KGB-SPE-01/04
Revision: 1.36
2007-07-30

Architecture
Document

Klemen Zagar

Logging and Archiving

Klemen Zagar (klemen.zagar @ijs.si)
KGB, Jozef Stefan Institute

Radostina Georgieva (rgeorgie @eso.org)
ESO

Keywords: KGB-SPE-01/04

Author Signature: Date:
Approved by: Signature:
Institute: Date:
Released by: Signature:

Institute: Date:

mailto:klemen.zagar@ijs.si
mailto:rgeorgie@eso.org

ALMA

Logging and Archiving

Change Record
REVISION DATE | AUTHOR | SECTIONS/PAGES AFEECTED
REMARKS
1.0 2000-09-10 Klemen Zagar All
Created
1.10 2000-09-30 Klemen Zagar All

G. Chiozzi's comments taken into account.
XML schema made more flat.

2001-03-02

Klemen Zagar

All

J. Knudstrup's comments taken into account.

<Data> element added. Logld, Stackld and StackLevel attributes added.
<Variable> removed. LoggingProxy interface modified. DTD schemas
written (appendix).

1.21

2001-03-16

Klemen Zagar

3.4,34.1.4,3.418,A

Final J. Knudstrup's comments taken into account. Redefined Stackld and
StackLevel, updated DTD schemas, fixed minor typos.

1.22

2001-03-26

Grega Milcinski

All

Applied ALMA

template. Listing and

Identifier styles added.

1.23

2001-03-30

Klemen Zagar

3,3.2,35,4.13,4.1.4

Gianluca Chiozzi’'s comments taken into account. COS_ macro prefix
changed to ACS_. References to MACI and BACI removed
(instrumentation of BACI is still described). Notification Channel usage
defined. Archiving parameter types defined. Figure redrawn.

1.24

2001-11-08

Klemen Zagar

3.4.1.6,3.5.3

Priority now ra

nges from 1 to 15. ACS_LOG example fixed.

1.25

2001-12-20

Klemen Zagar

All

Removed reference to “CoCoS” and “Device”. The latter has been
replaced with “Distributed Object”. Removed XML schema diagrams.

1.26

2002-01-04

Klemen Zagar

411,415

Archiving confi

guration properties made consistent with implementation.

1.27

2002-11-25

R. Georgieva

3.4.1.8.

Escaping delineating characters within log messages.

Revision: 1.33

Page 2 of 41

ALMA

Logging and Archiving

REVISION DATE AUTHOR SECTIONS/PAGES AFFECTED
1.28 2002-03-03 R.Georgieva
Java Logging APl and Python Logging API added.
1.29 2003-11-1
Revised for ACS 3.0
1.30 2004-07-23 | G.Chiozzi
Updated XML Schema
1.31 2005-03-17 | G.Chiozzi
Updated documentation on Archiving
1.32 2005-05-19 G.Chiozzi
Removed schema documentation from appendix and referenced online
documentation.
1.33 2006-05-11 D. Fugate
Python section was horribly out of date.
1.34 2007-02-12 | N. Barriga Section 3.7
Added documentation about type safe logs usage.
1.35 2007-02-20 | N. Barriga Section 3.5
Fixed example on how to get a logger in Java.
1.36 2007-07-30 N. Barriga Sections 3.4, 3.5, 3.6
Added new API for specifying an audience, antenna and array to the logs.

Revision: 1.33

Page 3 of 41

ALMA Logging and Archiving

Table Of Contents

100 o - PR PF 6
I oo (8T 1o 6
1.1 Reference DOCUMENTS. ...uuiteei ittt ettt sttt e e e e s aaaaees 7
2 Requirements..........ccueeeeiieensneiienisnenssneisneiisensnensneissneassessn s e s ensn s e 9
2.1 LOQQING. et e st s s 9
2.2 AICNIVING. sttt 9
3 Logging Architecture.........cueeeiineiineiisneisnenssnnissneisnensnnisneissnensneisaneissnensneissneissnensneissnsissnenssaneeennsssanneennns 10
3.1 CORBA TeleCOM LOQ SEIVICE. ettt 11
3.2 Centralized LOQ. . e 12
3.3 Syntax of @ LOQ ENtrY..ieeeeeeiiiiiiieeiee it 13
L I N LT oY ol oo T =Yg (USSP 13

LI I O 1 oY I o £V I o =T PP PP PO PP PPPPPP 14

LI I 2 44T = U] o PSP P PP PPR 14
1.1.1.3S0urce Code INFOrMAatION.eiii et e e e e 14
1.1.1.4Runtime Context INfOrmMation..........ooueii i 14
1.1.1.5L0g Entry 1dentifiCation..........ccueii i 15

L P IO] o T 2 PP P P PP PP PPPPPPPPP 15
1.1.1.7Data SUD-EIEMENT..... ..ttt e e e e e e e s e e e e e s 15
1.1.1.8L0OQG ENry MESSAQE.eeiiiiiiiie ettt e e e e e e 15
1.1.2TFACE LOG ENIY ..ttt e ettt e e e e e st e e e e e e e aabe e e e e e e s anbrneeeeeeaanrnnee 16

L IRCT D =T o0 To Mo Yo N = o117 T PP P PP OTPPPPPP 16

LI T {o T o o = 11 /PP PPPR 17

1.1 ONOTICE LOG ENTIY .o e e e e e e e e e e e e e e e e b b e e e e e e e annee e s 17

L I = T ol g Lo T Mo o I = 2 PP TP PP PTTPPPPPP 17

1A 7EITON LOG ENTIY ..ot e e e s e s e e e s e e e e e e e eeeas 17

LI =0 o= I I To = 1 PR 18

L IR 7N (=T o 0 oo = {2 PP P PP TP PPPPPPP 18
1.1.10EMErgenCY LOG ENTIY...coo it e e e 18

3.4 ACS Ct+ LOGAING AP .ottt srae e 18
L I I Y0 = o o [o OO PP P PP PPPPPPP 18
1.1.12Logging Proxy’s Configuration Data...........ccciiiiriiiiiiiieiie ettt 23
1.1.1310g MEthOA SEMANTICS. ...ttt e e te e e e eb e e e e embe e e e aneeeaaans 23
1.1.14Enabling the LOGQiNg PrOXYeei ittt eeeeaeeas 24
1.1.15SUbMIttING LOG ENLAES. ... et 24
1.1.15.1Submitting the Source Code INfOrmMation............ooeiiiiiiiii e 24
1.1.15.2Submitting the RuNtime COoNteXt.......ooo i 25
1.1.15.3Submitting @ Variable’s ValUE...........c.coiuiiiiiiiiiee e 25
1.1.15.40verriding the Default Priority.........c.oii i e e e e 25
1.1.15.5Submitting an Arbitrary MESSAGE.ccccuuiiiiiiii it 25
1.1.16Specifying an Audience, Array and/or Antenna for @ 10g........cooeveveiiieee e 26

IR R T 7 O R 26

Revision: 1.33 Page 4 of 41

ALMA Logging and Archiving

LI I S T2d o= Va1 o] T PP PP PP PPPTPPPPI 26

3.5 ACS Java LoQaING APL.....oeieeiiiiiiii i 26
1.1.17JSDK Java LOGQING AP ettt e e e tee e e ettt e e st e e e enee e e e nte e e anneeeeennareeeeees 26

L I R e T YOS N F- 1= W o o o [T T T U T TSP 27
1.1.19ALMA Logging Configuration Data............ccueeiiiiiiiiiiee e 28

LI 20 (oo TR, T oo IR T=T o 4 =T o= 29

LI IR L@ o] e= 1o g Lo IE= T Mol To 1= SO U 29
1.1.2210g MEINOA USE......ciiiiiiieiiiie ettt e e e b e e e br e e snr e e e e e eeeeeas 30
1.1.23Specifying an Audience, Array and/or Antenna for @ 10g.......ccoeveerireiriee e 30
1.1.24JaVA LOG LEVEIS.....c et e e e e e e e e e e e 31
1.1.1ACS L0ogging Class DIagram........c.ueiiiiiiieiiiiie ettt e s s e e e snee e e snnee e snrees 33

LI 2 @ o 3 - L1 =T R 34

3.6 ACS Python LOgQINg APL...ccueieiii e 34
1.1.3ACS PYINON LOGQING. . et eutetiiitieeiitite ettt e eb e e s br e e e anb e e e enreeeeeeeens 34

LI G T] o o o T T T To T =D U] o] = PSR 35
1.1.3.2Specifying an Audience, Array and/or Antenna for @ 10g........c.ooceiiiiiii i 35

3.7 TYPE Safe LOQS. oo 35
4 Archiving ArChit@CHUIe. .. uusssuseerrrnisssnnerrinssssssnesrrnssssssses s ersssssses e rasssssss s rrr s r s r s 38
4.1 The ArChiteCtUIe. . .uuiiiiiiei ettt 38
1.1.4Parameter’s Archiving ConfigUration...........cueeiiiireiiee e 38
1.1.5Extending XML Schema for ArChiVing.........c.oeoieeie e e e e e 39
1.1.6Submitting the ArChive Data.........coooiiiiiie et 39
1.1.7Archiving in the CentraliZed LOGQET......cuuuiiiieie et e e e e 40
1.1.8Archiving architecture inSide BACH...... .o e 40
Appendix A: Logging XML Schema Definition.........ooueeissrsiiisssiiisnsiisssss s issss s s s s, 1

Revision: 1.33 Page 5 of 41

ALMA

Logging and Archiving

Scope

This document describes the architecture and design for logging and archiving data generated by ACS
applications. This architecture is in accordance with the Logging and Archiving section of the ALMA
Common Software Architecture document [RDOS].

Introduction

Every properly built system needs to be able to log the events that occur in it (logging) so that the user
of the system can gain an accurate understanding of the system’s state, especially in case of a failure.
For example, every component should log when it is created and destroyed. For systems with more
stringent security requirements it might be required that every access to the system is logged, along
with the user that performed it (auditing). Also, the system should log all unusual and error conditions.

Logging is very useful during debugging. Every entering or leaving of an important function could be
logged to determine whether a function has been called at all and with what parameters. This
information is also useful for profiling because more frequently used functions can be easily identified
and more effort can be invested in their optimization.

Logging subsystem can be built very easily in a single computer scenario: a simple fprintf does the
job. However, in a distributed system, means must be provided to centralize all logging activity in a
single place, and still not overload the network too much. Also, the temporary unavailability of the
network connectivity should not cause the logging subsystem to malfunction.

Another very important issue is the consistence of log entries. If all log entries stick to the same
formatting rules (for example, the name of the log entry issuer, followed by a colon, followed by an
error code, ...), then automated log parsers can be built to intelligently filter or transform the log
output, assisting the administrator to more efficiently manage the huge amount of data contained in the
log.

A control system generates a huge amount of data, such as:
* Values of controlled entities, such as the current in a power supply or position of a motor.
* Reports of alarm conditions.

* Logs that assist development and administration of the control system, such as error reports,
function call-stacks, trace logs, ...

The generated data can be propagated throughout the system in two ways:

* Polling (synchronous): The interested client of the data queries the data source when it needs
the information.

Revision: 1.33 Page 6 of 41

http://www.eso.org/~gchiozzi/AlmaAcs/ArchiveDocuments/%20ACSArchitecture/ACSArchitecture-2.0.pdf

ALMA

1.1

Logging and Archiving

* Monitoring (asynchronous): The interested client subscribes a callback with the data source, so
that the data source notifies the client whenever a certain condition is met (e.g., the data
changed for more than a specified amount, or a certain period of time has elapsed since the last
notification)

Which method to use depends on the nature of the data and, more importantly, the client’s Quality-of-
Service requirements for the data. For example:

* The client that reports alarms needs to be notified as soon as an alarm occurs. Polling every
minute would allow for too much time to pass from the moment the alarm was generated up to
the time when it was reported. On the other hand, polling every second could produce too
much redundant network traffic.

e The client that merely displays the current status of the system and updates it with a
predetermined (slow) refresh rate could poll the data whenever it would need to display it.

Apart from the issues mentioned so far, the data generated by the control system might need to be
archived for later retrieval to assist in troubleshooting the system, or to allow for statistical analysis of
the data. This activity is called archiving.

Like regular acquisition of data, archiving can be implemented using polling or monitoring.
Furthermore, there are several alternatives available as to how to propagate the data from the source to
the archive:

* There is one central archive, which collects the data in the entire system.

* There is one archiving agent per computer in a control system, collecting its host’s data only,
and passing it to a central archive.

The first option could generate a constant, non-neglectable load to the control system’s network
infrastructure. The latter could generate a huge network load, but under controlled conditions (e.g.,
system’s off-hours or on-demand). The total load in the latter case is smaller than in the first case
because data is sent in batches and not individually.

Another question is the underlying mechanism through which the data to be archived is sent. This
could be one of:

* A specialized protocol for transferring archive data.
* An existing mechanism for logging (i.e., archive is nothing else but a huge log file).

* An existing mechanism for monitoring.

Reference Documents

The following documents have been referenced in this document.

Revision: 1.33 Page 7 of 41

ALMA

Logging and Archiving

[RD01] ALMA ACS Basic Control Interface Specification, M. Plesko, G. Tkacik, G.
Chiozzi -

(http://www.eso.org/~gchiozzi/AlmaAcs/Releases/ACS 2 0 Docs/ACS Basic Control Interface Spe
cification.pdf)

[RD02] Adaptive Communications Environment (ACE) -
(http://www.cs.wustl.edu/~schmidt/ACE-overview.html)

[RD03] OMG: CORBA Telecom Log Service Specification -
(ftp://ftp.omg.org/pub/docs/formal/00-01-04.pdf)

[RD04] ALMA Common Software Technical Requirements, ALMA-TRE-ESO-XXXXX-
XXXX, G.Raffi, B.Glendenning, Issue 1.0, 2000-06-05

[RD05] ALMA Common Software Architecture, G.Chiozzi, B.Gustafsson, B.Jeram - (http:/

almaedm.tuc.nrao.edu/forums/alma/dispatch.cgi/Architecture/docProfile/100017/d20021117183329/No
[ALMASoftwareArchitecture.pdf)

[RD06] OMG: Notification Service Specification -
(ftp://ftp.omg.org/pub/docs/formal/00-06-20.pdf)

[RD07] Java Logging Overview -
(http://java.sun.com/j2se/1.4.1/docs/guide/util/logging/overview.html)

[RD08] ACS Online Documentation for schema files -
(To De Updated.html)

Revision: 1.33 Page 8 of 41

http://java.sun.com/j2se/1.4.1/docs/guide/util/logging/overview.html
http://java.sun.com/j2se/1.4.1/docs/guide/util/logging/overview.html
ftp://ftp.omg.org/pub/docs/formal/00-06-20.pdf
http://almaedm.tuc.nrao.edu/forums/alma/dispatch.cgi/Architecture/docProfile/100017/d20021117183329/No/ALMASoftwareArchitecture.pdf
http://almaedm.tuc.nrao.edu/forums/alma/dispatch.cgi/Architecture/docProfile/100017/d20021117183329/No/ALMASoftwareArchitecture.pdf
http://almaedm.tuc.nrao.edu/forums/alma/dispatch.cgi/Architecture/docProfile/100017/d20021117183329/No/ALMASoftwareArchitecture.pdf
ftp://ftp.omg.org/pub/docs/formal/00-01-04.pdf
http://www.cs.wustl.edu/~schmidt/ACE-overview.html
http://www.eso.org/~gchiozzi/AlmaAcs/Releases/ACS_2_0_Docs/ACS_Basic_Control_Interface_Specification.pdf
http://www.eso.org/~gchiozzi/AlmaAcs/Releases/ACS_2_0_Docs/ACS_Basic_Control_Interface_Specification.pdf

ALMA

Logging and Archiving

2 Requirements

21 Logging

The logging subsystem must allow for the following:

1.

2.

It must provide an easy-to-use programming interface to the application developer.
Every log entry has an associated priority and type (error, fatal error, information, ...).
Every log entry is equipped with a timestamp accurate to a deci-microsecond (100’s of ns).

The logging subsystem must be centralized, so that all log entries generated in the systems
sooner or later find their way to a central log. The order of the log entries is defined by their
timestamp.

The subsystem should allow for filtering, so that log entries with insufficient priority do not get
logged, whereas those with high priority get routed to the central log immediately.

The log entries are consistent, so that they can be interpreted by various automated tools for
filtering and transforming.

Log entries can be buffered locally on the machine where they were generated, and transmitted
over the network to the central log on demand or when the local buffer reaches a
predetermined size.

2.2 Archiving

The archiving subsystem must allow for the following:

1.

2.

Revision: 1.33

Every property in the control system is eligible for archiving.

Archiving can be enabled or disabled on per-parameter basis.

Archiving can be configured on per-parameter basis.

Individual parameter can be archived when it changes or with a certain fixed frequency.
There is a central point where the archive of all parameters is kept.

Individual parameter’s archived data can be stored on a local machine, or immediately
forwarded to the central archive.

Each parameter can be uniquely identified through the unique distributed object name and the
parameter name.

Page 9 of 41

ALMA Logging and Archiving

8. The archiving subsystem supplies a mechanism for retrieving the historical value of any
parameter at any time, provided that the value was archived prior to that time.

3 Logging Architecture

Logging subsystem leverages three systems that have been either already built, or at least well designed
and specified. These are:

1. CORBA Telecom Log Service for centralizing all log entries generated throughout the system.

2. CORBA Notification Service for distributing log entries to interested clients (consumers of
logs) when the entries are submitted to the centralized logger.

3. The mechanism for generating, formatting, filtering and caching log entries.
e C++ suppliers of logs use the ACE Logging framework with its C++ API [RD02];
» Java suppliers of logs use the standard Java Logging API [RDO07];

e Other suppliers of logs, e.g. a Python application, can use the stand-alone ACS Log Server
which provides the generic functionality.

The logging subsystem is a very basic one and it should be considered as a part of the infrastructure.

Revision: 1.33 Page 10 of 41

http://java.sun.com/j2se/1.4.1/docs/guide/util/logging/overview.html
http://www.cs.wustl.edu/~schmidt/ACE-overview.html

ALMA Logging and Archiving

Centralized

HTTP

el

Relational

??E#T_

Datab
Logger

Fua
Chann

Et of scope of this

Centralized
Implements Log

Figure 1: Architecture of the logging system.

The figure shows an overview of the ACS Logging System, based on the CORBA Telecom Log Service
and The CORBA Notification Service. The CORBA Telecom Log Service has a Centralized Log object
that is responsible for getting the logs from the log suppliers, validating them and submitting them to
the Event Channels. The Event Channels push the logs to the subscribed log consumers. The shadowed
objects are out of the scope of this document.

31 CORBA Telecom Log Service
The Telecom log service specification defines a set of IDL interfaces that are suitable for

implementation of any kind of a log service [RD03]. The implementation using CORBA is done in the
Centralized Log. All interfaces inherit from the Log interface which defines the following operations

for submitting and querying log entries':

interface Log

{

70 o o

' The listings presented here are excerpts from file $TAO_ROOT/orbsvcs/orbsvcs/DsLogAdmin. idTourtesy of

Matthew Brown.

Revision: 1.33 Page 11 of 41

ftp://ftp.omg.org/pub/docs/formal/00-01-04.pdf

ALMA Logging and Archiving

// Write records to the log storage
void write_records(in Anys records) raises(LogFull, LogLocked);

// Returns all records in the log that match the given
// constraint <c>.
RecordList query(in string grammar,
in Constraint c,
out Iterator 1)
raises(InvalidGrammar, InvalidConstraint);

// Retrieve <how_many> records from time <from_ time> using
// iterator <i>. Negative <how_many> indicates backwards
// retrieval
RecordList retrieve(in TimeT from_time,

in long how_many,

out Iterator 1i);

Telecom log specification represents a log entry by a structure whose IDL is:

typedef unsigned long long RecordId; // RecordIds are unique within the
// scope of one log.
typedef TimeBase::TimeT TimeT; // Timestamp, as defined by the CORBA
// TimeService.
struct NVPair // Name-Value pair
{
string name;
any value;
}i
typedef sequence<NVPair> NVList; // A set of name-value mappings
struct LogRecord

{

RecordId id; // Unique number assigned by the log

TimeT time; // Time when the event is logged (CORBA Time Service)

NVList attr_list; // List of user defined name/value pairs. Not part of
// the event received by the log. Optional.

any info; // Event content

For our purposes, the info element of the LogRecord structure consists of an XML string
containing all the information about the record, such as the timestamp (t ime element is not suitable
for our purposes, since it will contain the time when the log entry was logged to the central log, and not
when the log entry was submitted; due to caching these two times could be significantly different). The
details about the XML schema of the i nfo element are described in 3.3 “Syntax of a Log Entry”.

3.2 Centralized Log
The Centralized Log that implements the CORBA Telecom Log Service is the facility that receives log
entries from the entire system and dispatches them to interested clients. Particularly, it implements the
Log interface of the Telecom Log Service. An example of an implementation of such a service is
already bundled with TAO’s implementation of the Telecom Log Service and can be found under
S$TAO_ROOT/orbsvcs/Logging_Service.

Revision: 1.33 Page 12 of 41

ALMA Logging and Archiving

The Centralized Log uses CORBA for getting the routed logs from the suppliers of logs (publishers)
-applications that use the formatting, buffering and pushing capabilities of ACE API, Java Logging
API, the ACS Log Service, etc. as they send log records to it.

Thus, the Centralized Logging Service receives an XML string as the “any” parameters in a call to
write_records from a supplier.The XML string is formatted according to the
specifications described in 3.3 “Syntax of a Log Entry”. Since the XML string already contains the
timestamp information, that information should take precedence over the actual current timestamp of
the receipt of the log entry.

The parsed log entry is then forwarded to appropriate event channel of the CORBA Notification
Service which distributes the log entries further. The choice of the event channel depends on the log
entry’s type and content. For example, log entries related to debugging could be forwarded to a
different event channel than those related to archiving. The consumers of logs (clients) can access log
entries by subscribing to the event channel of interest.

To store log records, the Centralized Logging Service needs a Database Logger client that has to make
the log entries the Centralized Logging Service receives persistent. If such a client exists, other
subscribed clients have additional options to access the database:

e Direct access to the SQL database (SELECT).
* Via Database Logging client’s query and retrieve methods.

e Via HTTP (the client is a web browser). HTTP server accesses the relational database,
transforms the requested entries to XML, transmits them to the browser, which then uses
XSLT to transform incoming XML to HTML.

3.3 Syntax of a Log Entry
Every log entry is represented as an XML document node. The schema of the XML is described in this
chapter and the complete schema is provided in appendix A.

111 A Generic Log Entry
A generic log entry representation in XML looks like this:

<LogEntryType TimeStamp="yyyy-MM-ddThh:mm:ss.fff"”
File="filename” Line="1ineno”
Routine="routine”
Host="hostname"” Process="procname” Thread="threadname” Context="context”
StackId="stackid” StackLevel="stacklevel”
LogId="id"” Uri="uri”
Priority="p">
<Data Name="name”>value</Data>
log entry message
</LogEntryType>

Revision: 1.33 Page 13 of 41

ALMA

11141

1.1.1.2

1.1.1.3

1114

Logging and Archiving

Log Entry Type

The log entries exist in different types to distinguish between the importance of information it provides.
These types are described in the following sections and follow the convention specified by $
(ACE_ROOT) /ace/Log_Priority.h.

Note that LogEntryType is not actually an XML tag, but merely a placeholder for the actual XML tag
name such as Debug described in the following sections.

TimeStamp

The timestamp is a mandatory attribute of every log entry. It specifies the exact time when the log entry
was submitted. The time is encoded in ISO 8601 format with a precision to one millisecond. The time
is specified in TAL

Source Code Information
The element representing a log entry is equipped with these attributes that convey the location in the
source code from which the log entry was generated:

» File: The identification of the source file. The identification should be such that it uniquely
identifies the file, and that it is possible to locate the source file with only little external
information (such as project’s root directory). The file name is specified relative to the root of
the file system where the source file resided at the time of compilation, e.g.,
/home/dknuth/ACS/motor/controller.cpp. A more globally valid file name
designation could be, for instance, SACS_ROOT/MACI/Activator.cpp.

* Line: The line number in the source code where the log entry was submitted.

* Routine: The fully-qualified name of the subroutine (function) where the log entry was
submitted from, for example Activator::Init orjust init ().

These three attributes are optional since they cannot be provided for log entries in each language due to
grammar or implementation restrictions. For example, in Java getting the source code line of the log
record is very inefficient. Therefore, a log entry would only supply the file name and the method where
the log entry originates from.

Runtime Context Information
The log element has six attributes that give more information regarding the runtime context in which
the log entry is submitted:

* Host: The name of the computer on which the log entry is generated.
* Process: The name of the process from which the log entry is generated.

* Thread: The identification of the thread. For example, in C++ the identification is the name of
the thread as supplied to InitThread (see 3.5.1.3. “Enabling the Logging Proxy”).

Revision: 1.33 Page 14 of 41

ALMA Logging and Archiving

* Context: Any additional context information supplied by the issuer of the log entry. For
example, the name of the configuration database that is being used could be put here.

» Stackld: Identification of a bundle of related log entries. All log entries in a bundle are caused
by the same “root” log entry (e.g., the original cause of an error).

» StackLevel: Specification of the number of the log entries in the bundle a given entry that have
caused the log entry. The root log entry has a StackLevel of 0, the immediate log entries
caused by the root log entry have a StackLevel of 1, etc.

1.1.1.5 Log Entry Identification
Every log entry can be supplied with an optional LogId attribute which uniquely identifies the log
entry’s class (e.g., “file not found”, “out of memory”, “container starting”, etc.).
LogId is particularly useful when used with error messages where it can be used as a key in the help
system to look up detailed help/troubleshooting information. Variable sub-elements are also useful in
such cases to provide more details about the source of the log entry. For example, if a file could not be

found, the following XML could be generated:

<Error TimeStamp="2000-08-23T13:18:27.432"
File="FileOpener.cpp” Line="131" Routine="FileOpener: :0pen”
Host="Hurricane” Process=7”Activator” Thread="EventLoop”
LogID="err_File_Not_Found” Priority="8">
<Data Name="FullPath”>/home/someuser/file.txt</Data>
</Error>

In addition to LogId, an optional Uri attribute is provided, which uniquely identifies the log entry’s

class. (e.g., log://www.eso.org/acs/errors/OutOfMemory).

1.1.1.6 Priority
The log type implies default priority of a log message. However, if the priority is explicitly specified,
then the default is overridden.

Priority is measured as an integer number ranging from 1 to 15, where 1 is lowest and 15 highest
priority. The value of 0 indicates the default priority.

1.1.1.7 Data Sub-element
Every log entry can contain arbitrary number of <Data> sub-elements. These sub-elements are useful
for reporting values of individual variables to report the state of the object that submitted the log entry.

The Name attribute is mandatory as well as the content of the element.

1.1.1.8 Log Entry Message
The optional log entry message is a string of characters. The message can be either an XML formatted
string, or a CDATA section. The only rule it must obey is not to contain a sub-string] 1> or

Y

characters such as ‘<’, >’ or ‘&’, since it terminates a CDATA section.

Revision: 1.33 Page 15 of 41

ALMA Logging and Archiving

o INFO
log level is used to publish information of interest during the normal operation of the
system.
This information is directed to operators, engineers or anybody else working with the
system.

o NOTICE
logs are used to catch the attention of people (normally operators or software engineer-
ing) looking at the logging output.
They denote important situations in the system, but not necessarily error/fault condi-
tions.
A NOTICE logging level should be selected with care, because many NOTICE mes-
sages weaken the attention of the reader.

o WARNING
logs are used to report to readers (normally operators or software engineering) condi-
tions that are not errors but that could lead to errors/problems.
A WARNING logging level should be selected with care, because many WARNING
messages weaken the attention of the reader.

11.2 Trace Log Entry
Trace logs are generated whenever a function is entered. And are used to report calls to a function.
They are used to build call trees during very critical debugging situations.
The amount of TRACE logs can be huge and will very likely affect very substantially the
performance of the system
TRACE logging should be switched on only in very particular situations and for a short time.

A trace log entry (<Trace>) corresponds to submitting a log entry of type LM_TRACE to the ACE
logging system. The default priority of such an entry is 2.

With trace log entries, the Routine attributes are mandatory. There can also be several <Data>
sub-elements, whose purpose is to dump the function’s parameters.

The log entry message is a mandatory fully-qualified name of the function that was entered, for
example MyNamespace: :MyClass: :MyFunction.

11.3 Debug Log Entry
Debug logs are used only while debugging the system.
Therefore such logs are normally only interesting for software engineers. Analysis of DEBUG logs

Revision: 1.33 Page 16 of 41

ALMA

1.1.5

1.1.6

Logging and Archiving

should take place only while investigating problems and can put a substantial amount of load on the
system.

A debug log entry (<Debug>) corresponds to submitting a log entry of type LM_DEBUG according to
the ACE logging system. The default priority of such an entry is 3. Debug logs are useful for dumping
object state.

With debug log entries, the File and Line attributes are mandatory. There can also be several
<Data> sub-elements, whose purpose is to dump the object’s state.

The log entry message is optional.

Info Log Entry

Info log level is used to publish information of interest during the normal operation of the system. This
information is directed to operators, engineers or anybody else working with the system. They can also
be employed for transmitting useful payload (such as archiving data).

An info log entry (<Info>) corresponds to submitting a log entry of type LM_INFO to the ACE
logging system. The default priority of such an entry is 4.

Notice Log Entry

Notice logs are useful for logging normal, but significant activity of the system, for example startup or
shutdown of individual services. They are used to catch the attention of people (normally operators or
software engineering) looking at the logging output. They denote important situations in the system,
but not necessarily error/fault conditions.

A NOTICE logging level should be selected with care, because many NOTICE messages weaken the
attention of the reader.

A notice log entry (<Notice>) corresponds to submitting a log entry of type LM_NOTICE to the
ACE logging system. The default priority of such an entry is 5.

Warning Log Entry

Warning logs are used to report to readers (normally operators or software engineering) conditions that
are not errors but that could lead to errors/problems.

A WARNING logging level should be selected with care, because many WARNING messages weaken
the attention of the reader.

A warning log entry (KWarning>) corresponds to submitting a log entry of type LM_WARNING to the
ACE logging system. The default priority of such an entry is 6.

Error Log Entry

Error logs denote error conditions.

They are normally generated by the Error System and not explicitly use in applications by calling the
logging API

Revision: 1.33 Page 17 of 41

ALMA

1.1.8

1.1.9

1.1.10

34
1.1.11

Logging and Archiving

An error log entry (KError>) corresponds to submitting a log entry of type LM_ERROR to the ACE
logging system. The default priority of such an entry is 8.

Critical Log Entry

Critical logs denote an Alarm condition that shall be reported to operators.

They are normally generated by the Alarm System and not explicitly use in applications by calling the
logging API

A critical log entry (<Critical>) corresponds to submitting a log entry of type LM_CRITICAL to
the ACE logging system. The default priority of such an entry is 9.

Alert Log Entry
Alert logs denote an Alarm condition that shall be reported to operators. This denotes a problem more
important than Critical.

They are normally generated by the Alarm System and not explicitly use in applications by calling the
logging API

An alert log entry (<Alert>) corresponds to submitting a log entry of type LM_ALERT to the ACE
logging system. The default priority of such an entry is 10. Alerts are used for reporting errors that
must be solved immediately.

Emergency Log Entry
Emergency logs denote an Alarm condition of the highest priority.

They are normally generated by the Alarm System and not explicitly use in applications by calling the
logging API

An emergency log entry (<Emergency>) corresponds to submitting a log entry of type
LM_EMERGENCY to the ACE logging system. The default priority of such an entry is 11. Alerts are
used for reporting errors that must be solved immediately.

ACS C++ Logging API

ACE Logging

The ACS C++ Logging API for generating, formatting and filtering log entries is based on the ACE
Logging API and is provided by a collection of operating system wrappers and common design pattern
implementations with the following functionality:

1. A data structure that can hold a log entry (the ACE_Log_Record, defined in
$ACE_ROOT/ace/Log_Record.h). The structure also holds priority, type and the
timestamp of the log entry, fulfilling requirements 2.1.2 (priority and type) and 2.1.3
(timestamp). Furthermore, ACE logs filename and line number of the source code where the
log entry originates from. It should be noted that priority and type in ACE can not be set
separately, because type implies priority, and vice-versa.

Revision: 1.33 Page 18 of 41

ALMA

Revision: 1.33

Logging and Archiving

A mechanism for submitting log entries. The mechanism is modeled by the ACE_Log_Msg
class (SACE_ROOT/ace/Log_Msg.h). There is one instance of this class per thread.

ACE’s logging mechanism is extensible, allowing for custom callbacks to be registered with an
ACE_Log_Msg object. These callbacks (implementations of a ACE_Log_Msg_Callback
abstract class) receive all entries submitted to the logging mechanism and can process them any
way they want. (Please note that the callback must be registered with the ACE_Log_Msg at
the beginning of each thread’s lifetime.)

ACE defines several macros which the application programmer can use to submit log entries,
such as ACE_ERROR and ACE_ DEBUG (defined in SACE_ROOT/ace/Log_Msg.h). This
fulfills the requirement 2.1.1 (programming interface).

Page 19 of 41

ALMA Logging and Archiving

I aral Cantral | nit

lanl |\

Loas Publisher
ACF Innaina ACS Innaina
marrn maerng

|

ACF | nnnina Quatem:
ACF | nn Man
(threaad-wide cinnlatnn)

MACI Inanina callhack nhiect

imnleamante ACF | nn Men Callhark

(thread-qafa nracece-wide qinnlatan)

write racardael |\

7

Trachran

1!

| acal pacha
(XMI fila)

Figure 2: Architecture of the ACE Logging framework.

The figure gives an overview of ACE Logging framework. The ACE Logging System gets log
entries that can be generic or specific (using ACS logging macros). It submits them to an object
implementing ACE_Log_Msg._Callback that provides the filtering and the caching
capabilities of the framework. The shadowed objects are out of the scope of this document.

The ACE’s mechanism is flexible and high-performing and allows the implementation of objects that
are specific to the ACS Logging requirements.

Important with respect to the formatting is that fact that the default logging macros of ACE
(ACE_DERUG, ACE_ERROR, etc.) already provide the logging system with the file name and the line
number attributes. Additionally, the logging system outputs the runtime context along with all log entry
types except for info log entry which has to be taken care of by requesting it explicitly through
LoggingProxy’s LM_RUNTIME_CONTEXT flag. Though these last attributes are optional according
to the XML Schema, their appearance in the log records could be quite helpful.

The implementation of the ACE_Log_Msg_Callback abstract class’ 1og method provides with the
rest of the functionality:

//

/// The pre-defined macro for outputting log entries. It accepts three parameters

Revision: 1.33 Page 20 of 41

ALMA Logging and Archiving

/17

/// — flags: This parameter specifies the priority and additional log-entry
/// flags, such as whether to output the runtime context (thread & process)
/// or not.

/// — routine: The fully qualified name of the routine where the log-entry is
/// being generated. Can be 0, in which case the routine name is not output.
/// — log: Formatted as (log_type, format_string, . . .). Passed as a parameter
/// to ACE’s logging macros.

/17

/// Usage example:

/17

/// ACS_LOG(LM_SOURCE_INFO | LM_PRIORITY(7),

/17 "maci::ContainerImpl::init",

/// (LM_INFO, "A sample log entry %d", 1));

/17

#define ACS_LOG(flags, routine, log) \

{\

LoggingProxy: :Flags(flags); \
LoggingProxy: :Routine(routine); \
ACE_ERROR(log); \

/17

/1]

/// Manipulate priority contained in the log entry’s flags. The priority can
/// be from 0 ("use default") through 1 (lowest) to 31 (highest).

/17

#define LM_PRIORITY(p) p

#define LM_GET_PRIORITY(f) (f & O0xOF)

/// If OR-ed with log entries’ flags, the runtime context (host name, process name,
/// thread name, context, stack ID and stack level) will also be output.

/17

#define LM_RUNTIME_CONTEXT 0x00000200

/1]

/// If OR-ed with log entries’ flags, the source code information (file name,
/// line number) will also be output.

/17

#define LM_SOURCE_INFO 0x00000100

/// The Log Message Callback
class logging_EXPORT LoggingProxy : public ACE_Log_Msg_Callback
{

public:
/// Receives all log entries submited
/// within the process. Thread safe!
void log(ACE_Log_Record &log_record);

/// Specifies the log entry type, if the output representation is different

/// than the one implied with ACE’s log entry type. Applies for the next

/// log entry only. Pointer to the string must be stored in the thread-specific
/// storage!

static void LogEntryType(const ACE_TCHAR *szType);

/// Specifies the name of the routine (function) where the following log entry
/// will be generated. Pointer to the string must be stored in the

/// thread-specific storage!

static void Routine(const ACE_TCHAR *szRoutine);

/// Set the flags that will apply to the log entry that will be submitted next.

/// Flags must be stored in thread-specific storage! Flags are obtained by OR-ing

/// appropriate LM_* values above. If priority is 0, the default priority

Revision: 1.33 Page 21 of 41

ALMA Logging and Archiving

/// associated with ACE's log entry type (LM_INFO, LM_ERROR, ...) is implied.
static void Flags(unsigned int uiFlags);

/// Specifies the name of the thread. Pointer to the name must be stored in
/// the thread-specific storage!
static void ThreadName(const ACE_TCHAR *szName) ;

/// Returns the name of the thread.
static const ACE_TCHAR *ThreadName();

/// Specifies the name of the process. Must be stored in a process-wide global
/// variable!
static void ProcessName(const ACE_TCHAR *szName) ;

/// Returns the name of the process.
static const ACE_TCHAR *ProcessName() ;

/// Reset the list of custom attributes. The attributes are applicable to the
/// next log entry only.
static void ResetAttributes();

/// Add an attribute to the list of next log entries’ attributes.
static void AddAttribute(const ACE_TCHAR *szName, const ACE_TCHAR *szValue);

/// Specify the LogId attribute of the log entry that follows. Can be 0 (default)
/// in which case no LogId attribute is output.
static void LogId(const ACE_TCHAR *szName) ;

/// Specify the URI attribute of the log entry that follows. Can be 0 (default)
/// in which case no URI attribute is output.
static void URI(const ACE_TCHAR *szName) ;

/// Specifies the stack ID of the current logical thread. Pointer to the name
/// must be stored in the thread-specific storage! Can be set to NULL if

/// the logical thread ID is unknown.

static void StackId(const ACE_TCHAR *szId);

/// Returns the the logical thread ID. Must have been set previously using
/// StackId.
static const ACE_TCHAR *StackId();

/// Set the stack level in the current logical thread. The value must be stored
/// in the thread-specific storage!
static void StackLevel(int nLevel);

/// Retrieve the stack level in the current logical thread.
static int StackLevel();

/// Set the context in which the code is operating. Pointer to the name must
/// be stored in the thread-specific storage!
static void Context(const ACE_TCHAR *szName) ;

/// Retrieve the context in which the code is operating.
static const ACE_TCHAR *Context();

/// Supply data with the log entry that follows.

/// The maximum length for AddData value is ADD_DATA_VALUE_MAX (255+\0). If it is too long
/// it will be truncated.

static void AddData(const ACE_TCHAR *szName, const ACE_TCHAR *szFormat, ...);

Revision: 1.33 Page 22 of 41

ALMA

1112

1113

Logging and Archiving

An instance of the LoggingProxy class is created in Container’s Init and destroyed in
Container’s Done method. It is configured from the Container’s configuration record” using the
properties listed below.

Logging Proxy’s Configuration Data

The logging system caches logs before transmitting them to the centralized logging service. The
logging is done on a per-process basis. The following parameters control logging with respect to how
and what messages are published, e.g. whether they are printed or logged at all, whether they are
cached locally or transferred to the logging service immediately, etc.

ACS_LOG_STOUT (unsigned 32-bit integer): The environmental variable
corresponding to the least priority of a log message that is to be
sent to stout. By default, only log messages with priority equal or

higher than LM_INFO (3)aresentto stout. If ACS_LOG_STOUT>0, all log
messages with priority >= ACS_LOG_STOUT are also sent to stdout.

cacheSize(unsigned 32-bit integer): The number of log entries to be cached before logging. When
this number is reached, all log entries are transferred to the centralized logging. If network connection
is not available, the local cache continues to grow, and every submitting of a log entry will attempt to
flush the cache to the centralized logging.

minCachePriority(unsigned 32-bit integer): Minimum log priority. Log entries the priority of
which is below (smaller than) the one specified with this property are ignored (neither cached nor
submitted to the Centralized Logging Service). By default, the value is set to zero so that all messages
are logged. In release version of the system, this is set to LM_INFO (3), ignoring LM_TRACE and
LM_DEBUG log entries. Debug version of the system sets this to LM_DEBUG (2). During development,
it is set to LM_TRACE (1).

maxCachePriority (unsigned 32-bit integer): Maximum log cache priority. Log entries whose
priority exceeds (is greater than) the one specified with this property are directly transmitted to the
Centralized Logging Service, bypassing the local cache. If this is set to MinCachePriority — 1, the
local cache feature is disabled.

centralizedLoggexr(string): An IOR string representing the centralized logging object. The IOR is
expected to denote a persistent object which implements the Telecom Log Service’s Log interface, in
particular the write_records method.

Iog Method Semantics
The log method receives an ACE_Log_Record object, which it first transforms into an XML string,
obeying the XML schema of the 2.1.6 - “Consistence of Log Entries”.

Depending on the log entry’s type (and thus priority) the string is either written to a local cache (a
regular XML file opened for appending and flushed for every submitted log entry, or an in-memory

> This implies that logging proxy can be configured on a per-activator (i.e., per Local Control Unit) basis.

Revision: 1.33 Page 23 of 41

ALMA Logging and Archiving

XML string), or transmitted to the Centralized Logging Service. If the local cache contains
CacheSize or more elements, an attempt is made to transmit the entire local cache to the Centralized

Logging Service.

The reference to the Centralized Logging Service is given by the CentralizedLogger
configuration property. To submit an entry to the Centralized Logging Service, its write_records
method is employed, passing the XML string as the expected any parameter.

1.1.14 Enabling the Logging Proxy
Due to design of ACE, the callback for logging must be registered as well as unregistered with
ACE_Log_Msg per-thread singleton for every thread individually. This is done automatically by the
configuration methods of the Container initThread and doneThread that have the following

signatures:
class class maci_EXPORT ContainerImpl : : // .
{
// .
static void initThread(const char * threadName = 0);

void doneThread();
i

The two methods are only a part of the Container servant and are not exposed through its CORBA

interface.

If a nonempty string is passed as a parameter to initThread, a LM_INFO log entry is output
associating the thread-ID of the current thread with its name.

1.1.15 Submitting Log Entries
As already mentioned, ACE’s logging infrastructure is used for submitting log entries. It can be used at

these levels:

* The macro ACS_LOG, or one of specialized macros ACS_TRACE, ACS_DEBUG,
ACS_DEBUG_PARAM, ACS_SHORT_LOG, and ACS_LOG_TIME, defined in the
ACS include file logging.h.

* Using ACE_Log_Msg and LoggingProxy directly.

1.1.15.1 Submitting the Source Code Information
The following code submits the source code information:

ACS_LOG(LM_SOURCE_INFO, // flags
“main”, // routine name

(LM_INFO, // informational log entry
“ry); // no additional message text

The resulting log entry in XML would look like this (there would be no white-spaces in the actual
output; they are shown below for purposes of legibility only).

Revision: 1.33 Page 24 of 41

ALMA Logging and Archiving

<Info TimeStamp="2000-09-10T21:34:32.132"
File="test.cpp” Line="131"

Routine="main”
Priority='4"'></Info>

1.1.15.2 Submitting the Runtime Context
The configuration methods of the Container take care of setting up the runtime context information,
e.g. the host name as well as the process and the thread information:

ACE_Log_Msg: :instance()->local_host(“host”); // set the host name
LoggingProxy: :ProcessName (“proc”); // called at process startup
LoggingProxy: : ThreadName (“thr”) ; // called at thread startup

ACS_LOG (LM_RUNTIME_CONTEXT,
0,
(LM_ERROR,

“hello”));

The resulting log entry in XML would look like this:

<Error TimeStamp="2000-09-10T21:34:31.435"
Host="host” Thread="thr” Process="proc”
Priority='7"/>
Any number 123
</Error>

1.1.15.3 Submitting a Variable’s Value
The following code submits a value of a variable:

LoggingProxy: :AddData (“dMyDouble”, “%f”, dMyDouble) ;

ACS_LOG(0, “main”, (LM_TRACE, “"));

The length of a value should not exceed 255 characters otherwise it is truncated.

1.1.15.4 Overriding the Default Priority
The following code overrides the default priority of a log entry:

ACS_LOG(LM_PRIORITY(12), O,
(LM_TRACE, // Could be anything..
“Message”)) // Could be anything..

1.1.15.5 Submitting an Arbitrary Message
To submit an arbitrary message, care must be taken not to break XML formatting rules (for example, <

and > should be used with care). If the message contents are not known in advance and a possibility
exists that they would break XML formatting rules, code like this should be used:

// This macro is predefined by ACS
#define LM_CDATA(t) “<![CDATA[” t “]]>"
ACE_ERROR((LM_WARNING,

LM_CDATA(“Some < text %s >"),
szAString))

The unpredictable text is placed in an XML CDATA section.

Revision: 1.33 Page 25 of 41

ALMA Logging and Archiving

1.1.16 Specifying an Audience, Array and/or Antenna for a log

1.1.16.1 API
o The possible audiences are defined in acscommon.idl, to use them, just access the appropriate
one, for example:

string a = log_audience: :0PERATOR;

e New macros have been defined in loggingMACROS. .h:

#define LOG_FULL(logPriority, logRoutine, logMessage, logAudience, logArray,
logAntenna)
#define LOG_With ANTENNA_CONTEXT(logPriority, logRoutine, logMessage, logArray,

logAntenna)
#define LOG_TO_AUDIENCE(logPriority, logRoutine, logMessage, logAudience)

1.1.16.2 Examples

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <maciSimpleClient.h>

int main(int argc, char *argvl[])
{

maci::SimpleClient client;

if (client.init(argc,argv) == 0){
return -1;

}

else{
// Log into the manager before doing anything
client.login();

ACS_SHORT_LOG((LM_WARNING, "ACS_SHORT_LOG")) ;

LOG_FULL(LM_WARNING, "main", "LOG_FULL",log_audience: :OPERATOR,"array0l","AntennalOl");

LOG_WITH_ANTENNA_CONTEXT (LM_WARNING,"main", "LOG_WITH_ANTENNA_CONTEXT","array0l","Anten
na01");

LOG_TO_AUDIENCE (LM_WARNING, "main","LOG_TO_AUDIENCE",log_audience: :OPERATOR) ;

client.logout();

return 0;

3.5 ACS Java Logging API

1.1.17 JSDK Java Logging API
The official Java Logging API (java.util.logging package [RD07]) provides with a framework for
generating, formatting and filtering log entries:

1. An object that can hold a log record (LogRecord). Its methods allow getting the level of
priority, type and the timestamp as well as the filename, the process, the thread and the context
of the source code where the log entry originates from.

Revision: 1.33 Page 26 of 41

http://java.sun.com/j2se/1.4.1/docs/guide/util/logging/overview.html

ALMA

Logging and Archiving

An object that is used to log messages for a specific system or application component
(Logger).

A mechanism for taking log entries and exporting them modeled by a Handler class
(ConsoleHandler, FileHandler). There is one instance of the subclasses of this class
per container’. Both loggers and the handlers are organized in a hierarchical namespace so that
children may inherit some properties from their parents.

An object that provides support for formatting a LogRecord (Formatter). The formatter
takes a LogRecord and converts it to a string.

An object that defines a set of standard logging levels that can be used to control logging
output (Level). It can be applied to a log record, a logger and a handler. Specifying the
lowest acceptable level acts for implementing the filtering functionality.

1.1.18 ACS Java Logging
The ACS Java Logging API is based on the official JISDK Java Logging and it has been integrated
with the implementation of the CORBA Telecom Logging Service and the rest of the ACS.

? For more details, read about the Component-Container model in “Java Component Tutorial.”

Revision: 1.33

Page 27 of 41

ALMA Logging and Archiving

getLoggerForContaine

log(..

Figure 3: Architecture of the ACS Java Logging framework.

The Logger object gets log entries that it submits to a handler that provides the formatting and the
caching capabilities of the framework. Filtering is done both at the logger and at the handle.
The shadowed objects are out of the scope of this document.

1119 ALMA Logging Configuration Data
The file almalogging.properties sets the specifications for the Java Logging properties.
Having in mind the above, properties like the level(s) of the logger(s), the handler(s), the associated
formatter(s), etc. can be all set in the configuration file. As an example consider the configuration file:

.level = ALL

I P
Handl er specific properties.

Describes specific configuration info for Handl ers.
I P

default file output is in user's hone directory.
al ma. acs. | oggi ng. AcsLoggi ngHandl er. | evel = ALL
al ma. acs. | oggi ng. AcsLoggi ngHandl er. | ocal copy = true

4
al ma. acs. | oggi ng. formatters. AcsXM.For natt er

al ma. acs. | oggi ng. AcsRenot eHandl er. cacheSi ze =
al ma. acs. | oggi ng. AcsRenot eHandl er. formatter =
java.util .l ogging. Fil eHandl er. pattern = %/java%u. | og
java.util .l ogging. FileHandler.limt = 50000

Revision: 1.33 Page 28 of 41

ALMA Logging and Archiving

java.util .l ogging. Fil eHandl er.count = 1
java.util .l ogging. FileHandl er.l evel = ALL
java.util .l ogging. FileHandl er.formatter = java.util.l oggi ng. XM_Fornatter

Limt the nessage that are printed on the console to I NFO and above.

java.util .l oggi ng. Consol eHandl er. | evel = I NFO
java.util .l oggi ng. Consol eHandl er.formatter = java.util .| ogging.Si npl eFornmatter
java.util .l oggi ng. Consol eHandl er. formatter = java.util.l oggi ng. XM_For natter

T P
Facility specific properties.

Provides extra control for each |ogger.
I P

For exanple, set the comxyz.foo |ogger to only | og SEVERE
messages:

al ma. acs. containerstart.level = ALL

al ma. acs. | ogger.level = ALL

handlers: is omitted since there is a default console handler which uses its simple log buffer to

publish all the log records. It is implemented as part of the AcsLoggingHandler. Itis also used for
transmitting the log records to the Centralized Log that are initially stored in the log buffer. If there is
no connection, the log records end up in the console. The ConsoleHandler uses always the console
as a medium for publishing.

. level: should be set to one of the variables specified in the Java Logging API.

The handler’s specific level, buffer size and formatter should be defined as variables too. Since the log
records get published each time the buffer reaches its size and the user gets the log records as soon as
the buffer is full, the size variable should not be assigned a big number.

The other specific properties include setting a specific log level for the container or other components.

11.20 1ogMethod Semantics
Calling the 1 o0g method allows submitting a log entry of a certain type to the Java framework of
objects which then passes it on to the Centralized Logging Service. The mechanism involves a logger, a
formatter and a handler. The logger passes the string further to its associated handler if the priority of
the log record is above the global logging level.

The handler also deals further only with log records of higher priority than the handler specific level.
Depending on the log record’s type (and thus priority) the string is written to a local buffer (a formatter
is called to transform the string into an XML string obeying the XML schema). If the buffer’s size is
reached, an attempt is made to transmit the entire local buffer to the Centralized Logging Service
employing its write_records method.

11.21 Obtaining a Logger
There are several ways of obtaining a Logger object. The recommended ones are:

e For an application:

import java.util.logging.Logger; '

Revision: 1.33 Page 29 of 41

ALMA

Logging and Archiving

import

Logger
true);

alma.acs.logging.ClientLogManager;

m_logger = ClientLogManager.getAcsLogManager().getlLoggerForApplication(clientName,
// the last parameters enables or disables remote logging

e For a component:

import
import

Logger

1.1.22

java.util.logging.Logger;
alma.acs.container.ContainerServices;

m_logger = getContainerServices().getLogger();

Iog Method Use
Logging can be done in two ways: using 1og for logging log records or the level-specific method for
logging messages (finest, finer, info, warning, severe,all, off).

m_logg

m_logg

er.log(LogRecord.INFO, “log INFO record using the generic method log”);
er.info(“log INFO records using the specific method info”);

1.1.23
1.1.23.1

Revisio

In the above example, a logger that belongs to the namespace of the container —
alma.acs.container —is instantiated. Because of the logger’s hierarchical structure, this logger
is a child of the logger with a namespace alma . acs. In case the properties file does not specify the

level for the log records to be logged with alma.acs.container, the level of
alma.acs would be considered, if specified. Otherwise the default
global logging level would be considered.

Specifying an Audience, Array and/or Antenna for a log
API

The possible audiences are defined in acscommon.idl, to use them import the appropriate one, for
example:

import alma.log_audience.OPERATOR;

String a = OPERATOR.value;

Two new methods to the alma.acs.logging. AcsLogger:

public void logToAudience(Level level, String msg, String audience);
public void logToAudience(Level level, String msg, Throwable thr, String audience);

New class alma.acs.logging.domainspecific. AntennaContextLogger

public AntennaContextLogger (AcsLogger logger);//constructor

public void log(Level level, String msg, String audience, String array, String
antenna) ;

public void log(Level level, String msg, Throwable thr, String audience, String array,
String antenna);

public void log(Level level, String msg, String array, String antenna);

public void log(Level level, String msg, Throwable thr, String array, String antenna);

New class alma.acs.logging.domainspecific. ArrayContextLogger

public ArrayContextLogger (AcsLogger logger);//constructor

public void log(Level level, String msg, String audience, String array);
void log(Level level, String msg, String array);
String Throwable thr,

void log(Level level, msg, String audience, String array);

n: 1.33 Page 30 of 41

ALMA Logging and Archiving

public void log(Level level, String msg, Throwable thr, String array);

1.1.23.2 Example

package alma.acs.logging;
import java.util.logging.Level;

import alma.acs.component.client.ComponentClient;
import alma.acs.logging.domainspecific.AntennaContextLogger;
import alma.log_audience.OPERATOR;

public class TestAudArr extends ComponentClient{
public TestAudArr(String managerLoc, String clientName) throws Exception {
super (null, managerLoc, clientName) ;

public static void main(String argsl[]){
String managerLoc = System.getProperty("ACS.manager");
if (managerLoc == null) {

System.out.println("Java property 'ACS.manager' must be set to
the corbaloc of the ACS manager!");
System.exit(-1);
}
String clientName = "TestAudArr";
TestAudArr client = null;
try{

client = new TestAudArr(managerLoc, clientName);

AcsLogger m_logger =
(AcsLogger)client.getContainerServices().getLogger();

AntennaContextLogger logger = new
AntennaContextLogger (m_logger) ;

m_logger.log(Level .WARNING, "Normal Log");

m_logger.logToAudience(Level .WARNING, "Log with audience",
OPERATOR.value) ;

m_logger.logToAudience(Level .WARNING, "Log exception with
audience", new Exception("My dummy exception"), OPERATOR.value);

logger.log(Level .WARNING, "Log

with audience, array and antenna", OPERATOR.value, "Array0l", "AntennaOl");

logger.log(Level .WARNING, "Log with array and antenna",
"Array0l", "AntennaOl");

logger.log(Level .WARNING, "Log exception with audience, array
and antenna", new Exception("My dummy exception"), OPERATOR.value, "ArrayO0l",
"AntennaO1l");

logger.log(Level .WARNING, "Log exception with array and
antenna", new Exception("My dummy exception"), "Array01l", "AntennaOl");

Thread.sleep(1000);
}catch(Exception e) {
System.out.println("Error creating test client");

}
tryf

client.tearDown();
}catch(Exception e){
System.out.println("Error destroying test client");

11.24 Java Log Levels
The Java log levels have been remapped to comply with the ACS log levels from the XML schema.
The mapping is done in the alma.acs.logging.AcsLogLevel class where the ACS levels, like

Revision: 1.33 Page 31 of 41

ALMA

Logging and Archiving

the JAVA API levels, are specified by ordered integers. The OFF level which is not mentioned in the

XML schema is included for dealing with bad levels as well as for blocking logging:

ACS Level (ACE Level) ACS Logging Java API Level Java Logging Priority
Priority
TRACE 2 FI NEST (FI NER) 400
DEBUG 3 FI NE (CONFI G 700
I NFC 4 I NFO 800
NOTI CE 5 I NFO 801
WARNI NG 6 WARNI NG 900
ERRCOR 8 WARNI NG 901
CRI Tl CAL 9 WARNI NG 902
ALERT 10 WARNI NG 903
EMERGENCY 11 SEVERE 1000
TRACE 2 ALL I nteger. M N_VALUE
OFF - OFF I nt eger. MAX_VALUE

Revision: 1.33

Page 32 of 41

ALMA

1.1.1

ACS Logging Class Diagram

AcsContainer |

Runner
AURRet

Logging and Archiving

org.omg.DsLogAd

_— min-Log
PHAR-=0g

\org.omg.CORBA

DD

\1

\V

ClientLogManager AcsFormatterF
actorv
actory

1 / \\1
/ \
\

]

ava.util.logging

Level
+=evel

extends>>

/ <<extends>>

[

\

\
A\

AcsXMLForm

AcsLogForm

atter

attct

Comparable

ComparablePr

opberty
1857

ope

atter
atter /

Figure 4: Class Diagram of ACS Formatters .The classes relate as shown on the class diagram above.

Revision: 1.33

Page 33 of 41

ALMA

11.2 ACS Formatters
The formatters involved are named according to the ACS Logging Level. The

ACS Formatters

Logging and Archiving

alma.acs.logging.AcsXMLFormatter is a formatter object that produces a valid XML string

out of a log message according to the XML schema for ACS.

java.util.logging. For
matter

o

‘public format()

/\

:

AcsXMLFormatter

4

‘public format()

AcsLogFormatter

‘Q)‘private static final TIME_FORMAT : String

4

public getLine()
Epublic getHost()
Soublic getStackld()
Poublic getStackLevel()
Poublic getUri()

b

AcsTraceLogFo
rmatter

AcsDebuglLogF
ormatter

AcsInfoLogFor
matter

AcsNoticeLogF | |AcsWarningLogFo
ormatter rmatter

AcsErrorLogFor
matter

AcsCriticalLogFo
rmatter

AcsAlertLogFor
matter

AcsEmergencyLog
Formatter

AcsOffLogFor
matter

Figure 5: Class Diagram of ACS Formatters.

The AcsLogFormatter object defines methods for getting the properties needed for formatting a

string into an XML string. The AcsXMLFormatter calls any of the customized formatters.

3.6 ACS Python Logging API

11.3 ACS Python Logging
The ACS Python Logging API provides an interface used to send logs to the (CORBA) ACS logging
service object which lives within the acsLogSvc process. acsLogSvc then publishes the logs to an event

channel which distributes them to all interested consumers such as the jlog GUL

The standard ACS Python logger is available via a “getLogger()” method of

Acspy.Servants.ContainerServices or by using the “getLogger(‘logger name’)” function found in the

Acspy.Common.Log module. The logger object returned is derived from the native Python logging

class, logging.logger. Additionally, the ACS logger provides a set of logXyz methods where “Xyz” is

the priority of the log (e.g., “loglnfo”). This set of methods is provided for backward incompatibility

reasons and also to automatically extract the name of the calling function, line where the log method

Revision: 1.33

Page 34 of 41

ALMA

1.1.31

Logging and Archiving

was invoked, etc. For more information of functionality provided by the ACS Python logging API,
please see the pydoc for the Acspy.Common.Log module.

Short Logging Example

The following consists of a trivial Python logging example. The acspyexmpl CVS module is literally
loaded with logging useage(s) and I would highly recommend that you look there or within the pydoc
for Acspy.Common.Log for far more comprehensive examples:

from Acspy.Common.Log import getLogger

logger = getlLogger(“my little logger”)

logger.logTrace(“publishes logs of low priority”)

logger.logInfo(“publishes logs of normal priority with extra stuff:” + str(7))

import logging

logger.log(logging.ERROR, “and can even publish logs using native Python logging semantics”)
1.1.3.2 Specifying an Audience, Array and/or Antenna for a log

3.7

° API:

0 New method in Acspy.Common.Log.Logger:

logNotSoTypeSafe(self, priority, msg, audience=None, array=None, antenna=None);

e Example:

from Acspy.Common.Log import getLogger

import ACSLog

from Acspy.Clients.SimpleClient import PySimpleClient
import logging

from log_audience import OPERATOR

from log_audience import NO_AUDIENCE

simpleClient = PySimpleClient()

logger = getLogger("TestAudience")

logger.log(logging.WARNING, "Normal log")

logger.logNotSoTypeSafe (ACSLog.ACS_LOG_WARNING, "Log with audience, array and antenna",
OPERATOR, "Array0Ol", "AntennaOl")

logger.logNotSoTypeSafe(ACSLog.ACS_LOG_WARNING, "Log with audience", OPERATOR)
logger.logNotSoTypeSafe (ACSLog.ACS_LOG_WARNING, "Log with array and antenna",
NO_AUDIENCE, "Array0l", "AntennaOl")

simpleClient.disconnect()

Type Safe Logs

Type safe logs work on top of the free format logs defined above in the previous sections. These are
logs with a formalized structure and contents, mainly thought for the implementation of operational
logs of direct interest for the operator of the system, while free format logs are used for post-mortem
analysis and debugging. However, this does not exclude that type-safe logs can be used for lower level
logs, when deemed convenient.

The module loggingtsTypes contains standard log definitions used over the project. Before you create
your own definition, check this module to see if it isn't already there.

Revision: 1.33 Page 35 of 41

ALMA Logging and Archiving

Here follows the XML schema file, that type safe log definitions must comply to. It is located in the
loggingts module, and is called ACSLogTS.xsd.

<?xml version="1.0" encoding="ISO-8859-1"7?>
<xs:schema
xmlns:loggingts="Alma/ACSLogTS"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:common="urn:schemas-cosylab-com: COMMONTYPES:1.0"
targetNamespace="Alma/ACSLogTS"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:import namespace="urn:schemas-cosylab-com:COMMONTYPES:1.0"
schemaLocation="commontypes.xsd"/>
<xs:element name="LogDefinitionType">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="LogDefinition" maxOccurs="unbounded">
<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="Member" type="common:Member_"/>
</xs:choice>
<xs:attribute name="logName" type="common:nameType" use="required"/>
<xs:attribute name="shortDescription" type="common:shortDescriptionString"
use="required"/>
<xs:attribute name="description" type="common:nonEmptyString" use="required"/>
<xs:attribute name="URL" type="xs:string" use="optional"/>
<xs:attribute name="priority" type="loggingts:priorityType" use="required"/>
</xs:complexType>
</xs:element>
</xs:choice>
<xs:attribute name="name" type="common:nameType" use="required"/>
<xs:attribute name="type" type="loggingts:logType" use="required"/>
<xs:attribute name="shortDescription" type="common:shortDescriptionString"
use="optional"/>
<xs:attribute name="description" type="common:nonEmptyString" use="optional"/>
<xs:attribute name="URL" type="xs:string" use="optional"/>
<xs:attribute name="_prefix" type="common:prefixType" default="alma"/>
</xs:complexType>
</xs:element>
<xs:simpleType name="logType">
<xs:restriction base="xs:nonNegativeInteger"/>
</xs:simpleType>
<xs:simpleType name="priorityType">
<xs:restriction base="common:nonEmptyString">
<xs:enumeration value="TRACE"/>
<xs:enumeration value="DEBUG"/>
<xs:enumeration value="INFO"/>
<xs:enumeration value="NOTICE"/>
<xs:enumeration value="WARNING"/>
<xs:enumeration value="ERROR"/>
<xs:enumeration value="CRITICAL"/>
<xs:enumeration value="ALERT"/>
<xs:enumeration value="EMERGENCY"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

An example log definition file is as follows:

<?xml version="1.0" encoding="ISO-8859-1"7?>

Revision: 1.33 Page 36 of 41

ALMA Logging and Archiving

<LogDefinitionType
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="Alma/ACSLogTS"
name="SampleLog"
type="10"
shortDescription="Example LogDefinitionType"
description="Longer description of the sample LogDefinitionType"
URL="http://someurl.org"
_prefix="alma">

<LogDefinition
logName="1logWithMembers"
shortDescription="Log with members"
description="This is a somewhat more complex log using members"
URL="http://someurl.org"
priority="WARNING">
<Member name="someMember"
type="string"”
description="member description"/>
</LogDefinition>
</LogDefinitionType>

After you have defined your logs, you must include them in your module's Makefile, adding the

following line(let's assume the file is called SampleLog.xml):

ACSLOGTSDEF=SamplelLog '

This will produce the code necessary to use the logs from C++, Java and Python.

Example C++ usage(to compile this remember to add -ISampleLog to the LDFLAGS):

#include <SampleLog.h>

SamplelLog: :logWithMembers my_log(__FILE _ LINE__ ,"this_function_name");

S—

my_log.setsomeMember (“this is the value of someMember”);
my_log.log();

Example Java usage:

import alma.SampleLog.*

// m_logger is the logger of this class

// i.e. If you are in the main of a class that extends ComponentClient
// you should use this.m_logger

logWithMembers my_log=new logWithMembers(m_logger) ;
my_log.setsomeMember (“this is the value of someMember”);

my_log.log();

Revision: 1.33 Page 37 of 41

ALMA Logging and Archiving

Example Python usage:

from SampleLog import logWithMembers

my_log=logWithMembers ()
my_log.setsomeMember (“this is the value of someMember”)
my_log.log()

4 Archiving Architecture

Archiving combines monitors with logging service. Monitors allow triggering of callbacks whenever a
certain condition in the system is met, e.g., a timeout expires or a value changes. Logging allows for
reporting the value in question to a centralized archive.

Archiving is one of the services specific to control systems, which must already be aware of
parameters, monitors and other BACI concepts. Archiving infrastructure is therefore a responsibility of
BACI

41 The Architecture

Archiving subsystem leverages:
* The logging subsystem for submitting the data that needs to be archived.

* BACI monitors for grabbing the data when required by the per-parameter archiving policy.

1.1.4 Parameter’s Archiving Configuration
Along with other parameter characteristics (minimum and maximum value, unit of measurements, ...)
these configuration parameters determine the parameter’s archiving policy:

archive_priority (unsigned 32-bit integer): The priority of the log entry that will carry the
information required for archiving the parameter’s value. Default is 3 (LM_INFO). If the priority
exceeds the value specified in the logging proxy’s MaxCachePriority, the archiving data will be
transmitted to the centralized logger immediately. If it is below MinCachePriority, the data will
be ignored. If it is somewhere in-between, it will be cached locally until a sufficient amount of log
entries is collected for transmission to the centralized logger.

archive_max_int(double): The maximum amount of time (in seconds and fractions of seconds)
allowed to pass between two consecutive submissions to the log. If the time exceeds the value specified
here, the log entry should be generated even though the value of the parameter has not changed
sufficiently.

Revision: 1.33 Page 38 of 41

ALMA Logging and Archiving

archive_min_int(double): The minimum amount of time (in seconds and fractions of seconds)
allowed to pass between two consecutive submissions to the log. If the time is smaller than the value
specified here, the log entry is not submitted, even though the value of the parameter has changed.

archive_delta(same type as parameter): Defines what a change in parameter value is. If the value
changes for less than the amount specified here, no log entry is generated.

For more details see the ACS Online documentation for CDB Schema files
[RDOS8].

11.5 Extending XML Schema for Archiving
To accommodate archiving, a new log entry type is introduced to supplement the ones provided by
logging itself (<Trace>, <Info>,...):

<Archive TimeStamp="yyyy-MM-ddThh:mm:ss.ffr"”
Object="objectID” Parameter="paramID” Type="type”
Priority="4">

value
</Archive>

The Object attribute uniquely identifies the distributed object whose parameter’s value is being
archived, and Parameter attribute identifies the parameter within that object. The Type specifies
the parameter’s type. Possible values of Type are:

* long (also used for bit-patterns and enumerations)
* double (double-precision floating point values)

* string

The content of the element (value) contains the stringified representation of the current value of the
parameter. Care must be taken to use XML CDATA sections if this is an arbitrary string.

1.1.6 Submitting the Archive Data
The following piece of code submits a piece of data for archiving:

// macro defined by BACI
#define ACS_ARCHIVE(device, param, type, value)
{
LoggingProxy: :LogEntryType(“Archive”) ;
LoggingProxy: :AddAttribute(“Device”, device);
LoggingProxy: :AddAttribute (“Parameter”, param);
LoggingProxy: :AddAttribute (“Type”, type);
ACS_LOG(0, 0, (LM_NOTICE, value));
}

PP

ACS_ARCHIVE(“Voltage”, “double”, 13.6);

The point where the data is obtained and where this code would be placed is discussed in the chapter
“Adjusting BACI” below.

Revision: 1.33 Page 39 of 41

ALMA

1.1.8

Logging and Archiving

Archiving in the Centralized Logger

The Centralized Logger sends all <Archive> elements to a special archiving notification channel.
The reference to this notification channel can be found in the name resolution service under the name
ArchivingChannel.

The log entries sent to the notification channel are structured events with the following properties ([6],
section 2.2):

Name Value
Event domain_name Archiving
Header | type_name Type of the parameter (see)
time_stamp The time when the parameter had this value, i.e. when
the log entry was generated.
object The object whose properties value is being reported.
Filterabl
e data s .
parameter The name of the parameter within the object.
value The value of the parameter. The type of this field is

the same as specified in type_name.

Archiving architecture inside BACI

Since BACI already implements monitoring mechanism, only one more monitor per property has to be
set up to grab the property’s data. The best place to construct this monitor (the archiving monitor) is at
the property’s construction time. Here, BACI looks up the archive_ * entries in the configuration
database, and if at least one of archive_min_int, archive _max_int orarchive_delta is
defined, a monitor callback is constructed and registered with the property using this configuration
information.

The monitor callback does nothing else but use the ACS_ARCHIVE macro as shown above to submit
archive data to the logging proxy. The logging proxy then takes care of passing this data (either directly
or via local cache) to the centralized logger, which is especially adjusted to handle <Archive>
elements.

The monitor callback is constructed in-process relative to the property object. If TAO’s optimization is
used, only one virtual function call will be required from the property’s monitor dispatcher to reach the
archiving code in the monitor callback, making archiving a very efficient operation.

Revision: 1.33 Page 40 of 41

ALMA Logging and Archiving

Appendix A: Logging XML Schema Definition

The documentation for the complete Logging XML schema loggingMI.xsd has been removed from
this document and is available online at

http://www.eso.org/projects/alma/develop/acs/OnlineDocs/ACS_docs/schemas/index.html
under the urn:schemas-cosylab-com:logging:1.0 Namespace

The original schema file is archived together with the main ACS logging module in
ACS\LGPL\CommonSoftware\logging\ws\idl\loggingMI.xsd

Revision: 1.33 Page 41 of 41

	Scope
	1 Introduction
	1.1 Reference Documents

	2 Requirements
	2.1 Logging
	2.2 Archiving

	3 Logging Architecture
	3.1 CORBA Telecom Log Service
	3.2 Centralized Log
	3.3 Syntax of a Log Entry
	3.4 ACS C++ Logging API
	3.5 ACS Java Logging API
	3.6 ACS Python Logging API
	3.7 Type Safe Logs

	4 Archiving Architecture
	4.1 The Architecture

	Appendix A: Logging XML Schema Definition

