an instance of
FRIDGE.temperatureDataBlockEvent.

Create an instance of Consumer connecting to the “fridge” channel.

Subscribe to FRIDGE.temperatureDataBlockEvent events and inform the consumer it needs to invoke
fridgeDataHandler each time a temperatureDataBlockEvent event is received.

Let the channel know we are ready to start processing events.

Give suppliers time to publish events...

Disconnect from the channel.

Java Supplier

Java suppliers and consumer need to be run from the context of a component or ACS Java
client.

121 Example

The following shows an example publishing one event and then disconnecting from the
channel. Bold text needs to be adapted for your particular needs and error handling has been
omitted.

ACS/LGPL/CommonSoftware/jcontexmpl/src/alma/demo/EventSupplierlmpl/EventSupplierImpl.java:

1: //..

2: import alma.acs.nc.SimpleSupplier;

3: import alma.FRIDGE.temperatureDataBlockEvent;

4: import alma.FRIDGE.TemperatureStatus;

Create Date:2002-06-26 Author: David Fugate

Notification_Channel_Module_Software_Design.doc Page 16 of 22

ALMA Notification Channel Module Software Design & Tutorial)
5: //..

6: SimpleSupplier m_supplier = null;

7: m_supplier = new SimpleSupplier(alma.FRIDGE.CHANNELNAME FRIDGE.value,

m_containerServices);

8:

9: temperatureDataBlockEvent t_block = new temperatureDataBlockEvent(3.14F,

10: TemperatureStatus.
IATREF) ;

11:

12: m_supplier.publishEvent (t_block);
13: m_supplier.disconnect();

1 &5 Normally suppliers will be contained within components. This example assumes nothing about whether
it’s operating under the context of a component, client, etc.

2 Import the SimpleSupplier class used to publish events.

3-4 CORBA Stub classes generated by the IDL to Java compiler. These define the event to be published.
The SimpleSupplier variable to be used.

7 The first parameter of SimpleSupplier’s constructor is the name of the channel events will be published
on. A ContainerServices object is required as the second parameter to gain access to the ORB.

9-10 Create an instance of the IDL structure to publish.

12 Publish the event.

13 Disconnect from the channel.

13 Java Consumer

13.1 Example
What follows is a trivial consumer that processes one event and then disconnects from the
channel.

ACS/LGPL/CommonSoftware/jcontexmpl/src/alma/demo/EventConsumerlmpl/EventConsumerImpl.java:

1: import alma.acs.nc.Consumer;

2: //..

3: private Consumer m_consumer = null;

4: //..

5: public void receive(alma.FRIDGE.temperatureDataBlockEvent joe)

6: {

7 System.out.println("The temp difference is:" + joe.absoluteDiff);
8: }

9: //..

10: m_consumer = new Consumer (alma.FRIDGE.CHANNELNAME_FRIDGE.value,
m_containerServices);

11: m_consumer.addSubscription(alma.FRIDGE. temperatureDataBlockEvent.class, this);
12: m_consumer.consumerReady () ;

13: m_consumer.disconnect();

The location of the Consumer class in Java.

5-8 We define a “receive” method designed to process the particular type of event we are interested in.
Please note that it must be named “receive” and it does not matter which class this method is
implemented in. In this example, it was defined in the component implementation to keep things simple.

10-11 The constructor must subscribe to a specific channel providing a reference to a ContainerServices object
(line 10) and then add a subscription for a specific type of event (line 11). On line 11, the 2" parameter to
addSubscription must be an object implementing receive(temperatureDataBlockEvent someEvent).

Create Date:2002-06-26 Author: David Fugate
Notification_Channel_Module_Software_Design.doc Page 17 of 22

ALMA
12
13

14

141

14.2

14.3

Notification Channel Module Software Design & Tutorial)
consumerReady must be invoked to start receiving events.
Failure to disconnect from the channel causes remote memory leaks!

Java Wrapper Classes for the Notification Channel

The following describes a set of Supplier and Consumer subclasses contributed by the
Scheduling subsystem designed primarily for simulating CORBA Notification Channels
entirely within Java virtual machines.

Package/Namespace

alma.acs.nc

Terminology
Publisher is equivalent to Supplier.
Receiver is equivalent to Consumer.

Classes

Receiver — The Receiver interface allows one to attach and detach objects to a notification channel that
receive events published on that channel.

Publisher — The Publisher interface allows one to publish events to a notification channel that already
exists.

NotificationChannel — The NotificationChannel interface is merely a combination of both the Receiver
and Publisher.

AbstractNotificationChannel — The AbstractNotificationChannel class forms the base class from which
Local and CORBA Notification Channel classes are extended. It implements the NotificationChannel
interface.

CorbaNotificationChannel — The CorbaNotificationChannel class implements the notification channel
concepts using a CORBA-based approach that employs the CORBA notification services.
CorbaPublisher — The CorbaPublisher class implements those methods needed to craft a publisher that
publishes events to a CORBA notification channel. It is an extension of the ACS 3.0 Supplier class and
uses CORBA structured events.

CorbaReceiver — The CorbaReceiver class implements those methods needed to craft an object that
receives and processes events from a CORBA notification channel. It is an extension of the ACS 3.0
Supplier class and is intended for use within a CorbaNotificationChannel, in conjunction with the attach
and detach methods.

EventReceiver — The EventReceiver object is a helper class used internally in implementations of
CORBA and Local Receivers. It is merely a pair -- an event type name and the receiver object used to
process that event.

LocalNotificationChannel — The LocalNotificationChannel class implements the notification channel
concepts for the case in which multiple threads within the same Java virtual machine wish to publish and
receive events.

LocalReceiver — The LocalReceiver class is an internal class used by the LocalNotificationChannel.
Only its Receiver methods are public. Such an object is created by static methods in the
LocalNotificationChannel class.

Create Date:2002-06-26 Author: David Fugate
Notification_Channel_Module_Software_Design.doc Page 18 of 22

ALMA

14.4

14.5

14.6

15

15.1

Notification Channel Module Software Design & Tutorial)

The Local Notification Channel

The concept of a local notification channel has been previously mentioned. The
LocalNotificationChannel class implements all the methods required to publish and receive
events. In fact, after being created, application code that publishes or receives events see no
difference between the two. The restriction is that the LocalNotificationChannel usage is
restricted to channels, publishers and receivers that exist within the same Java virtual machine.
Of course, the LocalNotificationChannel does not use CORBA, which is the whole point.

NOTE: For the local notification channel your application has to be running on one JVM.
Otherwise channels will not find each other!

Do they work with Python and C++?
Yes! The examples below have been tested with Python and C++ suppliers. Likewise,
FridgePublisher has been tested with a python consumer and a C++ consumer.

Examples

14.6.1 CORBA Publisher
See
ACS/LGPL/CommonSoftware/jcontnc/test/alma/demo/test/ AbstractNC/NCPublisherImpl.java

14.6.2 CORBA Receiver
See

ACS/LGPL/CommonSoftware/jcontnc/test/alma/demo/test/ AbstractNC/NCReceiverlmpl.java

14.6.3 Local Publisher
See ACS/LGPL/CommonSoftware/jcontnc/test/alma/demo/test/LocalNC/TestLocalNC.java

14.6.4 Local Receiver
See
ACS/LGPL/CommonSoftware/jcontnc/test/alma/demo/test/TestNCReceiver/TestReceiver.java

Deployment Information

Channel Properties and the ACS CDB

When using the ACS Notification Channel framework, there is nothing special required from the
developer aside from issuing the usual ACS startup command(s) which in turn start the CORBA
services. However, for those wishing to modify the Quality of Service and Administrative properties
for a channel, they can do the following:

Create Date:2002-06-26 Author: David Fugate
Notification_Channel_Module_Software_Design.doc Page 19 of 22

ALMA

15.1.1

Notification Channel Module Software Design & Tutorial)

1. For a given channel, “xyz”, create $ACS_CDB/CDB/MACI/Channels/xyz/xyz.xml which
validates against ACSROOT/config/CDB/schemas/EventChannel.xsd. The
EventChannel.xsd XML schema defines all Quality of Service and Admin properties
(described in the Notification Serverice Properties section of this document) applicable to
the type of channels the ACS API creates.

2. Start (or restart) all of ACS.

3. The first time a supplier or consumer object tries to access the “xyz” channel it will be
created using the properties you specified in the ACS CDB. The only special thing to note
here is that because the implementation of the Notification Service we use does not support
all properties, the API may reject some of your specifications although no exceptions will
be thrown. See the known problems sections for details.

Debugging Functionality
Quite often it seems to be the case that there is confusion about whether events have been
received or even sent for that matter. In as such, the EventChannel.xsd schema now provides an
extra attribute, IntegrationLogs, having nothing to do with properties of the channel. When this
Boolean value is set to true, a log is sent out each time an event is published or consumed. Be
careful though as logs are also events and using this mechanism instantly doubles the overhead
being placed on the CORBA Notification Service. It is likely that this debugging functionality
will be removed to improve performance someday but for the time being it should prove to be
an invaluable too.

151.2 Event Handler Timeouts

Overloading the CORBA notification service with enormous amounts of events and consumer
objects that take too long processing the events can cause serious performance issues or even
the corruption of the notification service process itself. To help deal with this, ACS has
introduced a new optional sequence of XML elements, Events:_, within the main
EventChannel element of EventChannel.xsd. By setting the “MaxProcessTime” attribute of this
new element, one can make the ACS NC API(s) emit warning messages whenever an event
handler method or function takes too long processing an event. Even if you choose not to use
the CDB to set this, by default these messages are sent if the handler takes more than two
seconds to process an event.

As an all too brief example, let’s say you are the developer sending the events and know the
frequency of a particular type of event,
IDL:/alma/FRIDGE/FridgeTemperatureDataBlockEvent:1.0, will be shorter than the two
second maximum ACS automatically sets. Assume this frequency is once per second. It should
then be obvious that any consumers receiving these events need to process them within one
second or risk having the event being added to a queue somewhere thereby eventually eating up
all available memory. What you can do to be made aware of this problem at run-time is to add
the following XML element to the XML described in the section 15.1:

<Events>
_ Name="FridgeTemperatureDataBlockEvent" MaxProcessTime="1.0"/>
</Events>
Create Date:2002-06-26 Author: David Fugate

Notification_Channel_Module_Software_Design.doc Page 20 of 22

ALMA Notification Channel Module Software Design & Tutorial)

9

The only other piece of advice is that any number of these elements can appear within the

“Events” element.

15.2 Event Browser
ACS provides a graphical user interface which provides some high-level information about

events being sent, number of consumers, etc.:

— Event Browser
Timestamp Channel Source SupplierEvent# ChannelEvent# Type TypeEvent#

Tue May 11 16:54:17 2004 fridge Unlkenown 42z 42 temperaturebDataBloclk 4z K

Tue May 11 16:54:18 2004 fridge Unknown 43 43 temperaturebDataBloclk 43

Tue May 11 16:54:19 2004 fridge Unknown 44 44 temperatureDataBlock 44

Tue May 11 16:54:20 Z004 fridge Unknown 45 45 temperatureblataBlock 45

Tue May 11 16:54:21 2004 fridge Unknown 46 46 temperatureDataBlock 45

Tue May 11 16:54:2Z 2004 fridge Unlkenown 47 47 temperaturebDataBloclk 47

Tue May 11 16:54:23 2004 fridge Unlkenown 48 48 temperatureDataBloclk 48

Tue May 11 16:54:24 2004 fridge Unknown 49 49 temperatureDataBlock 49

Tue May 11 17:01:40 Z004 fridge Unknown o) 50 temperaturelataBlock 50

Tue May 11 417:01:52 2004 fridge Unknown 1 51 temperaturebDataBlock 51

Tue May 11 47:03:23 2004 fridge Unknown z 52 Duration 1

Tue May 11 17:03:54 2004 fridge Unlkenown 3 53 Epoch 1

Tue May 11 47:04:36 2004 test_channel Unknown (o] 1 Epoch 1

Tue May 11 17:04:38 2004 test_channel Unknown 1 2 Epoch 2

Tue May 11 47:04:43 2004 test_channel Unknown z 3 temperaturebDataBlock 1

Tue May 11 47:05:59 2004 fridge Unknown 4 54 Epoch 2z

Tue May 11 17:06:03 2004 fridge Unknown a 55 Epoch 3

i

 Channels Browser Options Channel i

test_channel Save Events G narne:

Tridge

ho_events_channel Choose administrative option: ~ Create —

Cear Events Submit

L [J

This GUI is started by running “acseventbrowser” from the command-line after Manager is up
and running.

16 Known Problems

Not all Quality of Service and Administrative Properties Work

This is the price we pay for using free software. Specifically the following have not been
implemented by TAO: EventReliability, ConnectionReliability, StopTime, StartTime, and
PriorityOrder.

Event Browser does not see all events

The cause of this that we’ve seen is that when supplying events, developers forget to set fields
of the IDL structure (particularly enumeration fields). There is an SPR on this and we’ve
submitted bug reports to the various ORB vendors. No progress seems to have been made at
this point.

Event Filtering does not work on so-called “ALMA events”

Create Date:2002-06-26 Author: David Fugate
Notification_Channel_Module_Software_Design.doc Page 21 of 22

ALMA Notification Channel Module Software Design & Tutorial)
The TAO Notify Service does not support event filtering on user-defined IDL structures even
though the CORBA Extended Trader Constraint Language (a.k.a. event filtering language)
specifies it should.

For the most up-to-date information on known Notification Channel problems, check the

ALMA Software Engineering Software Problem Report (SPR) system.

17 Appendix

Your best source of information is from the code itself (i.e., Doxygen). Other than that, here are the
locations (in CVS) of all examples in this document:

ACS/LGPL/CommonSoftware/acsexmpl/ws/idl/acsexmplFridge.midl
ACS/LGPL/CommonSoftware/acsexmpl/ws/include/acsexmplFridgeImpl.h
ACS/LGPL/CommonSoftware/acsexmpl/ws/src/acsexmplFridgelmpl.cpp
ACS/LGPL/CommonSoftware/acsexmpl/ws/src/acsexmplClientFridgeNC.cpp
ACS/LGPL/CommonSoftware/acspyexmpl/src/*.py
ACS/LGPL/CommonSoftware/jcontexmpl/src/alma/demo/Event*

Links to the Doxygen, Javadoc, and Pydoc generated documentation can be found on the ACS
webpage.

Create Date:2002-06-26 Author: David Fugate
Notification_Channel_Module_Software_Design.doc Page 22 of 22

	1 Overview
	1.1 Disclaimers
	1.2 Abbrevations
	1.3 References

	2 API Design
	2.1 Requirements
	2.2 Model
	2.3 Naming Service

	3 Data Definition
	3.1 ALMA Events
	3.2 Structured Event

	4 Notification Service Properties
	5 Naming Information
	6 Class Descriptions
	6.1 Supplier (C++ and Python)
	6.2 SimpleSupplier (C++ and Java)
	6.3 RTSupplier (C++)
	6.4 Consumer
	6.5 SimpleConsumer (C++)

	7 IDL Example
	8 C++ Supplier
	8.1 Example

	9 C++ Consumer
	9.1 Example

	10 Python Supplier
	10.1 Example

	11 Python Consumer
	11.1 Example

	12 Java Supplier
	12.1 Example

	13 Java Consumer
	13.1 Example

	14 Java Wrapper Classes for the Notification Channel
	14.1 Package/Namespace
	14.2 Terminology
	14.3 Classes
	14.4 The Local Notification Channel
	14.5 Do they work with Python and C++?
	14.6 Examples
	14.6.1 CORBA Publisher
	14.6.2 CORBA Receiver
	14.6.3 Local Publisher
	14.6.4 Local Receiver

	15 Deployment Information
	15.1 Channel Properties and the ACS CDB
	15.1.1 Debugging Functionality
	15.1.2 Event Handler Timeouts

	15.2 Event Browser

	16 Known Problems
	17 Appendix

