
E U R O P E A N S O U T H E R N O B S E R V A T O R Y
Organisation Européenne pour des Recherches Astronomiques dans l’Hémisphère Austral

Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre

VERY LARGE TELESCOPE

Prepared...
Name Date Signature

Approved...
Name Date Signature

Released ...
Name Date Signature

Doc.No. VLT-MAN-ESO-17210-0855

Issue 3.0

Date 30.10.1998

VLT PROGRAMME * TELEPHONE: +49 89 32006-0 * FAX: +49 89 320 2362

VLT Software

Environments

Common Configuration

User Manual

G.Raffi

F.Carbognani

G.Filippi

2 VLT Common Configuration - User Manual - 3.0 VLT-MAN-ESO-17210-0855

VLT Common Configuration - User Manual - 3.0 VLT-MAN-ESO-17210-0855 3
Change Record

Issue/Rev. Date Section/Page affected Reason/Initiation/Document/Remarks

1.0 11.06.1996 All

5, 7

7.2.2
7.4.1

First Release, except the following chapters, in
which change-bars indicate modifications:
Taken from VLT-MAN-ESO-17210-0375,
“Driver Development Guide & User Manual”
Error definition files are now loaded on LCU.
Editing of bootScript no longer recommended.

2.0 05.11.1997
2.3
3.7
5
5.4.1
5.4.3
8

vcc multi-network + multi-CPU extension
Updated location of RtapEnvList.
Added off-line environment creation.
Updated figures.
Extended for multi-CPU systems.
Extended for multi-network systems.
Updated man-pages.

3.0 30.10.1998 2.3, 3.5, 8 Updated for new CCS-Lite on OCT98

4 VLT Common Configuration - User Manual - 3.0 VLT-MAN-ESO-17210-0855
The information contained in this manual is intended to be used in the ESO
VLT project by ESO and authorized external contractors only.

While every precaution has been taken in the development of the software
and in the preparation of this documentation, ESO assumes no responsibil-
ity for errors or omissions, or for damage resulting from the use of the soft-

ware or of the information contained herein.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 5
T A B L E O F C O N T E N T S

1 INTRODUCTION 9
1.1 Purpose . 9
1.2 Scope . 9
1.3 Reference Documents . 9
1.4 Abbreviations And Acronyms. 10
1.5 Stylistic Conventions. 10
1.6 Naming Conventions . 10
1.7 Problem Reporting and Change Request . 10

2 CONFIGURATION DATABASE 11
2.1 Purpose of the VCCDB . 11
2.2 On-line Configuration Access . 11
2.3 System Configuration Files . 12

2.3.1 exports (HP) or dfstab (SUN) . 12
2.3.2 hosts. 12
2.3.3 services . 12
2.3.4 logLCU.config . 13
2.3.5 lqs.boot . 13
2.3.6 RtapEnvList . 13
2.3.7 CcsEnvList . 13
2.3.8 .rhosts . 13

3 UNDERSTANDING ENVIRONMENTS 15
3.1 Types of Environments . 15
3.2 Tools to Manage Environments. 15
3.3 Operations on Environments . 16
3.4 To Setup an RTAP Environment . 16
3.5 To Setup a QSEMU (CCS-Lite) Environment . 18
3.6 To Setup an LCU Environment . 20
3.7 To Create an Environment Off-Line . 22

4 ENVIRONMENT SETUP - vccEnv 23
4.1 Overview. 23
4.2 Starting from the Command Line . 23
4.3 Panel Description. 24
4.4 Actions. 24

5 CONFIGURATION OF LCU ENVIRONMENTS - vccConfigLcu 25
5.1 Overview. 25
5.2 Starting from the Command Line . 25
5.3 Example of Usage . 26
5.4 Panel Description. 27

5.4.1 Environments Selection . 27

6 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
5.4.2 Root Configuration . 27
5.4.3 Network Configuration . 28
5.4.4 Modules Configuration. 28
5.4.5 Devices Configuration . 29
5.4.6 Processes . 29
5.4.7 Target Files . 29
5.4.8 Actions. 30

5.5 Known Problems . 30

6 CONFIGURATION ACCESS FOR PROGRAMMERS 32
6.1 Panel Mega-Wigets . 32
6.2 Programmatic Access from Seqencer-Scripts. 32

7 THE LCU BOOT ENABLER - lcuboot 33
7.1 Purpose of lcuboot . 33
7.2 Available lcuboot Functions . 33

7.2.1 lcuboot Automatic Environment Setup . 33
7.2.2 lcuboot General Module Support . 34
7.2.3 lcuboot Driver and Device Installation . 34
7.2.4 lcuboot LCC Support . 34
7.2.5 lcuboot File Access Support . 35

7.3 How to create LCU Module-Boot-Scripts. 35
7.3.1 Module-Boot-Scripts for General Module Installation. 35
7.3.2 Module-Boot-Scripts for Automatic Driver and Device Installation 36

7.4 How to configure LCUs with lcuboot. 37
7.4.1 To create a boot-script suitable for lcuboot . 37
7.4.2 To configure module-boot-scripts for your site . 38
7.4.3 To configure module-boot-scripts for a specific LCU . 38

8 REFERENCE 39
8.1 User Commands Reference . 39

8.1.1 envsCreate(1) . 40
8.1.2 envsKill(1) . 42
8.1.3 vccConfigLcu(1) . 43
8.1.4 vccEnv(1). 50
8.1.5 vccEnvCheck(1) . 53
8.1.6 vccEnvCreate(1) . 55
8.1.7 vccEnvDelete(1) . 59
8.1.8 vccEnvInit(1). 61
8.1.9 vccEnvStart(1) . 63
8.1.10 vccEnvStop(1). 65
8.1.11 vccShow(1) . 67

8.2 Functions Reference. 68
8.2.1 lcubootAutoDrv(1) . 69

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 7
8.2.2 lcubootAutoEnv(1) . 73
8.2.3 lcubootAutoGen(1) . 75
8.2.4 lcubootAutoLcc(1) . 78
8.2.5 lcubootError(1). 79
8.2.6 lcubootFile(1) . 81
8.2.7 lcubootLog(1) . 82

8.3 Directory Reference . 84
8.3.1 ENVIRONMENTS_LCU(5) . 85
8.3.2 ENVIRONMENTS_QSEMU(5) . 87
8.3.3 ENVIRONMENTS_RTAP(5) . 89
8.3.4 lcuboot(5) . 91

8.4 Files Reference . 93
8.4.1 bootScript(5) . 94
8.4.2 devicesFile(5) . 97
8.4.3 userScript(5) . 98

8.5 Panel Widgets and Libraries . 99

8 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 9
1 INTRODUCTION

1.1 Purpose

This document describes how to create and maintain environments of any type (Rtap, Qsemu,
LCU) with respect to the VLT standards. It contains the instructions for the VLT-tools to support
these tasks, which are part of the workstation-based vcc and envs modules, and the LCU-based
boot enabler, named lcuboot.

The environment setup and configuration features are provided as:

1. a set of GUI panels for manual control of environments.

These interactive panels make use of:

2. a set of WS commands to create, start, stop, delete, and check all types of environments. These
commands are also used by higher level procedures (e.g. automatic test support tool kit).

For LCUs, these commands can generate files which are compatible with:

3. a set of LCU library functions that facilitate the boot procedure.

1.2 Scope

The User Manual part of this document describes the following VLT software modules:

• lcuboot from version 1.29 for LCU booting functions

• vcc from version 2.7 for environment setup and configuration

• envs from version 1.17 for basic environment creation from templates

The document assumes that the reader has a good knowledge of UNIX and the VxWorks operating
systems.

1.3 Reference Documents

The following documents contain additional information and are referenced in the text.

[1] VxWorks Version 5.3 Programmer’s Guide
Wind River Systems

[2] VxWorks Version 5.3 Reference Manual
Wind River Systems

[3] HOS/ACC - User Manual
VLT-MAN-ESO-17230-1023, 1.1

[4] HOS/ACC - Software User Manual
VLT-MAN-ESO-17230-1024, 1.1

[5] Q-Server Emulator User Manual
VLT-MAN-ESO-17210-0422, 3.0

[6] VLT Software Problem Report Change Request User Manual
VLT-MAN-ESO-17200-0981, 2.0 15/01/96

10 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
1.4 Abbreviations And Acronyms

The following abbreviations and acronyms are used in this document:

ACC Access and Configuration Control

CCS Central Control Software

HW Hardware

I/O Input/Output

LAN Local Area Network

LCC LCU Common Software

LCU Local Control Unit

N/A Not Applicable

OS Operating System

SW Software

TBD To Be Defined

VCCDB VLT Common Configuration Database

VLT Very Large Telescope

WS Workstation

1.5 Stylistic Conventions

The following styles are used:

bold - in the text, for commands, filenames, prefixes/suffixes as they have to be typed.

italic - in the text, for parts that have to be substituted with the real content before typing.

teletype - for examples.

<name> in the examples, for parts that have to be substituted with the real content before typing.

bold and italic are also used to highlight words.

Items which are subject to change in future versions are marked in this way (AuthorRemark).

✗ Very important items are marked in this way (Warning).

1.6 Naming Conventions

This implementation follows the naming conventions as outlined in the VLT Programming Stan-
dards.

1.7 Problem Reporting and Change Request

See [6] for instructions.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 11
2 CONFIGURATION DATABASE

2.1 Purpose of the VCCDB

The main idea of a VLT common configuration database (VCCDB) is to have a single centralized
configuration definition for the whole network, from which all host-based files can be derived, and
from which configuration data can be queried by engineering interfaces and applications at run-
time.

The SQL-based database of the Access and Configuration Control (ACC) module has been chosen
for this purpose, since it contains - apart from other data - all information that are relevant for envi-
ronment configuration. 1

To set up such a database, please refer to the dedicated ACC documentation for details [4].

2.2 On-line Configuration Access

The vcc tools can work with or without a VCCDB, but the functionality without it will be very lim-
ited. Some of the tools and programs will not work at all. The ACC database is queried for configu-
ration information at run-time.

In order to access the VCCDB at run-time, you have to set the shell-variable ACC_HOST to the host
on which the database server is running, e.g.:

setenv ACC_HOST te49

After that the configuration information is taken from that VCCDB.

If you wish to work without VCCDB, then you must not define the shell-variable ACC_HOST and,
so that no access will take place.

Note that none of the tools and functions described in this manual ever writes into the VCCDB.
Only ACC facitlities are intended to write to the database.

1. In the JUL95/DEC95 release a prototype of the VCCDB was implemented as Rtap database. Such implemen-
tation is no more available. The shell-variable VLT_VCCENV shall not be defined any longer.

12 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
2.3 System Configuration Files

✗ Global configuration files can be derived automatically from the VCCDB. Such a feature will be
added in a future release. For the time being, these files shall still be edited by hand.

The following table shows which files are needed for which type of environment, and in which
manual pages detailed information about their contents can be found:

2.3.1 exports (HP) or dfstab (SUN)

All LCUs that boot from the WS must have an entry in this file to allow NFS mounting. Note that an
additional command is necessary to commit any changes in the file.

2.3.2 hosts

All nodes, WS and LCU, must have an entry in this file to establish the mapping between host-
names and IP-addresses.

2.3.3 services

From the communication point of view, each environment is identified by the node on which is run-
ning and a TCP/IP port number. The same number can be used on different nodes for the same type
of environment. Currently we use:

• 2160 for LCU environments

• 2223 for QSEMU environments

• one number in the range 2001-2999 for each RTAP environment

File Man-Page Needed for type

HP-UX: /etc/exports
Sun-Solaris: /etc/dfs/dfstab

exports(4)
dfstab(4)

LCU

/etc/hosts hosts(4) RTAP, QSEMU

/etc/services services(4) RTAP

$VLTDATA/config/logLCU.config logLCU.config(5) RTAP, QSEMU

$VLTDATA/config/lqs.boot lqs.boot(5) LCU

$VLTDATA/config/CcsEnvList not jet avalaible QSEMU

/etc$RTAPROOT/RtapEnvList RtapEnvList(4) RTAP

~vx/.rhosts remsh(1) or rsh(1) LCU

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 13
2.3.4 logLCU.config

To establish the assignment between LCU and WS environment to which logs shall be sent.

2.3.5 lqs.boot

Each LCU needs to know from which host it has to boot and which are the other environments:
CCSs and QSEMUs (an LCU should not talk directly to other LCUs). If LCU(s) need to communi-
cate with more WS environments than the assigned boot environment, then the file “$VLTDATA/
config/lqs.boot” must be created and edited. The standard file in “$VLTROOT/vw/bin/
$CPU/lqs.boot” can be taken as template. Otherwise the installed default is enough.

2.3.6 RtapEnvList

Each CCS (RTAP) environment needs to know where other CCS, QSEMU, LCC environments are
located, they can be both local or remote to the WS. RtapEnvList provides such a mapping.

2.3.7 CcsEnvList

This is the equivalent of RtapEnvList for CCS-Lite Environment. It also uses the same sintax. A tem-
plate is installed in $VLTROOT/config/CcsEnvList.

2.3.8 .rhosts

The LCU performs during start-up remote-shell accesses to the booting WS under the user-name
‘vx’. In order to enable that, the node-name of the LCU must be stated in the file ~vx/.rhosts, i.e.
in the home-directory of user vx..

14 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 15
3 UNDERSTANDING ENVIRONMENTS

3.1 Types of Environments

The VLTSW is based on the concept of environments where processes can run and exchange mes-
sages with other processes, either in the same environment or in a remote environment, on the same
machine or in other machines.

Environment can be:

CCS environment (on WS)
based on an RTAP environment, providing database and communication facilities (q-server),
and used to build WS applications. There can be one or more such environments per WS.

CCS-Lite (or QSEMU) environment (on WS)
a limited environment used when no RTAP is installed (CCS-Lite). The present version
provides both database and communication facilities.

LCC environment (on LCU)
provides database and communication facilities (lcu-Qserver) to build WS applications.
Maximum one environment per LCU. There can be one or more such environments per WS

An environment is uniquely identified by the environment name. Remember that environment
names are limited to 7 chars and the first letter is mandatory “w” for WS and “l” for LCU.

REMARK: Real VLT environment names must follows the conventions defined by the applicable
version of ”VLT LAN’s Specification”. In the following example generic names are used.

3.2 Tools to Manage Environments

The following WS-based tools are available for the user:

• vccEnv* - a set of commands to deal with all types of environments (see 8.1)

• vccEnv - a panel that allows interactive use of the vccEnv* commands (see 4)

• vccConfigLcu - a panel specifically intended for configuration of LCU environments (see 5)

Their usage is described by examples in the next sections.

16 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
3.3 Operations on Environments

The provided tools implement some standard operations on environments.

The diagram shows which operations are defined. They exist for each type of environment, al-
though the underlying steps are type-dependent: .

The following examples will explain the meaning of the operations for each environment type.

In order to execute the examples, please first start the vccEnv panel from the command line. Refer to
chapter 4 for full instructions.

3.4 To Setup an RTAP Environment

The following steps demonstrate the possible actions with an RTAP environment named wtest, and
assigned to host te49.

• Create the environment:

Enter wtest as environment-name and press <Return>.
Then press the Create action-button.
Executing: vccEnvCreate -e wtest -t RTAP -h te49 -d $VLTDATA/ENVIRONMENTS/wtest

vccEnvCreate: copy standard template to “te49:/vlt/data/ENVIRONMENTS/wtest” ...
vccEnvCreate: make database from “te49:/vlt/data/ENVIRONMENTS/wtest/dbl” ...
vccEnvCreate: make env. directory world writable ...

Application-specific databases must be added manually in the dbl subdirectory now, inclusive
the make db. Alternatively, a template can be specified in the panel before Create, which then
overrides the defaults, see chapter 4.

• Configure the environment:

At this point the environment usually needs to be further configured for your specific case, e.g.
the RtapEnvTable must be modified to add more application processes. Do do this, press the
Config action-button to start Rtap’s configuration facilities, or edit the file $VLTDATA/
ENVIRONMENTS/wtest/RtapEnvTable.normal directly.
Note that RtapEnvTable.normal will be copied to RtapEnvTable during the Init operation.

• Initialize the environment:

Press the Init action-button and confirm the dialog.

DeleteStopStartCreate Init

Config ConfigCheck

Environment exists

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 17
Executing: vccEnvInit -e wtest -t RTAP -h te49 -d $VLTDATA/ENVIRONMENTS/wtest

RTAP/Plus Copyright (c) Hewlett-Packard (Canada) Ltd. 1988-1994
All rights reserved.
Real-Time Applications Platform (RTAP/Plus) release A.06.60

vccEnvInit: create empty database in “te49:/vlt/data/ENVIRONMENTS/wtest” ...
vccEnvInit: load database from DB branch ...
vccEnvInit: restore normal RtapEnvTable ...

• Check the environment before start:

Press the Check action-button. All checks should be OK until the sequence comes to processes,
which are not running at this point.
Executing: vccEnvCheck -e wtest -t RTAP -h te49 -d $VLTDATA/ENVIRONMENTS/wtest

vccEnvCheck: locate environment directory “te49:/vlt/data/ENVIRONMENTS/wtest” ...
vccEnvCheck: locate wtest in /etc/services ...
vccEnvCheck: locate te49 in /etc/hosts ...
vccEnvCheck: locate wtest in /usr/rtap/etc/RtapEnvList ...
vccEnvCheck: send PING command to cmdManager ...
vccEnvCheck@te49: Error: failed to send PING command to cmdManager:

 ---------------- Error Structure ----------------
Time Stamp : 96-06-10 13:31:58.419563
Process Number : 66 Process Name : msgSend
Environment : wtest StackId : 2 Sequence : 4
Error Number : 24 Severity : W
Module : ccs Location : ccsInit.c
Error Text : ccsERR_ENV_NOT_ACTIVE : Environment wtest not active

child process exited abnormally
vccEnvCheck: FAILED.

• Start the environment:

Press the Start action-button.
Executing: vccEnvStart -e wtest -t RTAP -h te49 -d $VLTDATA/ENVIRONMENTS/wtest

vccEnvStart: store log in “/vlt/data/ENVIRONMENTS/wtest/.RtapScheduler.log” ...
vccEnvStart: run RtapScheduler in background ...

• Check the environment after start:

Press the Check action-button a second time. Now all checks should be OK.
Executing: vccEnvCheck -e wtest -t RTAP -h te49 -d $VLTDATA/ENVIRONMENTS/wtest

vccEnvCheck: locate environment directory “te49:/vlt/data/ENVIRONMENTS/wtest” ...
vccEnvCheck: locate wtest in /etc/services ...
vccEnvCheck: locate te49 in /etc/hosts ...
vccEnvCheck: locate wtest in /usr/rtap/etc/RtapEnvList ...
vccEnvCheck: send PING command to cmdManager ...
vccEnvCheck: send PING command to logManager ...
vccEnvCheck: send PING command to msgServer ...

• Stop the environment:

Press the Stop action-button.
Executing: vccEnvStop -e wtest -t RTAP -h te49 -d $VLTDATA/ENVIRONMENTS/wtest

18 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
vccEnvStop: update snapshots with RtapForceSnap ...
vccEnvStop: stop wtest with RtapShutdown ...

• Delete the environment:

Press the Delete action-button and confirm the dialog.
Executing: vccEnvDelete -e wtest -t RTAP -h te49 -d $VLTDATA/ENVIRONMENTS/wtest

vccEnvDelete@te49: Warning: failed to unprotect environment files under \
 “te49:/vlt/data/ENVIRONMENTS/wtest”:
chmod: can’t change .licensed: Not owner
vccEnvDelete: locate environment directory “te49:/vlt/data/ENVIRONMENTS/wtest” ...
vccEnvDelete: unprotect environment files under “te49:/vlt/data/ENVIRONMENTS/wtest”
vccEnvDelete: delete environment files under “te49:/vlt/data/ENVIRONMENTS/wtest”

3.5 To Setup a QSEMU (CCS-Lite) Environment

The following steps demonstrate the possible actions with a QSEMU environment named wtestqs,
running on host te49.

• Create the environment:

Enter wte49qs as environment-name and press <Return>. Then press the Create action-button.
Executing: vccEnvCreate -e wte49qs -t QSEMU -h te49 -d $VLTDATA/ENVIRONMENTS/wte49qs
-s ‘’ -l ‘’ -w ‘wte49qs’ -m ‘minimum’ -j
vccEnvCreate: copy standard template to “te49:/vlt/data/ENVIRONMENTS/wte49qs” ...
vccEnvCreate: locate environment directory “te49:/diska/vlt/data/ENVIRONMENTS/
wte49qs” ...
vccEnvCreate: make database from “te49:/diska/vlt/data/ENVIRONMENTS/wte49qs/dbl” ...
vccEnvCreate: make env. directory world writable ...xecuting: vccEnvCreate -e wtestqs
-t QSEMU -h te49 -d $VLTDATA/ENVIRONMENTS/wtestqs

• Check the environment before start:

Press the Check action-button. All checks should be OK until the sequence comes to processes,
which are not running at this point.
Executing: vccEnvCheck -e wte49qs -t QSEMU -h te49 -d $VLTDATA/ENVIRONMENTS/wte49qs -
s ‘’ -l ‘’ -w ‘wte49qs’ -m ‘minimum’ -j

vccEnvCheck: locate environment directory “te49:/diska/vlt/data/ENVIRONMENTS/wte49qs”
...
vccEnvCheck: locate wte49qs in /etc/services ...
vccEnvCheck: locate te49 in /etc/hosts ...
vccEnvCheck: locate wte49qs in /vlt/data/config/CcsEnvList ...
vccEnvCheck: send PING command to cmdManager ...
vccEnvCheck@te49: Error: failed to send PING command to cmdManager:

 ---------------- Error Structure ----------------
Time Stamp : 98-11-02 11:45:01.888001
Process Number : 74 Process Name : msgSend
Environment : wte49qs StackId : 2 Sequence : 2
Error Number : 24 Severity : W
Module : ccs Location : ccsInit.c
Error Text : ccsERR_ENV_NOT_ACTIVE : Environment wte49qs not active

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 19
child process exited abnormally
vccEnvCheck: FAILED.

• Start the environment:

Press the Start action-button.
Executing: vccEnvStart -e wte49qs -t QSEMU -h te49 -d $VLTDATA/ENVIRONMENTS/wte49qs
-s ‘’ -l ‘’ -w ‘wte49qs’ -m ‘minimum’ -j

vccEnvStart: store log in “/diska/vlt/data/ENVIRONMENTS/wte49qs/.ccsScheduler.log”
...
vccEnvStart: run ccsScheduler in background ...
vccEnvStart: verify start-up log /diska/vlt/data/ENVIRONMENTS/wte49qs/.ccsSchedul-
er.log ...
vccEnvStart: register to wte49qs and verify database access ...

• Check the environment after start:

Press the Check action-button a second time. Now all checks should be OK.
Executing: vccEnvCheck -e wte49qs -t QSEMU -h te49 -d $VLTDATA/ENVIRONMENTS/wte49qs
-s ‘’ -l ‘’ -w ‘wte49qs’ -m ‘minimum’ -j

vccEnvCheck: locate environment directory “te49:/diska/vlt/data/ENVIRONMENTS/
wte49qs” ...
vccEnvCheck: locate wte49qs in /etc/services ...
vccEnvCheck: locate te49 in /etc/hosts ...
vccEnvCheck: locate wte49qs in /vlt/data/config/CcsEnvList ...
vccEnvCheck: send PING command to cmdManager ...
vccEnvCheck: send PING command to logManager ...
vccEnvCheck: send PING command to msgServer ...

• Stop the environment:

Press the Stop action-button.
Executing: vccEnvStop -e wte49qs -t QSEMU -h te49 -d $VLTDATA/ENVIRONMENTS/wte49qs -
s ‘’ -l ‘’ -w ‘wte49qs’ -m ‘minimum’ -j

vccEnvStop: update snapshots with dbForceSnap ...
vccEnvStop: stop wte49qs with ccsShutdown ...

• Delete the environment:

Press the Delete action-button and confirm the dialog.
Executing: vccEnvDelete -e wte49qs -t QSEMU -h te49 -d $VLTDATA/ENVIRONMENTS/wte49qs
-s ‘’ -l ‘’ -w ‘wte49qs’ -m ‘minimum’ -j

vccEnvDelete: locate environment directory “te49:/diska/vlt/data/ENVIRONMENTS/
wte49qs” ...
vccEnvDelete: unprotect environment files under “te49:/diska/vlt/data/ENVIRONMENTS/
wte49qs” ...
vccEnvDelete: delete environment files under “te49:/diska/vlt/data/ENVIRONMENTS/
wte49qs” ...

20 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
3.6 To Setup an LCU Environment

The following steps demonstrate the possible actions with an LCU environment named ltest, which
is assigned to the LCU-node te41 and shall boot from wtest.

• Create the environment:

Enter ltest as environment-name and press <Return>. Adjust the fields LCU-host and Boot-Env
in the LCU Options and select Maximum for module-configuration. Then press the Create
action-button.
Executing: vccEnvCreate -e ltest -t LCU -h te49 -d $VLTDATA/ENVIRONMENTS/ltest \
 -s ‘’ -l ‘te41’ -w ‘wtest’ -m ‘maximum’

vccEnvCreate@te49: Warning: VccInfo: no valid result from query: GetByEnv wtest host-
Name
vccEnvCreate@te49: Error: failed to generate bootScript using: maximum:
VccInfo: no valid result from query: GetByEnv ltest {hostName tcpPort}
vccEnvCreate: copy standard template to “te49:/vlt/data/ENVIRONMENTS/ltest” ...
vccEnvCreate: make database from “te49:/vlt/data/ENVIRONMENTS/ltest/dbl” ...
vccEnvCreate: make env. directory world writable ...
vccEnvCreate: generate bootScript using: maximum ...
vccEnvCreate: FAILED.

In this example no VCCDB is used, therefore some values could not be queried, and the
procedure failed to create a fully configured bootScript. In such a case, all missing configuration
parameters must be added manually in the next step. Otherwise further configuration is
optional.

Application-specific databases must be added manually in the dbl subdirectory now, inclusive
the make db. Alternatively, a template can be specified in the panel before Create, which then
overrides the defaults, see chapter 4.

• Configure the environment:

We assume now that the previous step failed (partly) due to the missing VCCDB.

Press the Config action-button to start vccConfigLcu (see chapter 5). Enter ltest again and press
<Return>, then enter all missing parameters in order.

The module configuration can now be adjusted according to your specific case.

Finally press the Write Files button to regenerate the target files.

• Initialize the environment:

Press the Init action-button and confirm the dialog.
Executing: vccEnvInit -e ltest -t LCU -h te49 -d $VLTDATA/ENVIRONMENTS/ltest -l ‘te41’

vccEnvInit@te49: Warning: VccInfo: no valid result from query: GetByEnv wtest hostName
vccEnvInit: execute bootChange sequence on LCU te41 and reboot ...

• Check the environment before start:

Press the Check action-button. All checks should be OK until the sequence comes to processes,
which are not running at this point.
Executing: vccEnvCheck -e ltest -t LCU -h te49 -d $VLTDATA/ENVIRONMENTS/ltest \
 -l ‘te41’ -w ‘wtest’

vccEnvCheck: Warning: VccInfo: no valid result from query: GetByEnv wtest hostName
vccEnvCheck: locate environment directory “te49:/vlt/data/ENVIRONMENTS/ltest” ...
vccEnvCheck: locate ltest in /etc/services ...
vccEnvCheck: locate wtest in /etc/services ...
vccEnvCheck: locate te49 in /etc/hosts ...

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 21
vccEnvCheck: locate te41 in /etc/hosts ...
vccEnvCheck: locate te41 in /etc/exports ...
vccEnvCheck: locate ltest in /vlt/data/config/logLCU.config ...
vccEnvCheck: locate wtest in /vlt/data/config/logLCU.config ...
vccEnvCheck: send PING command to inducerServer ...
vccEnvCheck@te49: Error: failed to send PING command to inducerServer:

 ---------------- Error Structure ----------------
Time Stamp : 96-06-10 14:47:14.101329
Process Number : 66 Process Name : msgSend
Environment : wtest StackId : 2094 Sequence : 2
Error Number : 24 Severity : W
Module : msg Location : msgSetFilter.c
Error Text : ccsERR_ENV_NOT_ACTIVE : Environment ltest not active

child process exited abnormally
vccEnvCheck: FAILED.

• Start the environment:

Adjust the timeout scales in the LCU Options according to the estimated values (the default
settings will usually be sufficient for standard database and module configuration). Then press
the Start action-button. After a few seconds a pop-up window appears that displays the
output during the reboot of the LCU.
Executing: vccEnvStart -e ltest -t LCU -h te49 -d $VLTDATA/ENVIRONMENTS/ltest \
 -l ‘te41’ -w ‘wtest’

vccEnvStart@te49: Warning: VccInfo: no valid result from query: GetByEnv wtest host-
Name
vccEnvStart: reboot LCU te41 with VxWorks only ...
vccEnvStart: install bootScript in boot-line on LCU te41 ...
vccEnvStart: store boot output in “/vlt/data/ENVIRONMENTS/ltest/.reboot.log” ...
vccEnvStart: execute bootScript on LCU te41 (timeout: 300 s) ...

• Check the environment after start:

Press the Check action-button a second time. Now all checks should be OK.
Executing: vccEnvCheck -e ltest -t LCU -h te49 -d $VLTDATA/ENVIRONMENTS/ltest \
 -l ‘te41’ -w ‘wtest’

vccEnvCheck@te49: Warning: VccInfo: no valid result from query: GetByEnv wtest host-
Name
vccEnvCheck: locate environment directory “te49:/vlt/data/ENVIRONMENTS/ltest” ...
vccEnvCheck: locate ltest in /etc/services ...
vccEnvCheck: locate wtest in /etc/services ...
vccEnvCheck: locate te49 in /etc/hosts ...
vccEnvCheck: locate te41 in /etc/hosts ...
vccEnvCheck: locate te41 in /etc/exports ...
vccEnvCheck: locate ltest in /vlt/data/config/logLCU.config ...
vccEnvCheck: locate wtest in /vlt/data/config/logLCU.config ...
vccEnvCheck: send PING command to inducerServer ...
vccEnvCheck: send PING command to lccServer ...
vccEnvCheck: send PING command to msgServer ...
vccEnvCheck: send PING command to rdbServer ...

• Stop the environment:

Press the Stop action-button. After that the LCU will no longer be accessible via message
system.

22 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
Executing: vccEnvStop -e ltest -t LCU -h te49 -d $VLTDATA/ENVIRONMENTS/ltest \
 -l ‘te41’ -w ‘wtest’

vccEnvStop@te49: Warning: VccInfo: no valid result from query: GetByEnv wtest hostName
vccEnvStop: uninstall bootScript and reboot te41 with VxWorks only ...

• Delete the environment:

Press the Delete action-button and confirm the dialog.
Executing: vccEnvDelete -e ltest -t LCU -h te49 -d $VLTDATA/ENVIRONMENTS/ltest \
 -l ‘te41’ -w ‘wtest’ -m ‘maximum’ -j

vccEnvDelete: Warning: VccInfo: no valid result from query: GetByEnv wtest hostName
vccEnvDelete: locate environment directory “te49:/vlt/data/ENVIRONMENTS/ltest” ...
vccEnvDelete: unprotect environment files under “te49:/vlt/data/ENVIRONMENTS/ltest” ..
vccEnvDelete: delete environment files under “te49:/vlt/data/ENVIRONMENTS/ltest” ...

3.7 To Create an Environment Off-Line

In special cases it is necessary to create the enviornment files on a different (off-line) machine, and
move the files later to their final target. The vccEnvCreate program supports that by means of the ‘-d’
option. The operation is only possible from the command line, not from the vccEnv panel. In this ex-
ample the enviornment lt0hb is actually assigned to wt0tcs, but created on te67:

> vccEnvCreate -e lt0hb -d te67:
Warning: Files are created on te67, but only operational when moved to wt0tcs!
vccEnvCreate: copy standard template to “te67:/vlt/data/ENVIRONMENTS/lt0hb” ...
vccEnvCreate: locate environment directory “te67:/diskb/vlt/data/ENVIRONMENTS/lt0hb”
vccEnvCreate: generate bootScript using configuration-set: minimum ...
vccEnvCreate: generate bootChange sequence scripts ...
vccEnvCreate: make database from “te67:/diskb/vlt/data/ENVIRONMENTS/lt0hb/dbl” ...

Similar off-line operation is possible with vccEnvDelete, but not with the other vccEnv* programs.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 23
4 ENVIRONMENT SETUP - vccEnv

This chapter describes version 2.7 of the vcc module.

4.1 Overview

The vccEnv panel allows to perform common maintenance operations for a specific environment.
All environments are handled in a uniform way, regardless of which type it is (Rtap, Qsemu, LCU).
Moreover, it is automatically resolved on which host the environment is located, and correspond-
ingly remote operation is selected.

4.2 Starting from the Command Line

% vccEnv &

The program then connects to the VCCDB and the following panel pops up:

24 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
4.3 Panel Description

1. Choose an environment with the Environment selector; either select from the menu, or type the
name in (with completion function) and press <Return> or the Apply button at the right.

2. Adjust the General Options and LCU Options if the selected defaults (partly taken from the
database) do not fit. This, however, will rarely be necessary. Note also that some combinations,
although they can be selected, can lead to an inconsistency with the information in the VCCDB,
that is detected when an action is started.

3. For LCUs two timeouts are of interest in connection with the Init, Start and Stop actions: one for
each shell command that is sent, and one to complete a reboot. Both can be adjusted with the
two scales, in case that errors occur due to insufficient timeout values.

4. The File Options provide a way to specify another directory where the environment files are or
shall be located (Destination), and which user-provided template directory to use (Template)
during the Create action. All files in this template will override the defaults. The template
directory can be located on another host, in which case the hostname and a colon must be given
as prefix. See the man-page of vccEnvCreate for more, in particualar concerning dbl files and
LCU bootScript handling.

5. Press an action-button to perform the operation. The result (OK or FAILED) is displayed in the
Status output after completion; during execution RUNNING is displayed instead.

4.4 Actions

All actions can be applied to any type of environment.

• Check - Check existence and operation of selected environment

• Create - Create a new environment with selected name and options

• Init - Initialize selected environment (RTAP snapshots, LCU boot-line etc.)

• Start - Start selected environment with current configuration

• Stop - Stop selected environment so that it is not reachable

• Delete - Delete selected environment, all files will be removed

The name of the actions match the dedicated programs vccEnv<Action>, that are described in full de-
tail in the reference chapter 8.

Since Init and Delete will overwrite or remove data, a pop-up dialog is presented for confirmation.

The Create actions makes use of the envsCreate program, see reference chapter 8.

Two additional action buttons are available:

• BREAK - Eventually break a currently running command

• Config - Configure selected environment with a dedicated tool, depending on its type:

• LCU: vccConfigLcu, see chapter 5 in this document

• RTAP: Rtap’s own configuration panel

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 25
5 CONFIGURATION OF LCU ENVIRONMENTS - vccConfigLcu

This chapter describes version 2.7 of the vcc module.

5.1 Overview

This vccConfigLcu panel allows to generate and configure the most important files needed for an
LCU environment, in particular:

• the boot-script executed by the LCU upon start-up that is suitable for the LCU module lcuboot,
see chapter 7.

• the processes-file used by engineering interfaces (ccsei and lccei)

5.2 Starting from the Command Line

% vccConfigLcu [<environment-name>] &

If an explicit LCU environment is given then the configuration data is immediately read from the
corresponding target files (that must have been previously created), otherwise the environment can
be selected interactively.

26 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
The following section presents quick instructions how to operate the panel. A more detailed de-
scription of the usage of each corresponding part in the panel is given later in section 5.4.

5.3 Example of Usage

This describes how to modify a LCU Environment with vccConfigLcu.

1. Start the vccConfigLcu panel and select your LCU from the ‘Target LCU’ selector.

2. Press the ‘Read Files’ action button to parse the contents of existing target files.

3. If you want to remove some of the User Modules:

a. select the module to be removed in the ‘User Mod’ listbox

b. press the ‘Remove’ button on the right

c. repeat this for each module

d. eventually also adjust contents of the ‘PROCESSES’ listbox

Examples:

• if you don’t have motors, remove: mac4, vme4sa, mot, motci

• if you have a TIM board and don’t need NTP, remove: xntpd

4. If you don’t want automatic device installation, but explicit installation checks:

a. select each device in the ‘Devices’ listbox

b. set the ‘Count’ scale to the expected number of devices

5. After your modifications, press the ‘Write Files’ action button to generate the files listed in the
‘Target Files’ box, and confirm overwriting for each file.

6. Press the ‘Configure LCU’ action button.

This will re-program the boot-line of the LCU. You can see the values in the terminal window.

Note that no other session must lock the LCU’s shell!

7. Press the Reboot LCU action button.

This will reboot the LCU using the new bootScript. You can see the output during the reboot in
the terminal window. A temporary pop-up window lets you adjust the connection time.

Note that no other session must lock the LCU’s shell! See also section 5.5 in case of problems.

Near the end, “LCC INITIALISATION SUCCESSFULL” should be listed. A possible start-up error
message about timeOpenDevice can be ignored if no TIM board is installed.

The bootScript will be aborted if anything goes wrong.

After the selected time the connection is closed. You cannot rlogin to the LCU’s shell before that, un-
less you press the ‘Cancel Connection’ button in the pop-up dialog.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 27
5.4 Panel Description

5.4.1 Environments Selection

The first action must always be the selection of the Target LCU Environment that shall be modified.
This is done by selection from the menu at the top left in the panel. The derived values like node-
name, IP-address and associated boot-host are the queried from the configuration database, provid-
ed it is used. Otherwise these values have to be typed in. The Boot WS Environment can be arbi-
trarily selected. Remote file operations are performed if the Boot WS Host is not identical to the
workstation where this panel is running on. Note that these remote accesses are much slower than
local accesses. Boothome specifies the home-directory of the LCU environment, and VXROOT the
VxWorks root-directory.

The BSP value assigns the LCU environment to a specific board support package. Several of such
BSP directories can exist under $VXROOT/config, which contain VxWorks kernels that are specifi-
cally configured for a certain (set of) environment(s). The selection for a Single, Master, or Slave
CPU is indirectly represented by the BSP name, whereby multi-CPU systems are supported; see the
man-page for details.

Note that the address parameters in the first line represent the LCU booting interface, which may
not be the same as the CPU ethernet port. For slave CPUs this is the backplane interface address.

5.4.2 Root Configuration

The variables VLTROOT, and optionally INTROOT must exist in the LCU environment. The con-
tents of the entries is by default set to the same values of the corresponding shell variables on the se-
lected "Boot Host". They may be edited by the user. Note that only physical path names without
links must be given, as seen from the LCU. Separate NFS mounts will be done to VLTROOT and
INTROOT, so that each can be located on a different host as the selected “Boot Host”. The checkbut-
ton allows to load the lcuboot module (which is always implicitly loaded first) from INTROOT
rather than VLTROOT, which is only useful during development on lcuboot.

28 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
5.4.3 Network Configuration

The defaults in these entries will fit in most cases. The Boot User specifies under which user-name
the LCU is accessing the boot-script. The Password is usually empty, so that remote shell access is
used; otherwise FTP is applied. The Gateway allows to specify an IP-address as gateway to the
boot-host. The Subnet-Mask must be set to the network's value. The NFS User-ID and Group-ID is
mandatory and must be set corresponding to a valid user on the boot-host. By default the user vx's
IDs are taken.

In case of multi-network systems, the entries for Main/2nd/3rd Host become important. These deter-
mine the IP addresses of the CPU main ethernet port and up to two optional additional ethernet in-
terface baords. For single and master CPUs the Main Host is always identical to the address entered
in the ENVIRONMENTS SELECTION, while for slave CPUs booting over the backplane it is differ-
ent.

For details about multi-network configuration see the man-page.

5.4.4 Modules Configuration

The names of modules to be loaded must be specified in
the two boxes. Modules in the System box are normally al-
ways needed and their order should not be changed (un-
less you know about possible side effects). Modules in the
User box usually require all the system-modules and are
not always needed, depending on the LCU hardware etc.
Individual changes to the lists can be done by selecting an
entry and using the Add below and Remove buttons on the
right of the boxes. For each module listed, there must exist
a module-boot-script named module.boot in one of the di-
rectories in the module-boot-script search-path, see 7.2.2.
The Help button shows the man-page for a selected mod-
ule-boot-script, provided it is available. The Reset button
fills the two boxes with all modules for which module-
boot-scripts are available. The userScript button enables
the processing of the user-script.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 29
5.4.5 Devices Configuration

All hardware-devices on the LCU can be installed auto-
matically, using the facilities of lcuboot. The devices config-
uration therefore consists only in checking that the
required number of devices have actually been installed
by that procedure. An explicit number can be given, or the
special value ? resp. -1, meaning that no explicit check
shall be done (“Plug & Play”). This is useful when the
board configuration in a LCU often changes. No modifica-
tion in the boot-script would be necessary then. The Re-
move button completely removes a selected device name
from the list. The Reset button returns to the default. Add
new entries by editing the device name and moving the
scale.

5.4.6 Processes

This box contains the names of the LCU processes that
shall be accessible by commands via the message-system.
The list is normally only used by engineering interfaces
(lccei, ccsei) to provide user-menus, but not to restrict any
access. The generated processes-file will be written to the
ENVIRONMENTS sub-directory of VLTDATA.

The list can be modified by the Add and Remove buttons.
The Reset button returns to the default.

5.4.7 Target Files

This box contains the names of files that shall be processed when the action-button for Read Files or
Write Files is pressed. A specific target can be selected and removed with the Remove button, so
that it is not processed anymore (but not deleted, of course). An editor can be called with the select-
ed file by the Edit button. The Reset button returns to the default.

(Remark: Although the userScript and devicesFile are listed, they will not be altered by the tool.)

30 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
5.4.8 Actions

One of these action buttons must be pressed in order to perform a specific operation. All buttons are
disabled until an LCU environment is selected.

• "Create Env" creates a new set of files under $VLTDATA/ENVIRONMENTS on the selected
boot-host. The operation fails if one of the files to be created already exist.

• "Read Files" reads the files listed in the "Target Files" box and parses their contents, so that the
sections in the panel are updated accordingly. Note that the behaviour for reading files not
produced with this tool is undefined!

• "Write Files" writes the files listed in the "Target Files" box according to selections in the panel's
sections. A confirmation is requested before overwriting any existing files.

• "Configure LCU" write the boot-line according to the selections in the panel, i.e. host-names,
IP-addresses etc. See section 5.5 for potential failures.

• "Reboot LCU" restarts the LCU and executes the selected boot-script. The output during start-
up is redirected to the terminal where the panel was started from. During booting, a temporary
pop-up window allows to specify the default connection time, which must be at least the
actually used time to complete the boot. The connection can be aborted explicitly with the
Cancel Connection button.

5.5 Known Problems

The actions ‘Configure LCU’ and ‘Reboot LCU’ require a rlogin to the target LCU. The panel might
be blocked when this remote login fails, e.g. when another session is active on the same LCU. To re-
cover from this situation, the user must manually "kill" all active rlogin processes to this LCU node
(e.g. with: “psg <LCU-name>” to find out the PID, then “kill <PID>” to stop the process).

Also ‘crashed’ LCUs - where the rlogin daemon is not working anymore - can cause the panel to
block.

The rlogin done by ‘Reboot LCU’ is terminated after a fixed time (by default a few minutes) and not
synchronized with the boot-script execution, i.e. it cannot be detected when the boot process termi-
nates to cancel the connection automatically. The shell variable VLT_VCCBOOTTIME specifies the
time in seconds after that the connection to the LCU during booting is closed.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 31
The LCU understands only physical path-names without links. Although the panel should auto-
matically resolve links, the user should explicitly check this, particularly when paths are entered
manually.

It is impossible to recover an LCU node after a ‘Configure LCU’ and ‘Reboot LCU’ sequence when
wrong configuration data were entered. A serial terminal must be used as LCU console to re-adjust
the boot-line.

The device installation checks are for some situations not rigid enough, so that the boot-script can
run into a secondary error rather than stopping at the expected point. In case of troubles, the de-
vice’s jumper settings should be checked carefully.

32 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
6 CONFIGURATION ACCESS FOR PROGRAMMERS

6.1 Panel Mega-Wigets

TBD

6.2 Programmatic Access from Seqencer-Scripts

TBD

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 33
7 THE LCU BOOT ENABLER - lcuboot

✗ This chapter presents configuration instructions for LCU modules and drivers

7.1 Purpose of lcuboot

The “LCU boot enabler” shall make the creation and maintenance of LCU boot-scripts easier. The
main features are:

• Common module-specific sub-boot-scripts (Module-Boot-Scripts)

• Automatic driver and device installation

• 90% automatic LCU environment variables setup

• Implementation of a search-paths for module loading and configuration

In LCU systems applying this scheme, lcuboot is always the first module that is loaded during sys-
tem start-up. After that several functions are available that facilitate the loading and installation of
all further modules.

These functions in principle support the automatic installation of arbitrary LCU modules, but espe-
cially of drivers and devices. All functions are intended to be used directly from the VxWorks shell
in a boot-script.

The script is aborted when a fatal error condition occurs, which is signalled as a log message in the
form:

<tid> (tShell): lcuboot: <message>: <faulty item>:<errno | faulty item>
<tid> (tShell): --- SCRIPT ABORTED ---

Most of the functions in lcuboot are not reentrant and should therefore only be used from LCU
boot-scripts, where reentrancy is not important!

The installed version of lcuboot can be printed with lcubootVersion from the VxWorks shell.

The functions available with lcuboot are briefly described in the next sections.

7.2 Available lcuboot Functions

7.2.1 lcuboot Automatic Environment Setup

• lcubootAutoEnvInit - initializes the standard LCC shell environment variables from the LCU
boot-line settings and sets the VxWorks shell-prompt. VLTROOT and optionally INTROOT
must be set before calling it. This makes the explicit definition of many variables in the boot-
script redundant. It also assigns search-path variables for prioritized access of binary modules
(BINPATH), module-boot-scripts (BOOTPATH), and configuration files (CONFIGPATH).
Functions are provided to access files based on these search-paths, see section 7.2.5.

See the man-page of lcubootAutoEnv in section 8.2 for details and examples.

34 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
7.2.2 lcuboot General Module Support

• lcubootAutoLoad - auto-loads a binary module and error definition files from MODROOT,
INTROOT (with priority) or VLTROOT. This can be used to conditionally load a module. By
default a module is not loaded again when it already exists in the LCU memory.

Do not use the VxWorks function ld to load a VLT module, since this will not handle
the module’s error definition files under xxxROOT/ERRORS.

• lcubootAutoExec - executes a function depending on a given condition. This can be used to
conditionally/optionally install a module.

• lcubootAutoSpawn - spawns a function as a task depending on a given condition. This can be
used to conditionally/optionally spawn a task.

• lcubootAutoCd - changes to the directory under INTROOT (with priority) or VLTROOT in
which a file given by a relative pathname is found first.

• lcubootAutoCdBoot - dto., but specifically intended for module-boot-scripts. Only the
module-name is needed, the search-path is fixed (see man-page).

• lcubootAutoProbe - tests whether any hardware is present at the given addresses. This can be
used to determine the number of boards/devices that are present in the system.

See the man-page of lcubootAutoGen in section 8.2 for details and examples.

7.2.3 lcuboot Driver and Device Installation

• lcubootAutoDevRegister - checks for the presence of a device and registers it for later creation
and registration in LCC. Subsequent calls of lcubootAutoDrvInstall must be used to install the
driver and lcubootAutoDevCreate to create the devices automatically depending on their
presence.

• lcubootAutoDrvInstall - conditionally loads and installs a driver from INTROOT (with
priority) or VLTROOT and prepares for subsequent calls of lcubootAutoDevCreate.

• lcubootAutoDevCreate - performs the automatic installation of a device. Note that there must
be as many calls of this function as the maximum number of devices that shall be supported.

• lcubootAutoDevCheck - checks whether the number of devices installed in the system are
equal to a given value. This can be used to verify that the expected number of devices are
actually installed; however, it works against the idea of automatic device installation.

See the man-page of lcubootAutoDrv in section 8.2 for details and examples.

7.2.4 lcuboot LCC Support

• lcubootAutoLccRegisterDevs - register all devices in LCC that have been previously
announced with lcubootAutoDevRegister. This function is usually called during installation of
LCC.

See the man-page of lcubootAutoLcc in section 8.2 for details and examples.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 35
7.2.5 lcuboot File Access Support

• lcubootFileOpen - opens a file using a given search-path. This allows for instance to access
configuration files at run-time, using the environment variable CONFIGPATH as search-path.

See the man-page of lcubootFile in section 8.2 for details and examples.

7.3 How to create LCU Module-Boot-Scripts

✗ A “<module>.boot” file is mandatory for every LCU module!

As usual, there will be a main boot-script named bootScript that the LCU processes initially. From
that, Module-Boot-Scripts named <module>.boot are invoked to load and initialize each module.
These shall make use of the lcuboot functions, and apply the following guidelines:

• For each LCU module there must be one module-boot-script named <module>.boot that can
be called from the main boot-script. It shall be installed during the make procedure of the
module by specifying it under the SCRIPTS directive in the Makefile.

• For each LCU module there should be a man-page named <module>.boot(5) in the ‘File
Formats’ section that explains the contents of the module-boot-script.

• For each LCU driver module there should be a man-page named <module>(4) in the ‘Devices’
section that explains the respective board-hardware (addresses, jumpers etc.).

See the man-pages of lcuboot(5) and bootScript(5) in the reference section 8 for details about the
file and directory organization.

The following sections will present some more details about the recommended structure of mod-
ule-boot-scripts, first for general LCU modules, then for drivers in particular.

7.3.1 Module-Boot-Scripts for General Module Installation

This section describes the recommended structure of standard module-boot-scripts for general
modules. Module-Boot-Scripts are called from the main bootScript of the LCU when a module shall
be initialized.

There are the following guidelines:

• The module-boot-script shall load the code of the module as well as all other modules that are
needed for operation using the lcubootAutoLoad function, which will also take care of the error
definition files. For user-application modules LCC can be expected to be already initialized,
but driver boot-scripts should not expect that any other module they depend on has already
been loaded.

• Functions needed to initialize the module shall be executed using the lcubootAutoExec
function.

• Tasks needed for the module shall be spawned using the lcubootAutoSpawn function.

Some examples for module-boot-scripts:

1. Typical simple module installation where only loading is necessary:

36 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 lcubootAutoLoad 1,"too"

2. Typical more complex module installation:

 lcubootAutoLoad 1,"lqs"
 lcubootAutoExec 1,"lqsInit",10,"rtap"
 lcubootAutoExec 1,"lqsAddEnvTbl","wte49","te49","134.171.12.184",2301
 ... (more) ...
 lcubootAutoSpawn 1, "tLqs", 90, 0x18, 20000, "lqs", 3

3. Typical driver installation (see section 7.3.2 for more):

 acroN = lcubootAutoDevRegister("/acro0",0x1000,1,1,1)
 ... (more) ...
 lcubootAutoDrvInstall "acro"
 lcubootAutoDevCreate "/acro0",0x1000,112,1
 ... (more) ...
 lcubootAutoSpawn acroN,"tintACRO",200,0x18,2000,"acroInt"

See the man-page of Module.boot(5) for full details and examples. It is available on-line.

7.3.2 Module-Boot-Scripts for Automatic Driver and Device Installation

This section describes the recommended structure of standard module-boot-scripts for automatic
loading and installation of the hardware drivers and devices. They provide a “Plug & Play” feature,
so that hardware will be automatically recognized and appropriately installed.

The installation is done in four steps:

1. Probing for existence of devices:

Driver and devices will only be installed when corresponding hardware is found in the VME
system. The probing is done with a sequence of calls as follows:

 <drv>N = lcubootAutoDevRegister("<devX>",<AM>,<addrX>,<args>)

 <drv> - name of driver, e.g. “acro”
 <devX> - name of Xth device, e.g. “/acro0”
 <AM> - VMEbus address modifier code for A16/A24/A32 space
 <addrX> - VMEbus address for Xth device
 <args> - 3 integer arguments

Possible values for the VMEbus address-modifiers AM are for example:

• Short I/O (A16): 0x2d

• Standard (A24): 0x3d

• Extended (A32): 0x0d

See the VxWorks header “$VXROOT/h/vme.h” for all available values, but in this context only
the above stated Supervisor/Data modifier codes are of interest.

The three integer arguments are lateron passed to lccRegisterDevice.

2. Loading and installing of driver code:

This will be skipped by the function if there was no hardware found in the first step:

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 37
 lcubootAutoDrvInstall "<drv>"

3. Installation of devices:

For each device to be created, there must be one line as shown below. Where no hardware was
found in step 1, the creation will be skipped:

 lcubootAutoDevCreate "<devX>",<bus-addrX>,<params>,...

The device creation usually takes VMEbus addresses as <bus-addrX>, which are different
from CPU addresses. <params> are specific to each device family.

4. Spawning of tasks:

Some drivers need specific interrupt handling tasks. They can be spawned with:

 lcubootAutoSpawn <drv>N,"<taskname>",<prio>,<flags>,<stack>,"<func>"

All installed devices are automatically registered afterwards in LCC with the function
lcubootAutoLccRegisterDevs, which is usually called at the end of the script “lcc.boot”.

The automatic installation depends totally on the usage of the VLT standard board address settings,
as described in each driver’s man-page in the devices volume, e.g. acro(4).

See the man-page of Driver.boot(5) for full details and examples. It is available on-line.

7.4 How to configure LCUs with lcuboot

In order to build a bootScript that is suitable for the lcuboot structure, it is recommendable to use
the vccConfigLcu panel, see section 5. Hence the bootScript is a generated file and should not be ed-
ited by hand.

The userScript will still be processed as usual, its contents remains fully user-defined.

It may be necessary to configure some module-boot-scripts for your site, in particular lqs and xntp.
Configuration can be done on a per-LCU basis, as well as on a per-host basis, where it applies to all
LCUs booting from that host.

The following section describe these steps in more detail.

7.4.1 To create a boot-script suitable for lcuboot

It is assumed that all environment files have already been created as described in section 4.

1. Start the vccConfigLcu panel, see section 5.

2. Select the LCU environment

3. Press the Read Files action button to update the panel from the existing files

4. Modify the panel contents

5. Press the Write Files action button to commit the changes

38 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
6. Reboot the LCU.

All devices should be installed automatically, provided that you follow the board setups as
described in the man-pages acro(4), aio(4), etc. Check with moduleShow and devs that all modules
and devices are existing as expected.

These steps cover only the most general case. The userScript will still be sourced, so that it might re-
quire some adjustment.

7.4.2 To configure module-boot-scripts for your site

Some module-specific boot-scripts (those with “.boot” extension) might require some site-specific
adjustments that are common to all LCUs in it. The most probable candidates for such a customiza-
tion are “lqs.boot” and “xntpd.boot”, where some node-names and IP-addresses must be defined.
This is usually common to all LCUs, so that the configuration should be done on a per-host basis.

1. Copy the respective module-boot-script to the host’s configuration directory:

cd $VLTDATA/config/
cp $VLTROOT/vw/bin/<cpu>/<module>.boot .

2. Edit this copy according to your specific needs. It will automatically have priority over the
installed defaults under VLTROOT and INTROOT.

Refer to the on-line man-pages <module>.boot(5) for more information, e.g. lqs.boot(5) respectively
xntpd.boot(5).

7.4.3 To configure module-boot-scripts for a specific LCU

If you have the case that one LCU needs a different configuration for a certain module than other
LCUs, then do the following:

1. Copy the respective module-boot-script to the LCU environment’s home-directory:

cd $VLTDATA/ENVIRONMENTS/<LCU-Env-Name>
cp $VLTDATA/config/<module>.boot .
or: cp $VLTROOT/vw/bin/<cpu>/<module>.boot .

2. Edit this copy according to your specific needs. It will automatically have priority over the
installed defaults under VLTROOT and INTROOT, as well as the per-host configuration in
VLTDATA/config, if present.

Refer to the man-pages <module>.boot(5) for more information.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 39
8 REFERENCE

8.1 User Commands Reference

The following sections contain - in alphabetical order - the manual pages for the user commands in-
cluded in the interface of the modules:

40 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
8.1.1 envsCreate(1)

NAME
 envsCreate - create an environment from its standard template

SYNOPSIS
 envsCreate [-e <env>] [-t <type>] [-d <dest>]

DESCRIPTION
 This command creates an environment directory from scratch.
 All files are copied from a template corresponding to <type>.

 However, the created files are not configured in any way.
 This must be done explicitly with dedicated tools.

ARGUMENTS
 Arguments can either be put on the command-line directly,
 or will be asked interactively.

 When prompted for input, the default will be shown in square brackets.

 <env> Name of the environment.
 If not given then interactive input is expected.

 <type> Type of the environment: LCU | RTAP | QSEMU
 Default: derived from <env> as follows:
 if <env> matches "l*" then LCU
 else if <env> matches "w*qs" then QSEMU
 else if <env> matches "w*" then RTAP
 else error

 <dest> Directory under which environment files shall be created.
 This must not already exist!
 Default: $VLTDATA/ENVIRONMENTS/<env>

FILES
 $VLTROOT/templates/forEnvs/<type> - source template directories
 $VLTDATA/ENVIRONMENTS/<env> - default target directory

ENVIRONMENT
 VLTROOT - path to VLT constant code area
 VLTDATA - path to VLT variable data area

EXAMPLES
 > envsCreate -e wt1tcs

 > envsCreate
 Enter Environment Name []: wt1tcs
 Enter Target Directory Name [/vlt/data/ENVIRONMENTS/wt1tcs]: ./wt1tcs
 Enter Type of Environment (LCU,RTAP,QSEMU) [RTAP]:
 creating RTAP environment wt1tcs under "./wt1tcs" ...
 setting default protection of "./wt1tcs" ...

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 41
- - - - - -
Last change: 02/11/98-14:22

42 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
8.1.2 envsKill(1)

NAME
envsKill - Kill an environment upon reception of special command

SYNOPSIS
envsKill

DESCRIPTION
This program has to be started up with every RTAP environment used for
engineering purposes.
When envsKill gets the Command KILLENV it will send a mail to the
owner that started the environment and wait for 4 minutes.
Within this grace period owner can inhibit the pending shutdown by simply
killing envsKill
After the 4 minutes the environment is shut down.

KILLENV <user name>
 Username has to be a valid user name, which is propagated to
 the owner of the environment.

CAUTIONS
Error handling should be improved!
As the command KILLENV would take about 5 minutes if it was synchronous
it returns immediately and doesn't wait until the shutdown.
The killer has to watch completion of the environment shutdown otherwise.

- - - - - -
Last change: 02/11/98-14:22

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 43
8.1.3 vccConfigLcu(1)

NAME
 vccConfigLcu - Configuration Panel for LCU Boot Files

SYNOPSIS
 vccConfigLcu [<environment-name>] &

DESCRIPTION
 This panel allows to generate the most important files needed
 for an LCU environment, in particular:

 - the boot-script executed by the LCU upon start-up
 - the processes-file used by engineering interfaces

 If an explicit <environment-name> is given at the command-line,
 then it is immediately selected and the panel's contents is updated
 from the current configuration files, when present.
 Otherwise it can be selected interactively.

 The following sections describe the usage of each corresponding
 section in the panel.

MENU BAR
 File menu:
 "Quit" - exit the panel

 Help menu:
 "Extended Help" - display this man-page

ENVIRONMENTS SELECTION
 The first action must always be the selection of the LCU environment
 that shall be modified. This is done by selection from the menu
 at the top left in the panel. The derived values like node-name,
 IP-address and associated boot-host are queried from the central
 configuration database - see VccInfo(n) - provided it is active.
 Otherwise these values have to be typed in.

 The "Target LCU" parameters refer to the environment as a whole
 and to the booting interface of it. In case of slave CPU systems
 this may not be obvious; see MULTIPLE CPU SYSTEMS for more.

 The "Boot WS" environment can be arbitrarily selected.
 Remote file operations are performed if the "Boot Host" is not
 identical to the workstation where this panel is running on.
 Note that these remote accesses are much slower that local accesses.

 "Target LCU" - values related to the LCU to be configured
 "Boot WS" - values related to the WS the LCUs boots from

 "Environment" - name of the environment, as "lt1alt", "wt1tcs"
 "Host" - host where the environment is located
 "IP Address" - IP address of that host, eg. "11.22.33.44"
 "TCP Port" - assigned TCP port number of the environment
 "CPU" - CPU name, eg. "MC68040"; must match "vw/bin/<cpu>"
 "Host Type" - architecture of the host, eg. "68k" (for info only)

 When a new "Target LCU Environment" is selected, the corresponding

44 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 values will be queried from the configuration database as far as
 available. If defined, also the "Boot WS" is automatically selected.

 Similarly, when a new "Boot WS Environment" is selected, the values
 are queried, and the available modules are updated as if the "Reset"
 button in the MODULES CONFIGURATION section was pressed (see there).

 "Boothome" - directory where the environment resides
 "VXROOT" - VxWorks target root directory
 "BSP" - VxWorks board-support-package name, eg. "mv167".
 Values as "mv167-p0" indicate master/slave versions.
 See MULTIPLE CPU SYSTEMS for special issues.

 BOOTHOME is derived from VLTDATA, meaning that the -->TARGET FILES
 will be read from resp. written to that area, and that the LCU will
 finally boot with the boot-script located there.

 The type of system is indicated with the radio-buttons:

 "Single" - for a normal system with only one CPU
 "Master" - for the master in the system
 "Slave" - for slave #1 in the system (> 1 not supported)

 The selection has only indirect effect on the BSP value,
 which in turn results in the dedicated VxWorks kernel being loaded.
 See MULTIPLE CPU SYSTEMS for more details.

ROOT CONFIGURATION
 The variables BOOTHOME, VLTROOT, and optionally INTROOT must exist
 in the LCU environment. The contents of the entries is by default
 set to the same values of the corresponding shell variables on the
 selected "Boot WS" host. They may be edited by the user.

 VLTROOT and INTROOT may reside on a different host than BOOTHOME.
 Implicit NFS mounts will be done on the LCU as appropriate.

 Note that path names must be given as seen from the LCU. This might
 in some cases be different from the path names on the WS, eg. when
 there are links in the path. Only the physical path is allowed.
 Lateron, however, the LCU NFS-mount may use different local names.

 "VLTROOT" - host name and physical path to the VLTROOT area
 "INTROOT" - host name and physical path to the INTROOT area

 The "IP" field must contain the IP address in dot-notation of
 the selected host, if it is different from the "Boot WS" host.

 When a new host is selected, the available modules are updated as if
 the "Reset" button in the MODULES CONFIGURATION section was pressed.

NETWORK CONFIGURATION
 The defaults in these entries will fit in most cases:

 "Boot User" specifies under which user-name the LCU is accessing
 the boot-script. It is usually `vx'.
 "Password" specifies the password of the "Boot User".
 It is usually empty, so that remote shell access is
 used; otherwise FTP is applied.

 "NFS User" specifies under which user ID the LCU is accessing
 files via NFS. It is usually `vx'.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 45
 The first entry with the user name is only for
 convenience. The second entry is the important one,
 and it must contain the corresponding numeric ID.
 "NFS Group" specifies under which group ID the LCU is accessing
 files via NFS. It is usually the group of user `vx'.
 It applies the same as for "NFS User"

 "Main Host(IP)" specifies the parameters of the on-board CPU network
 interface; this is usually the same as the booting
 interface specified above, except for slave CPUs
 which are booting over shared memory backplane.
 "2nd Host (IP)" specifies the parameters of an optional network
 interface, eg. additional ethernet board.
 "3rd Host (IP)" dto. for further interface.

 "Subnet-Mask" must be set to the network's inherent value.
 "Gateway IP" is the gateway IP address to the "Boot WS" host.
 It should be empty when both host are on the same net.
 This value is discarded in MULTIPLE CPU SYSTEMS.
 "Backplane IP" is the IP address assigned to the backplane interface.
 This value is discarded in MULTIPLE CPU SYSTEMS.

 The user-ID and group-ID for NFS accesses is mandatory and must be
 set corresponding to a valid user on the boot-host. All valid user
 and groups are permitted, by default the IDs of user "vx" are taken.

MODULES CONFIGURATION
 The names of modules to be loaded must be specified in the two boxes.
 Modules in the "System" box are normally always needed and their
 order should not be changed. Modules in the "User" box usually
 require all the system-modules and are not always needed, depending
 on the LCU hardware etc.

 Individual changes to the lists can be done by selecting an entry and
 using the buttons on the right of the boxes.

 For each module listed, there must exist a module-boot-script named
 "<module>.boot" in one of the directories listed in -->FILES,
 which should contain the auto-loading and initialization of the
 module, using the functions of lcuboot(1).

 "Add below" - add the module from the entry below the selection
 "Remove" - remove the selected module
 "Config..." - open panel for individual module configuration
 "Help..." - display help for selected module (if available)
 "Reset..." - fill listboxes with all available modules. This
 implies that the available module-boot-scripts on
 the selected hosts (Boot WS, VLTROOT, INTROOT)
 are scanned to resolve module dependencies.
 For remote accesses this can take a while.

DEVICES CONFIGURATION
 All hardware-devices on the LCU can be installed automatically,
 using the facilities of lcuboot(1). The devices configuration therefore
 consists only in checking that the required number of devices have
 actually been installed by that procedure.

 An explicit number can be given, or the special value `?' resp. `-1',
 meaning that no explicit check shall be done. This is useful when
 the board configuration in a LCU often changes. No modification in
 the boot-script would be necessary then.

46 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 "Count" - the number of expected devices, or `-1' for auto-config
 "Remove" - remove the selected device family from the listbox
 "Reset" - reset the listbox to the default

PROCESSES
 This box contains the names of the LCU processes that shall be
 accessible by commands via the message-system. The list is normally
 only used by engineering interfaces (lccei, ccsei) to provide user-
 menus, but not to restrict any access.

 "Add" - add the process from the entry to the listbox
 "Remove" - remove the selected process from the listbox
 "Reset" - reset the listbox to the default

TARGET FILES
 This box contains the names of files that shall be processed when
 the action-button for "Read Files" or "Write Files" is pressed
 (see -->ACTIONS).

 "Reset" - reset the listbox to the default
 "Remove" - omit the selected target file from any processing
 "Edit..." - open an editor for the selected target file

ACTIONS
 All action buttons are disabled until an LCU environment is selected.

 "Create Env" create a new set of LCU environment files under
 VLTDATA on the selected boot-host. The operation
 fails if the environment to be created already exists.

 "Read Files" read the files listed in the "Target Files" box and
 parses their contents, so that the sections in the
 panel are updated accordingly.
 Note that the behaviour for reading files not produced
 with this tool is undefined!

 "Write Files" write the files listed in the "Target Files" box
 according to selections in the panel's sections.
 A confirmation is requested before overwriting any
 existing files.

 "Configure LCU" write the boot-line according to the selections in the
 panel, i.e. host-names, IP-addresses etc.;
 it uses the VxWorks `bootChange' command.
 See -->DIAGNOSTICS for potential failures.

 "Reboot LCU" restart the LCU and execute the selected boot-script.
 A transient window appears displaying the elapsed
 boot time. The default waiting time before closing
 the connection can be adjusted with the scale.
 - NOTE THAT THE DEFAULT TIME MUST BE HIGHER THAN THE
 ACTUAL BOOTING TIME, THERE IS NO SYNCHRONIZATION -
 The "Close Connection" button aborts the connection
 explicitly, eg. when the booting has completed.
 The output during start-up is redirected to the
 terminal where the panel was started from.
 See -->DIAGNOSTICS for potential failures.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 47
MULTIPLE NETWORK INTERFACES
 An LCU may contain additional "passive" network interface boards.
 Each of them must be assigned with a hostname and IP address.

 In such case, there must be a list of hostnames assigned to this
 environment in the configuration database, where normally is only
 one single hostname. The first in the list is always the on-board
 main interface. The IP addresses are then resolved from the names.

 Under the VxWorks shell there will be special variables defined,
 which can be used by the network driver to setup the interfaces.
 These are: LOCALHOST_n and LOCALIPADDRESS_n, with n = 1,2.
 Up to two additional interfaces are supported.

MULTIPLE CPU SYSTEMS
 The special case of multiple CPU systems is discussed here.

 The master CPU will be configured to boot over its ethernet port,
 as for a normal single CPU system. A specilized VxWorks kernel is
 required in order to support booting of the slaves via the master
 as gateway, see below.

 The slave CPUs will be configured to boot over the backplane;
 note that the hostname and IP addresses in the ENVIRONMENTS SELECTION
 have to reflect this! The booting interface, and not the on-board
 ethernet port, must be specified there.

 By VLT convention multi-CPU systems shall use Proxy-ARP.
 This implies different VxWorks kernels for master and slave CPUs,
 where the following kernel options must be set:

 - master CPU with proxy-server:
 INCLUDE_SM_NET include backplane net interface
 INCLUDE_PROXY_SERVER proxy arp server (Master Board)
 INCLUDE_PROXY_DEFAULT_ADDR ethernet addr to generate bp addrs
 INCLUDE_SM_SEQ_ADDR SM network auto address setup

 - slave CPU with proxy-client:
 INCLUDE_SM_NET include backplane net interface
 INCLUDE_PROXY_CLIENT proxy arp client (Slave Board)
 INCLUDE_SM_SEQ_ADDR SM network auto address setup

 The VCC configuration distinguishes between master and slave CPUs
 based on the value of the BSP field. If it has the form:

 <basename>-p<procnum>-s<memsize>

 then <memsize> indicates the CPU's decimal memory-size in MB and
 <procnum> (0..15) indicates the processor-number, ie. zero
 for the master and 1..15 for the slaves.

 The corresponding VxWorks kernel must then exist under the
 location derived from the full BSP value, see FILES.

 Slave CPUs will be configured to boot over shared memory located
 in the master with the SM anchor set according to the memory-size,
 namely: anchor = 2 * memorysize + 0x600.
 This requires corresponding and consistent configuration in
 sysLib.c in the struct sysPhysMemDesc.

 Due to the above mentioned kernel options, inet addresses for
 backplane of master and slaves, as well as gateway of slaves will

48 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 be determined automatically by incrementing the masters ethernet
 inet address. Explicit assignment of those is not supported.

 When mv167 boards are booted over backplane, the on-board ethernet
 interface is NOT automatically attached (although documented so).
 Therefore explicit instructions are written into the bootScript
 NETWORK section to do this. Note however that the ethernet i/f
 will remain detached until the bootScript is executed.

ENVIRONMENT
 VLTDATA path to VLT data area
 VLTROOT path to VLT code area
 INTROOT path to private integration code area (optional)
 VXROOT path to VxWorks files

 VLT_VCCENV name of configuration database environment (optional)
 VLT_VCCBOOTTIME time in seconds after which reboot session is closed
 (optional, default is 120 seconds)
 VLT_VCCTIMEOUT timeout in seconds for LCU reboot with VxWorks only
 (optional, default is 30 seconds)

 Other variables see VccInfo(n).

FILES
 Under VLTDATA the following files may be read and/or written:

 ENVIRONMENTS/<env>/bootScript - boot-script for <env>
 ENVIRONMENTS/<env>/userScript - user-script for <env>
 ENVIRONMENTS/<env>/devicesFile - LCC software-devices for <env>
 ENVIRONMENTS/<env>/PROCESSES - process-file for <env>
 ENVIRONMENTS/<env>/*.boot - module-boot-scripts

 Under VLTROOT or INTROOT the following files may be read only:

 vw/bin/*.boot - module-boot-scripts
 vw/bin/<cpuName>/*.boot - module-boot-scripts

 Under VXROOT the following files may be read only:

 config/<bsp>/vxWorks - VxWorks kernel

 See also VccInfo(n) and lcuboot(5) for accessed files.

DIAGNOSTICS
 The -->ACTIONS "Configure LCU" and "Reboot LCU" require a `rlogin'
 to the target LCU. The panel might be blocked when this remote login
 fails, e.g. when another session is active on the same LCU.
 To recover from this situation, the user must manually "kill" all
 active rlogin processes to this LCU node.
 This may also happen when the LCU has "crashed".

BUGS
 The action-button "Reboot LCU" does an `rlogin' to the target-LCU.
 This remote-login is terminated after the time set with
 VLT_VCCBOOTTIME and is not synchronized with the boot-script execution.
 A message appears on stdout when the connection is finally closed.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 49
SEE ALSO
 vccEnv(1), vccEnvCreate(1),
 bootScript(5), userScript(5), module.boot(5),
 VccInfo(n),
 lcuboot(1)

- - - - - -
Last change: 02/11/98-13:00

50 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
8.1.4 vccEnv(1)

NAME
 vccEnv - common configuration environment programs

SYNOPSIS
 vccEnvCreate -e <env> ...
 vccEnvDelete -e <env> ...
 vccEnvInit -e <env> ...
 vccEnvStart -e <env> ...
 vccEnvStop -e <env> ...

DESCRIPTION
 The `vccEnv' program family allows to create, delete, and control
 environments in a uniform way, so that the environment type can be
 anything of LCU, RTAP, or QSEMU, and will be automatically handled
 in the correct way. Also remote operation will be done automatically
 depending on the host to which the environment is assigned to.

 This is done based on the information in the configuration database,
 where for each environment and host all relevant data are stored.

 The usual sequence during an environment life-time is:

 Create --> Init --> Start <--> Stop --> Delete
 ^ |
 |___________________|

 where:
 Create: create the environment files from scratch
 Init: initialize and reset the environment
 Start: put the environment into running state
 Stop: put the environment into stopped state
 Delete: remove the environment files

 All programs will enter an interactive mode when called with no
 arguments.

 The man-pages of each individual program contain the detailed
 steps that are performed, and the supported options.

ARGUMENTS
 The following arguments are supported in principle everywhere,
 but some of them will be ignored by several programs.

 If no value is given, then the default will be taken from the
 configuration database, or queried in some other way.

 <env> Name of environment, eg. lt1hb, wt1tcs, wte1qs
 If not given, then interactive input is expected.

 <type> Type of environment: LCU | RTAP | QSEMU
 default_1: as defined in configuration database
 default_2: derived from <env>

 <host> Name of the WS host where environment files shall reside.
 default_1: as assigned in configuration database
 default_2: local host

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 51
 For LCU environments this can also be a colon-separated
 list of not more than four hosts (all are optional),
 meaning "<boot-host>:<vlt-host>:<int-host>:<mod-host>".
 They refer to the host where VLTROOT, INTROOT, and MODROOT
 reside, and default to <boot-host> if omitted.
 All given hosts are then NFS-mounted in the LCU.

 <dest> Name of destination directory,
 default: "$VLTDATA/ENVIRONMENTS/<env>" on <host>

 <src> Name of directory to be used as user-template.
 Must be prefixed with "<host2>:" if not residing on <host>.
 All files and directories under this path will be merged
 with the standard template and have priority.
 At least one file must be in this directory.
 Note that there is a special handling of LCU bootScript files,
 and that dbl files are not modified to match for <env>!
 Default: no user-template

 <lcu-host> For LCU environments the node-name of the LCU host
 can be specified.
 Default: as assigned in configuration database

 <ws-env> For LCU environments the name of the assigned WS boot
 environment can be specified.
 Default: as assigned in configuration database

 <mods> For LCU environments the user-modules to be loaded can be
 specified by a colon-separated list of module names,
 eg. "inducer:mot". System- and user-modules are automatically
 distinguished.
 The list can also contain the special keywords "minimum"
 or "maximum" to request a standard system modules
 configuration with either a minimal or maximal set of modules.
 The single keyword "template" causes the module-configuration
 to be propagated from the user-template <src>.
 The -m option can also be given more than once.

OPTIONS
 The following options may be given:

 -i(nteractive) asks for input
 -j(nteractive) "pseudo-interactive" on display, but no input required
 -q(uiet) inhibits output to stdout
 -v(erbose) outputs more information than normally

CAUTIONS
 For non-interactive calls stdin should be redirected to /dev/null.

RETURN VALUE
 exit status 0 (OK) or 1 (failed)

ENVIRONMENT
 All programs use rcp(1) and remsh(1)/rsh(1) for remote file access.
 It must be made sure that all relevant environment variables are
 defined while the r-command executes on the remote host.
 They should therefore be set in "~/.cshrc" or equivalent rc-files.

52 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 See VccInfo(n) for configuration database related environment.

SEE ALSO
 vccEnvCreate(1), vccEnvDelete(1), vccEnvInit(1),
 vccEnvStart(1), vccEnvStop(1),
 VccInfo(n),
 rcp(1), remsh(1), rsh(1)

- - - - - -
Last change: 02/11/98-13:00

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 53
8.1.5 vccEnvCheck(1)

NAME
 vccEnvCheck - check environment directory and files

SYNOPSIS
 vccEnvCheck -e <env> [-h <host>] [-d <dest>]

DESCRIPTION
 Checks the environment <env> with the following steps:

 1. check existence of directory <dest>
 2. check essential global configuration files for <env>
 (this is only a rough check, no precise parsing!)
 3. send PING command to all essential environment processes, i.e.
 for LCU: lccServer msgServer rdbServer
 for RTAP and QSEMU: cmdManager msgServer logManager

 Note that an OK result cannot guarantee that the environment is
 running properly in all respects.
 Only a FAILED result ensures that the environment is NOT OK.

ARGUMENTS
 <env> Name of environment, eg. lt1hb, wt1tcs, wte1qs
 Mandatory, no default.

 <host> Name of the host where environment files reside,
 default_1: as assigned in configuration database
 default_2: local host

 <dest> Name of destination directory,
 default: "$VLTDATA/ENVIRONMENTS/<env>" on <host>

OPTIONS
 The following option may be given in any combination:

 -q(uiet) inhibits output to stdout
 -v(erbose) outputs more information than normally

CAUTIONS
 The system configuration files are not updated!
 This should be done by updating the configuration database, and then
 generating the configuration files using vccMake(1).

RETURN VALUE
 exit status 0 (OK) or 1 (failed)

FILES
 Files under the directory given by <dest> are read.
 Depending on the type of environment also:

 /etc/services
 /etc/hosts
 /etc/$RTAPROOT/RtapEnvList (Rtap >= 6.7) or $RTAPROOT/etc/RtapEnvList
 $VLTDATA/config/logLCU.config

54 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 $VLTDATA/config/CcsEnvList

ENVIRONMENT
 See vccEnv(1).

SEE ALSO
 vccEnv(1), vccMake(1), msgSend(1)

- - - - - -
Last change: 02/11/98-13:00

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 55
8.1.6 vccEnvCreate(1)

NAME
 vccEnvCreate - create environment directory and files

SYNOPSIS
 vccEnvCreate -e <env> [-t <type>] [-h <host>] [-d <dest>] [-s <src>]

 vccEnvCreate ... -l <lcu-host> -w <ws-env> -m <mods>:... (for type LCU)

 vccEnvCreate -i (interactive)

DESCRIPTION
 Creates the environment directory and files for the given <type>.

 All directories and files are created on <host> under the
 directory <dest> from the standard template, optionally taking
 <src> as additional higher prioritzed user template.

 <dest> must not already exist.

 Created files are not fully configured, ie. depending on <type>
 they may have to be edited or processed with dedicated tools in
 order to make them fully usable.

 Detailed actions depending on <type> are:

 LCU: 1. create files from standard template and set protections
 2. merge with user-defined template from <src>
 3. make database
 4. target-specific bootScript configuration

 RTAP: 1. create files from standard template and set protections
 2. merge with user-defined template from <src>
 3. make database

 QSEMU: 1. create files from standard template and set protections
 2. merge with user-defined template from <src>
 3. make database

ARGUMENTS
 <env> Name of environment, eg. lt1hb, wt1tcs, wte1qs
 If not given, then interactive input is expected.

 <type> Type of environment: LCU | RTAP | QSEMU
 default_1: as defined in configuration database
 default_2: derived from <env>

 <host> Name of the host where environment files shall reside,
 default_1: as assigned in configuration database
 default_2: local host

 For LCU environments this can also be a colon-separated
 list of not more than four hosts (all are optional),
 meaning "<boot-host>:<vlt-host>:<int-host>:<mod-host>".
 They refer to the host where VLTROOT, INTROOT, and MODROOT
 reside, and default to <boot-host> if omitted.
 All given hosts are then NFS-mounted in the LCU.
 See ENVIRONMENT for these variables, and CAUTIONS for MODROOT.

56 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 <dest> Name of destination directory.
 For off-line creation (ie. on another machine than <host>)
 it can be prefixed with "<desthost>:" so that the files are
 created on <desthost> and can later be moved to <host>.
 A warning will be generated in such a case.
 If "<desthost>:" (remark the colon) is given, then the
 path may also be omitted so that the default is taken.
 Default: "$VLTDATA/ENVIRONMENTS/<env>" on <host>

 <src> Name of directory to be used as user-template.
 Must be prefixed with "<host2>:" if not residing on <host>.
 All files and directories under this path will be merged
 with the standard template and have priority.
 At least one file must be in this directory.
 Note that there is a special handling of LCU bootScript files,
 and that dbl files are not modified to match for <env>!
 Default: no user-template

 <lcu-host> For LCU environments the node-name of the LCU host
 can be specified.
 Default: as assigned in configuration database

 <ws-env> For LCU environments the name of the assigned WS boot
 environment can be specified.
 Default: as assigned in configuration database

 <mods> For LCU environments the user-modules to be loaded can be
 specified by a colon-separated list of module names,
 eg. "inducer:mot". System- and user-modules are automatically
 distinguished.
 The list can also contain the special keywords "minimum"
 or "maximum" to request a standard system modules
 configuration with either a minimal or maximal set of modules.
 The single keyword "template" causes the module-configuration
 to be propagated from the user-template <src>.
 The -m option can also be given more than once.

OPTIONS
 The following option may be given in any combination:

 -i(nteractive) asks for input
 -q(uiet) inhibits output to stdout
 -v(erbose) outputs more information than normally

CAUTIONS
 The system configuration files are not updated for the new environment!
 This should be done by updating the configuration database, and then
 generating the configuration files using vccMake(1).

 MODROOT: it will be problematic to define MODROOT dynamically!
 All xxxROOT/DATA environment variables shall be defined during
 the shell rc routines (.cshrc etc.) to allow remote operation.
 Otherwise they may be left undefined and produce unexpected results.

RETURN VALUE
 exit status 0 (OK) or 1 (failed)

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 57
FILES
 Files under the directory given by <src> are read.
 Files under the directory given by <dest> are written.

 You must have priviledge to write the specified target file(s),
 otherwise the operation will fail.

 The mode and owner of the generated file will be set to
 world-readable and group-writable, unless otherwise noted.

 See ENVIRONMENTS_<type>(5) for detailed target-file lists.

ENVIRONMENT
 See vccEnv(1).

EXAMPLES
 Create LCU environment in interactive mode (with error):

 > vccEnvCreate
 vccInfo: connected to VCC database at wte49
 usage: vccEnvCreate [-iqv] -e <env> [...]
 (will use interactive mode now, enter -- to continue non-interactive)

 Enter Environment Name []: lte41
 Enter Type of lte41 (LCU,RTAP,QSEMU) [LCU]:
 Enter LCU Host of lte41 [te41]:
 Enter WS Boot Environment of lte41 [wte49]:
 Enter WS Host of wte49 [te49]:
 Enter Home Directory of lte41 on te49 [$VLTDATA/ENVIRONMENTS/lte41]:
 Enter Template Directory for lte41 (host:path) []:
 Enter that you are sure to continue (yes,no)? [no]: yes
 vccEnvCreate: copy standard template to "/vlt/data/ENVIRONMENTS/lte41" ...
 vccEnvCreate@te49: Error: failed to copy standard template to "..."
 envsCreate: /vlt/data/ENVIRONMENTS/lte41 already exists

 Create LCU environment named `lt0hb' on host `te49',
 with NFS mount of VLTROOT on the same host, and INTROOT on te13:

 > vccEnvCreate -e lt0hb -h te49::te13 -w wte49
 vccInfo: connected to VCC database at wte49
 vccEnvCreate: copy standard template to "/vlt/data/ENVIRONMENTS/lt0hb" ...
 vccEnvCreate: make database from "/vlt/data/ENVIRONMENTS/lt0hb/dbl" ...
 vccEnvCreate: make DB branch world writable ...
 vccEnvCreate: generate bootScript using: minimum ...
 vccEnvCreate: generate bootChange sequence scripts ...

 Create RTAP environment named `wte4910' using `wte49' as template:

 > vccEnvCreate -e wte4910 -s /vlt/data/ENVIRONMENTS/wte49
 vccInfo: connected to VCC database at wte49
 vccEnvCreate: copy standard template to "/vlt/data/ENVIRONMENTS/wte4910"
 vccEnvCreate: merge with template from "/vlt/data/ENVIRONMENTS/wte49" ...
 vccEnvCreate: make database from "/vlt/data/ENVIRONMENTS/wte4910/dbl" ...
 vccEnvCreate: make DB branch world writable ...

SEE ALSO
 vccEnv(1), vccMake(1), envsCreate(1),

58 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 ENVIRONMENTS_LCU(5), ENVIRONMENTS_RTAP(5), ENVIRONMENTS_QSEMU(5),

TODO
 - parse the bootScript contained in the user-template and
 propagate its contents to the new one.

- - - - - -
Last change: 02/11/98-13:00

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 59
8.1.7 vccEnvDelete(1)

NAME
 vccEnvDelete - delete environment directory and files

SYNOPSIS
 vccEnvDelete -e <env> [-h <host>] [-d <dest>]

DESCRIPTION
 Deletes the environment directory and files for <env>.
 All files on <host> under the directory <dest> are deleted.

 To be sure that the environment is stopped before, use vccEnvStop(1).

ARGUMENTS
 <env> Name of environment, eg. lt1hb, wt1tcs, wte1qs
 Mandatory, no default.

 <host> Name of the host where environment files reside,
 default_1: as assigned in configuration database
 default_2: local host

 <dest> Name of destination directory.
 For off-line deletion (ie. on another machine than <host>)
 it can be prefixed with "<desthost>:" so that the files are
 deleted on <desthost> rather than <host>.
 A warning will be generated in such a case.
 If "<desthost>:" (remark the colon) is given, then the
 path may also be omitted so that the default is taken.
 Default: "$VLTDATA/ENVIRONMENTS/<env>" on <host>

OPTIONS
 The following option may be given in any combination:

 -q(uiet) inhibits output to stdout
 -v(erbose) outputs more information than normally

CAUTIONS
 The system configuration files are not updated!
 This should be done by updating the configuration database, and then
 generating the configuration files using vccMake(1).

RETURN VALUE
 exit status 0 (OK) or 1 (failed)

FILES
 Files under the directory given by <dest> are deleted.

 You must have priviledge to write the target directory and file(s),
 otherwise the operation will fail.

ENVIRONMENT
 See vccEnv(1).

60 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
EXAMPLES
 Delete RTAP environment named `wte49':

 > vccEnvDelete -e wte49
 vccInfo: connected to VCC database at wte49
 vccEnvDelete: locate environment directory "/vlt/data/ENVIRONMENTS/wte49"
 vccEnvDelete: unprotect env files under "/vlt/data/ENVIRONMENTS/wte49"
 vccEnvDelete: delete env files under "/vlt/data/ENVIRONMENTS/wte49"

SEE ALSO
 vccEnv(1), vccMake(1),

- - - - - -
Last change: 02/11/98-13:00

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 61
8.1.8 vccEnvInit(1)

NAME
 vccEnvInit - initialize environment

SYNOPSIS
 vccEnvInit -e <env> [-t <type>] [-h <host>] [-d <dest>]

DESCRIPTION
 Initializes the environment <env> of the given <type>.

 Detailed actions depending on <type> are:

 LCU: 1. remove snapshot file
 2. configure boot-line with bootChange(1), reboot

 RTAP: 1. create empty database from *.empty snapshots
 2. load database from DB branch into snapshots
 3. restore normal RtapEnvTable

 QSEMU: 1. remove snapshot file

ARGUMENTS
 <env> Name of environment, eg. lt1hb, wt1tcs, wte1qs
 Mandatory, no default.

 <type> Type of environment: LCU | RTAP | QSEMU
 default_1: as defined in configuration database
 default_2: derived from <env>

 <host> Name of the host where environment files reside,
 default_1: as assigned in configuration database
 default_2: local host

 <dest> Name of destination directory,
 default: "$VLTDATA/ENVIRONMENTS/<env>" on <host>

OPTIONS
 The following option may be given in any combination:

 -q(uiet) inhibits output to stdout
 -v(erbose) outputs more information than normally

CAUTIONS
 This program calls vccRemExpect(1) to execute remote commands,
 which requires the `expect' interpreter.

RETURN VALUE
 exit status 0 (OK) or 1 (failed)

FILES
 Files under the directory given by <dest> may be modified.

 You must have priviledge to write the target directory and file(s),
 otherwise the operation will fail.

62 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
ENVIRONMENT
 See vccEnv(1).

EXAMPLES
 Initialize LCU environment named `lte41' (also increase the rlogin
 timeout to 20 seconds because of slow network or so):

 > setenv VLT_VCCTIMEOUT 20
 > vccEnvInit -e lte41
 vccInfo: connected to VCC database at wte49
 vccEnvInit: execute bootChange sequence on LCU te41 and reboot ...

 Initialize RTAP environment named `wte49':

 > vccEnvInit -e wte49
 vccInfo: connected to VCC database at wte49
 vccEnvInit: create empty database in "/vlt/data/ENVIRONMENTS/wte49"
 vccEnvInit: load database from DB branch ...
 vccEnvInit: restore normal RtapEnvTable ...

SEE ALSO
 vccEnv(1), vccRemExpect(1)

- - - - - -
Last change: 02/11/98-13:00

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 63
8.1.9 vccEnvStart(1)

NAME
 vccEnvStart - start environment

SYNOPSIS
 vccEnvStart -e <env> [-t <type>] [-h <host>] [-d <dest>]

DESCRIPTION
 Starts the environment <env> of the given <type>.

 Detailed actions depending on <type> are:

 LCU: 1. reboot LCU with VxWorks only
 2. install bootScript in boot-line with bootChange(1)
 3. execute bootScript

 In case of interactive mode (see OPTIONS -j), a pop-window
 is exposed to display the output during booting.

 RTAP: 1. run RtapScheduler(1) in background
 2. wait and check for correct start-up of RtapScheduler
 3. wait and check for full database start-up

 QSEMU: 1. run ccsScheduler(1) in background
 2. wait and check for correct start-up of ccsScheduler
 3. wait and check for full database start-up

ARGUMENTS
 <env> Name of environment, eg. lt1hb, wt1tcs, wte1qs
 Mandatory, no default.

 <type> Type of environment: LCU | RTAP | QSEMU
 default_1: as defined in configuration database
 default_2: derived from <env>

 <host> Name of the host where environment files reside,
 default_1: as assigned in configuration database
 default_2: local host

 <dest> Name of destination directory,
 default: "$VLTDATA/ENVIRONMENTS/<env>" on <host>

OPTIONS
 The following option may be given in any combination:

 -i(nteractive) asks for input
 -j(nteractive) "pseudo-interactive" (no input, only pop-up window)
 -j<timeout> dto. but pop-up window is automatically deleted
 after <timeout> seconds after completion of start.

 -q(uiet) inhibits output to stdout
 -v(erbose) outputs more information than normally

CAUTIONS
 This program calls vccRemExpect(1) to execute remote commands,

64 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 which requires the `expect' interpreter.

 Do not try to start QSEMU environments on systems that are
 not installed with CCS-lite!

RETURN VALUE
 exit status 0 (OK) or 1 (failed)

FILES
 Files under the directory given by <dest> are read.
 A temporary file is used to store the LCU reboot output.

ENVIRONMENT
 VLT_VCCBOOTTIME specifies the timeout in seconds to be used for
 LCUs while waiting for bootScript completion.
 If not defined, then the default is 120 seconds.

 DISPLAY (optional) for display of pop-up window during LCU reboot.

 See also vccEnv(1).

EXAMPLES
 Start LCU environment named `lte41', also set timeout to complete
 booting to 100 seconds:

 > setenv VLT_VCCBOOTTIME 100
 > vccEnvStart -e lte41
 vccInfo: connected to VCC database at wte49
 vccEnvStart: reboot LCU te41 with VxWorks only ...
 vccEnvStart: install bootScript in boot-line on LCU te41 ...
 vccEnvStart: execute bootScript on LCU te41 (timeout: 100 s) ...

 Start RTAP environment named `wte49':

 > vccEnvStart -e wte4910
 vccInfo: connected to VCC database at wte49
 vccEnvStart: run RtapScheduler in background ...
 RTAP/Plus Copyright (c) Hewlett-Packard (Canada) Ltd. 1988-1994
 All rights reserved.
 Real-Time Applications Platform (RTAP/Plus) release A.06.60
 CCS Shared Memory (Id = 828) : ACTIVE

SEE ALSO
 vccEnv(1), vccRemExpect(1)

- - - - - -
Last change: 02/11/98-13:00

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 65
8.1.10 vccEnvStop(1)

NAME
 vccEnvStop - stop environment

SYNOPSIS
 vccEnvStop -e <env> [-t <type>] [-h <host>]

DESCRIPTION
 Stops the environment <env> of the given <type>.

 Detailed actions depending on <type> are:

 LCU: 1. uninstall bootScript in boot-line with bootChange(1)
 2. reboot the system with VxWorks only

 RTAP: 1. shutdown with RtapShutdown(1) or envsKill(1)

 QSEMU: 1. shutdown with ccsShutdown

ARGUMENTS
 <env> Name of environment, eg. lt1hb, wt1tcs, wte1qs
 Mandatory, no default.

 <type> Type of environment: LCU | RTAP | QSEMU
 default_1: as defined in configuration database
 default_2: derived from <env>

 <host> Name of the host where environment files reside,
 default_1: as assigned in configuration database
 default_2: local host

OPTIONS
 The following option may be given in any combination:

 -q(uiet) inhibits output to stdout
 -v(erbose) outputs more information than normally

CAUTIONS
 This program calls vccRemExpect(1) to execute remote commands,
 which requires the `expect' interpreter.

RETURN VALUE
 exit status 0 (OK) or 1 (failed)

ENVIRONMENT
 See vccEnv(1).

EXAMPLES
 Stop LCU environment named `lte41':

 > vccEnvStop -e lte41
 vccInfo: connected to VCC database at wte49
 vccEnvStop: uninstall bootScript and reboot te41 with VxWorks only

66 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
SEE ALSO
 vccEnv(1), vccRemExpect(1)

- - - - - -
Last change: 02/11/98-13:00

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 67
8.1.11 vccShow(1)

NAME
 vccShow - Show contents of VCC database on screen

SYNOPSIS
 vccShow

DESCRIPTION
 Prints the contents of the VLT Central Configuration Database
 in tabular form to the screen.

ENVIRONMENT
 see VccInfo(n)

SEE ALSO
 VccInfo(n)

- - - - - -
Last change: 02/11/98-13:00

68 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
8.2 Functions Reference

The following sections contain - in alphabetical order - the manual pages for the functions and mac-
ros included in the programmatic interface of the modules.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 69
8.2.1 lcubootAutoDrv(1)

NAME
 lcubootAutoDrv,
 lcubootAutoDevRegister,
 lcubootAutoDrvInstall,
 lcubootAutoDevCreate,
 lcubootAutoDevCheck
 - Automatic LCU Driver and Device Installation Facility

SYNOPSIS
 int lcubootAutoDevRegister(const char *devName,
 int addrSpace, void *busAddr,
 int lccArg1, ... lccArg3)

 int lcubootAutoDrvInstall(const char *moduleName,
 int numDevices,
 const char *drvFuncName,
 const char *devFuncName,
 int drvArg1, ... drvArg6)

 int lcubootAutoDevCreate(const char *devName, int arg1, ... arg9)

 int lcubootAutoDevCheck(const char *devBaseName, int nominalCount)

DESCRIPTION
 These functions support the automatic installation of LCU
 drivers and devices. All functions are intended to be
 used directly from the VxWorks shell in a boot-script.

 The script is aborted when a fatal error condition occurs, which
 is signalled as a log message in the form:

 <tid> (tShell): lcuboot: <message>: <faulty item>:<errno | faulty item>
 <tid> (tShell): --- SCRIPT ABORTED ---

 lcubootAutoDevRegister - registers a device for later creation and
 registration in LCC. Internal variables are set that are used
 in subsequent calls of `lcubootAutoDrvInstall' to install the
 driver and `lcubootAutoDevCreate' to create the devices.

 `busAddr' must be a valid VMEbus address in `addrSpace':

 VMEbus Address Modifier addrSpace busAddr
 ----------------------- --------------- -------------
 VME_AM_SUP_SHORT_IO 0x2d 0 .. 0xffff
 VME_AM_STD_SUP_DATA 0x3d 0 .. 0xffffff
 VME_AM_EXT_SUP_DATA 0x0d 0 .. 0xffffffff

 `lccArg1' ff. are are saved and passed to `lccRegisterDevice'
 in a subsequent call of `lcubootAutoLccRegisterDevs' to make
 all devices known to LCC, see lccRegisterDevice(3).

 The number of devices found so far is returned. This count is
 reset to zero by `lcubootAutoDrvInstall'.

 The script is aborted if the internal device table is full,
 or if the given address-space and bus-address could not be
 converted into a valid local address.

70 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 lcubootAutoDrvInstall - conditionally loads and installs a driver
 and prepares all data for subsequent device installation.

 `moduleName' is searched in BINPATH and loaded.
 The rest of the parameters are usually defaulted (see below).
 No operation is done and OK is returned if the number of
 devices evaluates to zero (see `numDevices' below),
 otherwise the installation is done accordingly.

 `drvFuncName' is the driver install function (e.g "xxxDrv").
 `devFuncName' is the device install function ("xxxDevCreate").
 `drvArg1' ff. are passed to the driver install function.

 The script is aborted in the following cases:
 - the driver module could not be found or loaded.
 - the driver installation failed, i.e. it did not return OK
 - the device installation function could not be found

 The following parameters are defaulted - when omitted - with:

 `numDevices' = effective count from `lcubootAutoDevRegister',
 or - if this is zero - from the variable
 `lcubootProbeCount' as set by `lcubootAutoProbe'.
 Both counts are reset to zero by the function.

 `drvFuncName' = "`moduleName'`lcubootAutoDrvFuncSuffix'"
 `devFuncName' = "`moduleName'`lcubootAutoDevFuncSuffix'"

 `drvArg1' = `numDevices' (after resolving as above)
 `drvArg2' = `lcubootAutoDrvArg2'
 `drvArg3' = `lcubootAutoDrvArg3'

 See VARIABLES for the contents of `lcubootAutoD...'.

 To install the corresponding devices, at least as many
 consecutive calls of `lcubootAutoDevCreate' must follow
 as the evaluated number of devices implies.

 lcubootAutoDevCreate - performs the installation of a device using
 the function previously defined with `lcubootAutoDrvInstall'.
 The name of the device is given by `devName', which is passed
 with up to nine further arguments to the install-function.

 No operation is done and OK is returned if the number
 of devices to be installed as defined before with
 `lcubootAutoDrvInstall' has already been reached,
 or if the corresponding address given with
 `lcubootAutoDevRegister' is empty.

 It returns OK is the device installation is successful,
 otherwise the script is aborted.

 Note that there must be as many calls of this function stated
 in the boot-script as the maximum number of devices that shall
 be supported. However, usually fewer devices are actually
 installed.

 Note also that the base-addresses given as arguments to this
 function may be different from the probe-addresses stated
 in the call of `lcubootAutoDevRegister'.

 lcubootAutoDevCheck - checks whether the number of devices installed
 in the system are equal to a given value.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 71
 `devBaseName' denotes the name-prefix of the device family,
 e.g. "/acro" for digital I/O devices.
 `nominalCount' is the expected number of installed devices, a
 negative value means no check shall be done and returns OK.
 OK is returned if the actual and nominal count are equal,
 otherwise the script is aborted.

 This can be used at the end of the boot-script to verify that
 the expected number of devices are actually installed.
 Note however that the boot-script must then be updated
 according to the HW configuration.

VARIABLES
 The following global variables are provided and can be modified by
 the user in exceptional cases:

 lcubootAutoDrvFuncSuffix - Default suffix to the module-name to
 yield the driver install function.
 The variable is preset with: "Drv"
 The maximum length is 15 chars.

 lcubootAutoDevFuncSuffix - Default suffix to the module-name to
 yield the device install function.
 The variable is preset with: "DevCreate"
 The maximum length is 15 chars.

 lcubootAutoDrvArg2 - Default 2nd parameter for the driver install
 function, usually the number of channels.
 The variable is preset with: 25
 Note that that this parameter can be explicitly given as
 argument to `lcubootAutoDrvInstall'.

 lcubootAutoDrvArg3 - Default 3rd parameter for the driver install
 function, usually the timeout in ticks.
 The variable is preset with: 100
 Note that that this parameter can be explicitly given as
 argument to `lcubootAutoDrvInstall'.

ENVIRONMENT
 BINPATH - colon-separated directory searchpath for binary modules

CAUTIONS
 Most functions are not reentrant and should therefore only be used
 from LCU boot-scripts, where reentrancy is not important!

 Not more than 64 devices are supported in one LCU.

 The global variable `lcubootAutoDrvArg2' contains the default number
 of device channels that can be opened to all devices of a driver.
 When very many devices are present, this might have to be increased.

EXAMPLES
 This example automatically loads and installs the "acro" driver if
 at least one acro-device is present, and then installs the found
 number of devices, up to four.
 After that the found devices are registed in LCC.

72 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 acroN = lcubootAutoDevRegister("/acro0",0x2d,0x1000,1,1,1)
 acroN = lcubootAutoDevRegister("/acro1",0x2d,0x1400,1,1,1)
 acroN = lcubootAutoDevRegister("/acro2",0x2d,0x1800,1,1,1)
 acroN = lcubootAutoDevRegister("/acro3",0x2d,0x1c00,1,1,1)

 lcubootAutoDrvInstall "acro"

 lcubootAutoDevCreate "/acro0",0x1000,0xb0,1
 lcubootAutoDevCreate "/acro1",0x1400,0xb1,1
 lcubootAutoDevCreate "/acro2",0x1800,0xb2,1
 lcubootAutoDevCreate "/acro3",0x1c00,0xb3,1

 lcubootAutoExec acroN,"sysIntEnable",1
 lcubootAutoSpawn acroN,"tintACRO",200,0x18,2000,"acroInt"
 ...
 lcubootAutoLccRegisterDevs

 A similar - but maybe less elegant - implementation:

 acroN = lcubootAutoProbe(0xffff1000,0xffff1400,0xffff1800,0xffff1c00)
 lcubootAutoDrvInstall "acro",acroN,"acroDrv","acroDevCreate",acroN,5,80
 # or with defaults simply: lcubootAutoDrvInstall "acro"
 lcubootAutoDevCreate "/acro0",0x1000,0xb0,1
 lcubootAutoDevCreate "/acro1",0x1400,0xb1,1
 lcubootAutoDevCreate "/acro2",0x1800,0xb2,1
 lcubootAutoDevCreate "/acro3",0x1c00,0xb3,1

 e=calloc(512,1)
 lcubootAutoExec acroN>0,"lccRegisterDevice","/acro0",0xffff1000,1,1,1,e
 lcubootAutoExec acroN>1,"lccRegisterDevice","/acro1",0xffff1400,1,1,1,e
 lcubootAutoExec acroN>2,"lccRegisterDevice","/acro2",0xffff1800,1,1,1,e
 lcubootAutoExec acroN>3,"lccRegisterDevice","/acro3",0xffff1c00,1,1,1,e
 free e

SEE ALSO
 lcubootAutoEnv(1), lcubootAutoGen(1), lcubootAutoLcc(1),
 loadLib(1), symLib(1),
 ld(2)

- - - - - -
Last change: 05/11/97-10:58

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 73
8.2.2 lcubootAutoEnv(1)

NAME
 lcubootAutoEnv,
 lcubootAutoEnvInit
 - Automatic LCU Environment Setup Facility

SYNOPSIS
 int lcubootAutoEnvInit(void)

DESCRIPTION
 These functions support the automatic setup of LCU shell environment.
 All functions are intended to be used directly from the VxWorks shell
 in a boot-script.

 The script is aborted when a fatal error condition occurs, which
 is signalled as a log message in the form:

 <tid> (tShell): lcuboot: <message>: <faulty item>:<errno | faulty item>
 <tid> (tShell): --- SCRIPT ABORTED ---

 lcubootAutoEnvInit - initialize shell environment variable from the
 LCU boot-line settings and set the shell-prompt.

 The following variables are derived from the LCU boot-line
 or derived from other variables, but only if they are not
 already defined:

 LOCALHOST := <bootParams.targetName>
 LOCALIPADDR := <bootParams.ead>
 LOCALENV := l${LOCALHOST}
 HOSTNAME := <bootParams.hostName>
 HOSTIPADDR := <bootParams.had>
 HOSTENV := w${HOSTNAME}

 BOOTHOME (see below)
 BOOTROOT (see below)
 BOOTDB := ${BOOTHOME}/DB
 LOGFILE := ${BOOTHOME}/logfile

 BOOTHOME corresponds to the directory of the startup-script
 as specified in the boot-line. BOOTROOT is derived from that
 by going two level up in the directory hierarchy. This should
 be the same then as VLTDATA on the host workstation.

 Default search-paths are also set for binary files (BINPATH)
 and module-boot-scripts (BOOTPATH). The parts with INTROOT
 respectively MODROOT are omitted when not defined. The
 CPU-dependent extension is omitted when CPU is not defined.

 BINPATH := $BOOTHOME:\
 [$MODROOT/bin:]\ (if MODROOT defined)
 [$INTROOT/vw/bin[/$CPU]:]\ (if INTROOT defined)
 $VLTROOT/vw/bin[/$CPU]

 BOOTPATH := $BOOTHOME:\
 $BOOTROOT/config:\
 [$MODROOT/bin:]\ (if MODROOT defined)
 [$INTROOT/vw/bin/$CPU:]\ (if INTROOT/CPU def.)
 [$INTROOT/vw/bin:]\ (if INTROOT defined)

74 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 $VLTROOT/vw/bin/$CPU:\ (if CPU defined)
 $VLTROOT/vw/bin

 CONFIGPATH := $BOOTHOME:\
 $BOOTROOT/config:\
 [$MODROOT/config:]\ (if MODROOT defined)
 [$INTROOT/config:]\ (if INTROOT defined)
 $VLTROOT/config

 The shell-prompt is derived from the local environment name.

 Note that VLTROOT, INTROOT and MODROOT are not set!

ENVIRONMENT
 `lcubootAutoEnvInit' sets the above stated shell variables.
 VLTROOT and optionally INTROOT/MODROOT must be set before calling it.

 CPU can be optionally set to extend BINPATH and BOOTPATH.
 Values are the same as for the VxWorks compiler, e.g. MC68040.

CAUTIONS
 Most functions are not reentrant and should therefore only be used
 from LCU boot-scripts, where reentrancy is not important!

COMPATIBILITY
 Observe the following changes after the JUL95 VLT SW Release:
 - The structure under BOOTROOT has been changed.
 - The default HOSTENV is no longer appended by "qs".

SEE ALSO
 lcubootAutoGen(1), lcubootAutoDrv(1), lcubootAutoLcc(1),
 symLib(1)

- - - - - -
Last change: 05/11/97-10:58

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 75
8.2.3 lcubootAutoGen(1)

NAME
 lcubootAutoGen,
 lcubootAutoProbe,
 lcubootAutoLoad,
 lcubootAutoExec,
 lcubootAutoSpawn,
 lcubootAutoCd, lcubootAutoCdBoot
 - Automatic LCU Module Installation Facility

SYNOPSIS
 int lcubootAutoProbe(char *probeAddr0, ... *probeAddr9)
 int lcubootAutoLoad(BOOL cond, const char *moduleName,
 int reldFlag, int symFlag)
 int lcubootAutoExec(BOOL cond, const char *funcName, int arg1, ...arg8)
 int lcubootAutoSpawn(BOOL cond, const char *taskName,
 int priority, int options, int stackSize,
 const char *funcName, int arg1, ..arg4)
 int lcubootAutoCd(BOOL cond, const char *searchPath,
 const char *fileName)
 int lcubootAutoCdBoot(BOOL cond, const char *scriptName)

DESCRIPTION
 These functions support the automatic installation of all general
 LCU modules. All functions are intended to be
 used directly from the VxWorks shell in a boot-script.

 The script is aborted when a fatal error condition occurs, which
 is signalled as a log message in the form:

 <tid> (tShell): lcuboot: <message>: <faulty item>:<errno | faulty item>
 <tid> (tShell): --- SCRIPT ABORTED ---

 lcubootAutoProbe - tests whether any hardware is present at the given
 addresses. Byte-read accesses are executed to verify this.
 Up to ten addresses can be given, the function stops after
 the first non-successful access.
 It returns the number of successful accesses.

 The counting begins normally from zero each time the function
 is called. If `probeAddr0' is NULL then the counting is
 continued from the last value, which is useful when more
 than ten addresses must be probed.

 This can be used to determine the number of boards/devices
 that are present in the system.

 Note that it cannot be checked whether the hardware found
 at a given address is actually the "correct" one.
 Standard pre-defined board addresses must be used as an
 essential precondition.

 lcubootAutoLoad - if `cond' is TRUE, then it loads the binary module
 `moduleName', applying the search-path in the environment
 variable BINPATH.

 It also loads the module's error-definition files, provided
 they exist. It is silently ignored if no error-files are found.
 See lcubootErrorLoad(1) for details.

76 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 No operation is done and OK is returned for FALSE `cond'.
 The same is true if a module with this name is already loaded
 and `reldFlag' is zero, otherwise the module is re-loaded.
 `symFlag' is usually zero and can be omitted, see loadLib(1).
 It returns OK if the module is found and loaded.
 It returns ERROR if the module is not found, however,
 the script is not aborted then. It aborts the script
 only if the module is found but cannot be loaded properly.

 This can be used to conditionally/optionally load a module.

 lcubootAutoExec - if `cond' is TRUE, then it executes the given
 function with the given arguments.

 No operation is done and OK is returned for FALSE `cond'.
 It returns the called function's return-value, or ERROR
 if the function is not found in the symbol-table.

 This can be used to conditionally/optionally install a module.

 lcubootAutoSpawn - if `cond' is TRUE, then it spawns `funcName' as a
 task with the name `taskName', using the given parameters,
 as in taskSpawn.

 No operation is done and OK is returned for FALSE `cond'.
 It returns the return-value of the taskSpawn call, or
 ERROR if the function is not found in the symbol-table.

 Note that fewer arguments can be passed to the task compared
 to a direct call of taskSpawn.

 This can be used to conditionally/optionally spawn a task.

 lcubootAutoCd - if `cond' is TRUE, then it changes to the directory
 in which a given file is found. The file is searched applying
 the given colon-separated directory search-path.

 No operation is done and OK is returned for FALSE `cond'.
 It returns the OK, or ERROR in case of any failure.
 Note that after calling this function the current working
 directory is not reset to it's previous value.

 lcubootAutoCdBoot - is similar to `lcubootAutoCd', but specifically
 intended for module-boot-scripts. It searches for `scriptName'
 applying the search-path in the environment variable BOOTPATH.

 The script is aborted when the module-boot-script could not
 be found in any of these directories.

VARIABLES
 lcubootProbeCount - counts the valid addresses in `lcubootAutoProbe'

FILES
 See lcubootErrorLoad(1) for error-definition files.

ENVIRONMENT
 BINPATH - colon-separated directory searchpath for binary modules
 BOOTPATH - colon-separated directory searchpath for module-boot-scripts

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 77
CAUTIONS
 Most functions are not reentrant and should therefore only be used
 from LCU boot-scripts, where reentrancy is not important!

EXAMPLES
 The first example searches for the module-boot-script of "lqs"
 and executes it under the shell:

 lcubootAutoCdBoot 1,"lqs.boot"
 < lqs.boot

 This module-boot-script could then have the following contents.
 It automatically loads and sets up the "lqs" module.
 After that the found lqs task is spawned.

 lcubootAutoLoad 1,"lqs"

 # Define Ping and Ack timeout(seconds)
 lcubootAutoExec 1,"lqsInit",10,"rtap"

 lcubootAutoExec 1,"lqsAddEnvTbl","wte13qs","te13","134.171.12.222",2223
 lcubootAutoExec 1,"lqsAddEnvTbl","wte19qs","te19","134.171.12.228",2223
 lcubootAutoExec 1,"lqsAddEnvTbl","wte13", "te13","134.171.12.222",2155
 lcubootAutoExec 1,"lqsAddEnvTbl","wte16", "te16","134.171.12.225",2167

 # Spawn the lqs task
 lcubootAutoSpawn 1, "tLqs", 90, 0x18, 20000, "lqs"

SEE ALSO
 lcubootAutoEnv(1), lcubootAutoDrv(1), lcubootAutoLcc(1),
 lcubootErrorLoad(1),
 loadLib(1), symLib(1),
 ld(2)

- - - - - -
Last change: 05/11/97-10:58

78 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
8.2.4 lcubootAutoLcc(1)

NAME
 lcubootAutoLcc,
 lcubootAutoLccRegisterDevs
 - Automatic LCU Installation Support Facility for LCC

SYNOPSIS
 int lcubootAutoLccRegisterDevs(void)

DESCRIPTION
 These functions support the automatic installation of LCC,
 especially for devices. All functions are intended to be
 used directly from the VxWorks shell in a boot-script.

 The script is aborted when a fatal error condition occurs, which
 is signalled as a log message in the form:

 <tid> (tShell): lcuboot: <message>: <faulty item>:<errno | faulty item>
 <tid> (tShell): --- SCRIPT ABORTED ---

 lcubootAutoLccRegisterDevs - register all devices under LCC that were
 previously announced with `lcubootAutoDevRegister'.

 The number of registered devices is returned.
 The script is aborted when a call to `lccRegisterDevice' fails.

CAUTIONS
 Most functions are not reentrant and should therefore only be used
 from LCU boot-scripts, where reentrancy is not important!

SEE ALSO
 lcubootAutoEnv(1), lcubootAutoGen(1), lcubootAutoDrv(1),
 loadLib(1), symLib(1),
 ld(2)

- - - - - -
Last change: 05/11/97-10:58

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 79
8.2.5 lcubootError(1)

NAME
 lcubootErrorLoad,
 lcubootErrorGetFormat
 - LCU Error system functions.

SYNOPSIS
 int lcubootErrorLoad(const char *modName)
 int lcubootErrorGetFormat(const char *modName,
 int errNumber,
 char *severity,
 char *format)

DESCRIPTION
 This functions provides the facilities to load ERROR files and
 retrieve the information about error text and format for a
 given module and error number. lcubootErrorLoad is called automatically
 at module loading, but can be used by itself for test purposes.

 lcubootErrorLoad - load the ERROR definition file for the given
 module, if the module does not have ERROR
 files it just return. If the module has the
 ERROR file (<mod>_ERRORS) but the index
 file is not present (<mod>ERRORS.idx) the
 script is aborted.

 lcubootErrorGetFormat - retrieves severity and format
 definition for the pair
 (modName,errNumber).
 Returns values: lcubootOK if no problem
 lcubootError_MOD_NOT_FOUND if the
 module was not found
 lcubootError_ERR_NOT_FOUND if the
 error number was not found for
 the module
 lcubootError_INTERNAL if an internal
 error occurs.

FILES
 Error-defition files are accessed read-only under VLTROOT
 respectively INTROOT:

 ERRORS/<mod>_ERRORS
 ERRORS/<mod>ERRORS.idx

 where <mod> is the name of the module, as given by `modName'.

CAUTIONS
 Note that the name of the module and the prefix of the
 error-definition files must be the same, otherwise the
 files will not be found!

EXAMPLES
 lcubootErrorLoad("mod");
 lcubootErrorLoad("motci");

80 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
 status = lcubootErrorGeFormat("mod",mod_ERR_NOT_FOUND,
 myFormat, mySeveritty);
 if (status != lcudrvOK)
 switch (status) {
 case lcubootError_MOD_NOT_FOUND:
 case lcubootError_ERR_NOT_FOUND: ...
 default: ...
 }

SEE ALSO
 lcubootAutoEnv(1), lcubootAutoGen(1), lcubootAutoLcc(1),
 loadLib(1), symLib(1)

- - - - - -
Last change: 05/11/97-10:58

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 81
8.2.6 lcubootFile(1)

NAME
 lcubootFile,
 lcubootFileOpen - find and open a file

SYNOPSIS
 int lcubootFileOpen(const char *searchPath,
 const char *fileName,
 int openMode)

DESCRIPTION
 Search for a file with a given search path and open it.

 searchPath - colon-separated list of directories
 fileName - relative filename
 openMode - mode passed as second parameter to `open'

RETURN VALUES
 a file-descriptor (> 0) if the file is found and opened
 lcubootERROR if the file is not found or cannot be opened

EXAMPLE
 fd = lcubootFileOpen(getenv("BINPATH"), "lcc", O_RDONLY);
 if (fd < 0) ...
 ...
 close(fd);

CAUTIONS
 The returned file-descriptor should be closed after operation.

SEE ALSO
 open(2), close(2)

- - - - - -
Last change: 05/11/97-10:58

82 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
8.2.7 lcubootLog(1)

NAME
 lcubootLogInit
 lcubootLogFinish
 lcubootLogMsg

 - log of boot messages from lcuboot into a WS file.

SYNOPSIS
 STATUS lcubootLogInit(void);
 STATUS lcubootLogFinish(void);
 STATUS lcubootLogMsg(char *fmt, int arg1, int arg2, int arg3,
 int arg4, int arg5, int arg6)

DESCRIPTION
 These functions supports logging of messages generated while
 executing the LCU's bootScript.
 Messages are logged into the file lcubootLogFile, this file is
 located in the boot WS in the directory $VLTDATA/ENVIRONMENTS/<lcuEnv>.

 lcubootLogInit - Open the log file and adds its file
 descriptor to the VxWorks logging system. To avoid that the
 logfile size grows indefinetely, it is re-created
 every time the boot process is started and the file
 size is greater tha 0.

 lcubootLogFinish - Logs "lcuboot end" in the logFile,
 closes it and deletes the file descriptor from
 the VxWorks's logging system.
 If lcubootLogInit have not been called or if it have
 failed nothing is done.

 lcubootLogMsg - Behaves exactly like vxWorks's logMsg, but
 it flushes the buffer of the logfile.
 If lcubootLogInit have not been called or if it have
 failed nothing is done.

RETURN VALUES
 lcubootLogInit - lcubootERROR if it fails to open the
 logFile, otherwise lcubootOK.
 lcubootLogMsg - lcubootOK.
 lcubootLogFinish - lcubootOK.

EXAMPLES
 lcubooLogInit
 lcubootLogMsg("hello %d %d %d testing ...",1,2,3,0,0,0)
 lcubootLogFinish

SEE ALSO
 logLib

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 83
- - - - - -
Last change: 05/11/97-10:58

84 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
8.3 Directory Reference

The following sections contain the manual pages for the directory formats for environments.

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 85
8.3.1 ENVIRONMENTS_LCU(5)

NAME
 ENVIRONMENTS_LCU - LCU standard environment directory

SYNOPSIS
 $VLTROOT/templates/forEnvs/LCU/ (template)
 $VLTDATA/ENVIRONMENTS/<env>/ (target)

DESCRIPTION
 The directory contains the files needed by an LCU environment:

 $VLTDATA/
 |
 |--ENVIRONMENTS/
 | |
 | |--<env>/
 | | |
 | | |-- PROCESSES
 | | |-- bootScript
 | | |-- devicesFile
 | | |-- lcubootLogFile
 | | |-- logfile
 | | |-- rebootFile
 | | |-- userScript
 | | |
 | | |--dbl/
 | | | |--Makefile
 | | | |--DATABASE.db
 | | | |--USER.db
 | | |
 | | |--DB/
 : :

 Each file is created from a template available in $VLTROOT.

 <env> name of the LCU environment. Must begin with `l' (ell).

FILES
 The standard template can be copied with envsCreate(1).

 The actual target should be located under:

 $VLTDATA/ENVIRONMENTS/<env>/

 The directory contains the following files and sub-directories:

 Name Purpose
    ~~~~~~~~~~~~~~~~~       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    PROCESSES               List of processes that accept commands
    bootScript              Executed during start-up
    devicesFile             Defines LCC software devices
    logfile                 Used by LCC
    lcubootLogFile          Used by LCC
    rebootFile              Used by LCC
    userScript              For user definition during start-up
    dbl/                    Database source directory
    dbl/DATABASE.db         Standard database
    dbl/Makefile            Accepts `make db' to build database branch



86 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
    dbl/USER.db             Configurable database part
    DB/                     Directory branch generated by `make db'

ENVIRONMENT
    VLTROOT - path to the VLT constant text area
    VLTDATA - path to the VLT variable data area

SEE ALSO
    envsCreate(1)

- - - - - -
Last change:  02/11/98-14:22



VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 87
8.3.2 ENVIRONMENTS_QSEMU(5)

NAME
    ENVIRONMENTS_QSEMU - QSEMU (CCS-Lite) standard environment directory

SYNOPSIS
    $VLTROOT/templates/forEnvs/QSEMU/       (template)
    $VLTDATA/ENVIRONMENTS/<env>/            (target)

DESCRIPTION
    The directory contains the files needed by an QSEMU environment:

         $VLTDATA/
           |
           |--ENVIRONMENTS/
           |        |
           |        |--<env>/
           |        |    |
           |        |    |-- CcsEnvTable
           |        |    |-- PROCESSES
           |        |    |
           |        |    |--dbl/
           |        |    |    |--Makefile
           |        |    |    |--DATABASE.db
           |        |    |    |--USER.db
           |        |    |
           |        |    |--DB/
           :        :

    Each file is created from a template available in $VLTROOT.

    <env>  name of the QSEMU environment.
    Must begin with `w' and should end with `qs'.

FILES
    The standard template can be copied with envsCreate(1).

    The actual target should be located under:

            $VLTDATA/ENVIRONMENTS/<env>/

    The directory contains the following files and sub-directories:

    Name                    Purpose
    ~~~~~~~~~~~~~~~~~       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 PROCESSES List of processes that accept commands
 CcsEnvTable Process definitions
 dbl/ Database source directory
 dbl/DATABASE.db Standard database
 dbl/Makefile Accepts `make db' to build database branch
 dbl/USER.db Configurable database part
 DB/ Directory branch generated by `make db'

ENVIRONMENT
 VLTROOT - path to the VLT constant text area
 VLTDATA - path to the VLT variable data area

88 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
SEE ALSO
 envsCreate(1)

- - - - - -
Last change: 02/11/98-14:22

VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 89
8.3.3 ENVIRONMENTS_RTAP(5)

NAME
 ENVIRONMENTS_RTAP - RTAP standard environment directory

SYNOPSIS
 $VLTROOT/templates/forEnvs/RTAP/ (template)
 $VLTDATA/ENVIRONMENTS/<env>/ (target)

DESCRIPTION
 The directory contains the files needed by an RTAP environment:

 $VLTDATA/
 |
 |--ENVIRONMENTS/
 | |
 | |--<env>/
 | | |
 | | |-- PROCESSES
 | | |-- RtapEnvTable
 | | |
 | | |--dbl/
 | | | |--Makefile
 | | | |--DATABASE.db
 | | | |--USER.db
 | | |
 | | |--DB/
 : :

 Each file is created from a template available in $VLTROOT.

 <env> name of the RTAP environment. Must begin with `w'.

FILES
 The standard template can be copied with envsCreate(1).

 The actual target should be located under:

 $VLTDATA/ENVIRONMENTS/<env>/

 The directory contains the following files and sub-directories:

 Name Purpose
    ~~~~~~~~~~~~~~~~~~~     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    PROCESSES               List of processes that accept commands
    RtapEnvTable.normal     Process definitions for normal operation
    RtapEnvTable.startup    Process definitions for initial DB load
    Rtap*Snap?              Rtap snapshot file for normal operation
    Rtap*Snap?.empty        Rtap snapshot file for initial DB load
    dbl/                    Database source directory
    dbl/DATABASE.db         Standard database
    dbl/Makefile            Accepts `make db' to build database branch
    dbl/USER.db             Configurable database part
    DB/                     Directory branch generated by `make db'

ENVIRONMENT
    VLTROOT - path to the VLT constant text area
    VLTDATA - path to the VLT variable data area



90 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
DATABASE CAPACITY POINTS LICENSE
Rtap*.empty files are configured to work with 1000 points capacity.
To change this, new *.empty files must be generated by :
- modifying RtapEnvTable to start RtapDbStartup manually:
  RtapDbStartup -r
- starting the environment (RtapScheduler -e <...>)
- choosing the option "Create empty database"
- modifying the field "Maximum number of points"
- choosing the option "Accept configuration: startup"
- stopping the environment (RtapShutdown -e <...>)
- renaming newly created files into .empty (RtapDiskDb, RtapHdr*, RtapRam*,
  RtapSnapCtrl)
- restoring RtapEnvTable

Note that when running ls_stat or RtapPerfMon, licenses are displayed in
64 points units (16 units = 1000 points; 125 units = 8000 points).

SEE ALSO
    envsCreate(1)

- - - - - -
Last change:  02/11/98-14:22



VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 91
8.3.4 lcuboot(5)

NAME
    lcuboot - LCU boot-script organization

DESCRIPTION
    After loading the VxWorks image, an LCU sources a boot-script
    to load and initialize all further software it needs.

    Module-specific sub-boot-scripts are called from the main
    `bootScript' of the LCU for each module that shall be initialized.

    For each module there must be a VxWorks boot-script named
    "<module>.boot" in one of the directories stated in FILES
    that loads and initializes the module.
    See Module.boot(5) and Driver.boot(5) for the typical contents
    of that file.

    For each sub-boot-script there should be a man-page named
    "<module>.boot(5)" that explains the contents of the boot-script.

    For each driver sub-boot-script there should be a man-page
    named "<module>(4)" that explains the respective board-hardware
    (jumpers etc.).

FILES
    The files "bootScript" and "userScript" must be located in:

            $VLTDATA/ENVIRONMENTS/<lcu-env>/

    This directory is assigned on to the variable BOOTHOME on the LCU.
    VLTDATA is only defined on the WS, and corresponds to BOOTROOT on LCU.

    Binary files for all modules to be loaded are searched in
    BINPATH, which consists by default of the following directories
    (cpuName is for instance MC68040):

            1. $BOOTHOME
            2. $INTROOT/vw/bin/<cpuName>/<module>
            3. $VLTROOT/vw/bin/<cpuName>/<module>

    The module-boot-scripts are searched in BOOTPATH, which has
    the following order of priority:

            1. $BOOTHOME/<module>.boot
            2. $BOOTROOT/config/<module>.boot
            3. $INTROOT/vw/bin/<cpuName>/<module>.boot
            4. $INTROOT/vw/bin/<module>.boot
            5. $VLTROOT/vw/bin/<cpuName>/<module>.boot
            6. $VLTROOT/vw/bin/<module>.boot

    All boot-scripts are initially installed under "$VLTROOT/vw/bin".

    If you want to insert some changes that shall apply only to
    one specific LCU-environment, then copy the respective script
    from "$VLTROOT/vw/bin/<cpuName>" to "$VLTDATA/ENVIRONMENTS/<lcu-env>".

    If you want to insert some changes that shall apply to all
    LCU-environments not having the above mentioned private version,
    then copy the respective script either to your INTROOT, or



92 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
    from "$VLTROOT/vw/bin/<cpuName>" to "$VLTDATA/config/".

ENVIRONMENT
    VLTROOT - path to global VLT installation area (mandatory)
    VLTDATA - path to global VLT data area (mandatory)
    INTROOT - path to private installation area (optional)

SEE ALSO
    bootScript(5), userScript(5), Module.boot(5), Driver.boot(5)

- - - - - -
Last change:  05/11/97-10:58



VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 93
8.4 Files Reference

The following sections contain the manual pages for the file formats used in the modules.



94 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
8.4.1 bootScript(5)

NAME
    bootScript - LCU standard boot script

SYNOPSIS
    $VLTDATA/ENVIRONMENTS/<env>/bootScript

DESCRIPTION
The LCU boot script allows to load and initialise all the software
running on the LCU:

        . drivers and other support modules,
        . Q Server,
        . LCU Common Software,
        . user applications.

Several configuration sections allow to set-up the boot script for a
specific environment and target system.
This version of the boot script is a generic version that must be
customized for each LCU.
Values to be given to customization parameters are indicated by
letters between angle brackets (e.g. <hostName>) and must be replaced
by the actual values.

The following sections correspond to the recommented order of sections
in the bootScript.

ROOT CONFIGURATION
Configurable environment variables and parameters

Mandatory variables:

    VLTROOT         Path of the VLTROOT area on the boot host.
                    Example:        /vlt/DEC95

Optional variables:

    INTROOT         Path of the INTROOT area on the mounted host.
                    This variable is optional:
                    - if not defined then all files are accessed in VLTROOT
                    - if defined then INTROOT has priority to VLTROOT
                    Examples:       /diskb/userx/INTROOT
                                    /earth/projects/ESO_LCU/INTEGRATION

    MODROOT         Path of the MODROOT area on the mounted host.
                    This variable is optional:
                    - if defined then MODROOT has highest priority.

    BOOTHOME        Path of the home directory in which the LCU bootScript
                    etc. are located. The variable is optional, it can
                    be derived automatically by `lcubootAutoEnvInit'.

Note that the local filenames of xxxROOT can also be fixed to for example
"/VLTROOT" and "/INTROOT", and the assignment to remote filesystems be
done via NFS mounting, see next section.



VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 95
NETWORK CONFIGURATION
Files are accessed through NFS by the LCU boards during system loading and
initialisation and for database loading/unloading and backup/restore
operations.

By default, all exported filesystems of the boot server host are mounted
by VxWorks boot procedure. The NETWORK configuration section allows to
mount filesystems from other hosts on the LCU:

    nfsAuthUnixSet "<hostName>",<userId>,<groupId>
    hostAdd "<hostName>","<ipAddr>"
    nfsMount "<hostName>","<fileSystem>","<localName>"

    <hostName>      Name of remote system. Example: "earth"

    <userId>        Unix user id (*) to be used by the LCU for NFS access.
                    Example: 150

    <groupId>       Unix group id (*) to be used by the LCU for NFS access.
                    Example: 50

                    (*) Can be any existing UNIX user, but conventionally
                        it is the one used by the LCU to boot, namely "vx"

    <ipAddr>        Internet address of remote system.
                    Example: "192.9.200.2"

    <fileSystem>    Name of remote filesystem. Example: "/earth"

    <localName>     Local name for the filesystem. Example: "/earth"

LCUBOOT CONFIGURATION
    The "lcuboot" module should be present under VLTROOT and is loaded
    usually from there. If it is (also) present in INTROOT then it can
    optionally be loaded from there, if explicitly stated.
    The module provides the functions that are used during the
    further execution of the boot-script.

    No user-specific configuration is necessary in this section,
    except that the loading from INTROOT can be enabled.

ENVIRONMENT CONFIGURATION
    The following environment variables can be configured by the user.
    A call of `lcubootAutoEnvInit' automatically defines all variables
    that are left undefined by the user with default values, which will
    fit in most cases.

    LOCALHOST       Unix host name of LCU. Example: "moon"
    LOCALENV        Environment name of LCU. Example: "lmoon"
    LOCALIPADDR     Internet address of LCU. Example: "192.9.200.45"
    LOCALTCPPORT    TCP port number of LCU. Example: 2160

    HOSTNAME        Name of boot server host. Example: "earth"
    HOSTENV         Environment name of boot server host. Example: "wearth"
    HOSTIPADDR      Internet address of boot server host. Ex: "192.9.200.2"
    HOSTTCPPORT     TCP port number of boot server host. Example: 2301

    BOOTROOT        root-directory from which the LCU is booting



96 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
    BOOTHOME        private LCU boot-directory under BOOTROOT
    BOOTDB          directory of LCU boot-database
    LOGFILE         name of LCU log-file

MODULES CONFIGURATION
    Modules are divided into SYSTEM modules (that are usually always
    necessary and should always be loaded in correct order) and USER
    modules (that are normally not always necessary).

    All modules should be loaded first, and initialized after all modules
    have been loaded. Module-specific sub-boot-scripts should be called
    to load (if not already done) and initialize each module.

    The driver modules can normally always be included, because they
    install themselves automatically if corresponding devices are found.

    See lcuboot(5) for the search directories of module images and
    boot-scripts.

DEVICES CONFIGURATION
    All devices are normally automatically installed when corresponding
    hardware is found. To check whether the expected number of devices
    for each device-family have actually been installed, the respective
    line must be uncommented and the expected device-count must be stated.

USER CONFIGURATION
    In this section the USER modules are initialized by calling their
    respective module-boot-scripts.

    After that the "userScript" in the LCU's boot-directory is executed,
    which can have any user-defined contents.

TERMINATION
    Bootstrap terminating actions of LCC.
    No user configuration necessary.

FILES
    See lcuboot(5) for general organization of files.

SEE ALSO
    lcuboot(5), userScript(5), Module.boot(5)

- - - - - -
Last change:  02/11/98-14:22



VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 97
8.4.2 devicesFile(5)

NAME
devicesFile - LCU device table

SYNOPSIS
    $VLTROOT/vw/BOOT/<lcuenv>/devicesFile

DESCRIPTION
The devicesFile lists the software devices controlled by LCC. It
contains the definition of a TABLE attribute of the database used
by LCC (:LCC:DEVICES:deviceTable). The table contains the following
fields:
  - name of software device (Bytes20),
  - name of software device control process (Bytes20),
  - initialisation status of software device (UInt32) [LCC internal use],
  - reply status of software device (Logical) [LCC internal use],
  - simulation status of software device (Logical) [LCC internal use,
    updated by lccDevEnterSim and lccDevExitSim],
  - state of software device (UInt32) [LCC internal use, updated by
    lccSetDeviceState].
The attribute is restored by LCC using the dbRestore function
when the corresponding LCU is rebooted.

EXAMPLES
   <CWP>: :LCC:DEVICES
   <ATTRIBUTE>: deviceTable <TYPE>: Table <REC>: 0 - 2 <FIELDS>: 0 - 5
            "motor1" "MotorControl1" 1 0 0 1
            "motor2" "MotorControl2" 1 0 0 1
            "motor3" "MotorControl3" 1 0 0 1

the values 0 - 2 and 0 - 5 in the above example give respectively the
records in the table and the fields of each record.

For an LCU configured without software devices, the devicesFile
shall contain the following line:

   <CWP>: :LCC:DEVICES

- - - - - -
Last change:  02/11/98-14:22



98 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
8.4.3 userScript(5)

NAME
    userScript - LCU environment user-configurable initializations

SYNOPSIS
    $VLTDATA/ENVIRONMENTS/<env>/userScript

DESCRIPTION
    This script allows to load and initialise application software.
    It is called from the LCU boot script (bootScript) after all
    drivers and LCC Common Software have been loaded and initialised.

FILES
    See lcuboot(5) for general organization of files.

SEE ALSO
    lcuboot(5), bootScript(5), Module.boot(5)

- - - - - -
Last change:  02/11/98-14:22



VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855 99
8.5 Panel Widgets and Libraries

TBD



100 VLT Common Configuration - User Manual - 2.0 VLT-MAN-ESO-17210-0855
___oOo___


	VLT Software
	Environments
	Common Configuration
	User Manual
	Change Record
	The information contained in this manual is intended to be used in the ESO VLT project by ESO and...
	T A B L E O F C O N T E N T S
	1 INTRODUCTION
	1.1 Purpose
	1. a set of GUI panels for manual control of environments.
	2. a set of WS commands to create, start, stop, delete, and check all types of environments. Thes...
	3. a set of LCU library functions that facilitate the boot procedure.

	1.2 Scope
	1.3 Reference Documents
	[1] VxWorks Version 5.3 Programmer’s Guide Wind River Systems
	[2] VxWorks Version 5.3 Reference Manual Wind River Systems
	[3] HOS/ACC - User Manual VLT-MAN-ESO-17230-1023, 1.1
	[4] HOS/ACC - Software User Manual VLT-MAN-ESO-17230-1024, 1.1
	[5] Q-Server Emulator User Manual VLT-MAN-ESO-17210-0422, 3.0
	[6] VLT Software Problem Report Change Request User Manual VLT-MAN-ESO-17200-0981, 2.0 15/01/96

	1.4 Abbreviations And Acronyms
	1.5 Stylistic Conventions
	Very important items are marked in this way (Warning).

	1.6 Naming Conventions
	1.7 Problem Reporting and Change Request
	2 CONFIGURATION DATABASE

	2.1 Purpose of the VCCDB
	2.2 On-line Configuration Access
	2.3 System Configuration Files
	Global configuration files can be derived automatically from the VCCDB. Such a feature will be ad...
	2.3.1 exports (HP) or dfstab (SUN)
	2.3.2 hosts
	2.3.3 services
	2.3.4 logLCU.config
	2.3.5 lqs.boot
	2.3.6 RtapEnvList
	2.3.7 CcsEnvList
	2.3.8 .rhosts
	3 UNDERSTANDING ENVIRONMENTS


	3.1 Types of Environments
	3.2 Tools to Manage Environments
	3.3 Operations on Environments
	3.4 To Setup an RTAP Environment
	3.5 To Setup a QSEMU (CCS-Lite) Environment
	3.6 To Setup an LCU Environment
	3.7 To Create an Environment Off-Line


	4 ENVIRONMENT SETUP - vccEnv
	4.1 Overview
	4.2 Starting from the Command Line
	4.3 Panel Description
	1. Choose an environment with the Environment selector; either select from the menu, or type the ...
	2. Adjust the General Options and LCU Options if the selected defaults (partly taken from the dat...
	3. For LCUs two timeouts are of interest in connection with the Init, Start and Stop actions: one...
	4. The File Options provide a way to specify another directory where the environment files are or...
	5. Press an action-button to perform the operation. The result (OK or FAILED) is displayed in the...

	4.4 Actions

	5 CONFIGURATION OF LCU ENVIRONMENTS - vccConfigLcu
	5.1 Overview
	5.2 Starting from the Command Line
	5.3 Example of Usage
	1. Start the vccConfigLcu panel and select your LCU from the ‘Target LCU’ selector.
	2. Press the ‘Read Files’ action button to parse the contents of existing target files.
	3. If you want to remove some of the User Modules:
	a. select the module to be removed in the ‘User Mod’ listbox
	b. press the ‘Remove’ button on the right
	c. repeat this for each module
	d. eventually also adjust contents of the ‘PROCESSES’ listbox

	4. If you don’t want automatic device installation, but explicit installation checks:
	a. select each device in the ‘Devices’ listbox
	b. set the ‘Count’ scale to the expected number of devices

	5. After your modifications, press the ‘Write Files’ action button to generate the files listed i...
	6. Press the ‘Configure LCU’ action button.
	7. Press the Reboot LCU action button.

	5.4 Panel Description
	5.4.1 Environments Selection
	5.4.2 Root Configuration
	5.4.3 Network Configuration
	5.4.4 Modules Configuration
	5.4.5 Devices Configuration
	5.4.6 Processes
	5.4.7 Target Files
	5.4.8 Actions

	5.5 Known Problems

	6 CONFIGURATION ACCESS FOR PROGRAMMERS
	6.1 Panel Mega-Wigets
	6.2 Programmatic Access from Seqencer-Scripts

	7 THE LCU BOOT ENABLER - lcuboot
	This chapter presents configuration instructions for LCU modules and drivers
	7.1 Purpose of lcuboot
	7.2 Available lcuboot Functions
	7.2.1 lcuboot Automatic Environment Setup
	7.2.2 lcuboot General Module Support
	7.2.3 lcuboot Driver and Device Installation
	7.2.4 lcuboot LCC Support
	7.2.5 lcuboot File Access Support

	7.3 How to create LCU Module-Boot-Scripts
	A “<module>.boot” file is mandatory for every LCU module!
	7.3.1 Module-Boot-Scripts for General Module Installation
	1. Typical simple module installation where only loading is necessary:
	2. Typical more complex module installation:
	3. Typical driver installation (see section 7.3.2 for more):

	7.3.2 Module-Boot-Scripts for Automatic Driver and Device Installation
	1. Probing for existence of devices:
	2. Loading and installing of driver code:
	3. Installation of devices:
	4. Spawning of tasks:


	7.4 How to configure LCUs with lcuboot
	7.4.1 To create a boot-script suitable for lcuboot
	1. Start the vccConfigLcu panel, see section 5.
	2. Select the LCU environment
	3. Press the Read Files action button to update the panel from the existing files
	4. Modify the panel contents
	5. Press the Write Files action button to commit the changes
	6. Reboot the LCU.

	7.4.2 To configure module-boot-scripts for your site
	1. Copy the respective module-boot-script to the host’s configuration directory:
	2. Edit this copy according to your specific needs. It will automatically have priority over the ...

	7.4.3 To configure module-boot-scripts for a specific LCU
	1. Copy the respective module-boot-script to the LCU environment’s home-directory:
	2. Edit this copy according to your specific needs. It will automatically have priority over the ...
	8 REFERENCE


	8.1 User Commands Reference
	8.1.1 envsCreate(1)
	8.1.2 envsKill(1)
	8.1.3 vccConfigLcu(1)
	8.1.4 vccEnv(1)
	8.1.5 vccEnvCheck(1)
	8.1.6 vccEnvCreate(1)
	8.1.7 vccEnvDelete(1)
	8.1.8 vccEnvInit(1)
	8.1.9 vccEnvStart(1)
	8.1.10 vccEnvStop(1)
	8.1.11 vccShow(1)
	8.2 Functions Reference

	8.2.1 lcubootAutoDrv(1)
	8.2.2 lcubootAutoEnv(1)
	8.2.3 lcubootAutoGen(1)
	8.2.4 lcubootAutoLcc(1)
	8.2.5 lcubootError(1)
	8.2.6 lcubootFile(1)
	8.2.7 lcubootLog(1)
	8.3 Directory Reference

	8.3.1 ENVIRONMENTS_LCU(5)
	8.3.2 ENVIRONMENTS_QSEMU(5)
	8.3.3 ENVIRONMENTS_RTAP(5)
	8.3.4 lcuboot(5)
	8.4 Files Reference

	8.4.1 bootScript(5)
	8.4.2 devicesFile(5)
	8.4.3 userScript(5)
	8.5 Panel Widgets and Libraries



