Revision: 1.0
2005-105-17
Documentation

Alessandro Caproni

Configuration DataBase CDB

Software Specification

Alessandro Caproni (acaproni@eso.0rg)

European Southern Observatory

Steve Harrington (sharring@nrao.edu)
National Radio Astronomy Observatory

Keywords: CDB DOC

Institute: Date:

Author Signature: Date:
Approved by: Signature:
Institute: Date:
Released by: Signature:

ALMA CDB
Change Record
REVISION DATE | AUTHOR | SECTIONS/PAGES AFFECTED
REMARKS
1.0 2005-07-04 | Alessandro All
Caproni
Created
1.1 2005-07-11 | Steve Harrington | Al
Merged Alessandro’s draft with my draft, edited, etc.
1.2 2005-07-20 | A. Gaproni | Al
Added Gianluca’s notes
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
Revision: 1.2 Page 2 of 42

ALMA CDB

Revision: 1.0 Page 3 of 42

ALMA CDB

Table of Contents

I 110 o ¥ T oY 6
1.1 RO EIENCE DO C UM EINES. .. et iies ittt ii it i ieetsieteteet s eesesseesesteseseeassesaaseesaeeeeasseasesestaeeastassastessasnseasensenssn 7
12 A C O Y S ittt ittt ettt et eeee e eeeeee e teeeeeeteesee e eeeteetteeseeneeetestteettetteeteettterratteerretteernaerens 7
7 = 7 T (o 8
S SHrUCTUIE Of 1he CD B.....ieesuireusiirussirnnsurensssrasssssassssassanssssnssssnsssnnssnssnsss 9
4 DAL......iiiiiiiiiiieeennnnesssiisieeierresennnsssssssssasterrrrrssnanasssssssstttertrnsanasnsssssssitetttrrsnnannsnssssssittertennnnnnnnsssnsssnnans 11
4] DA . i iiiiiiiitiiiiieititieeseressess.eiiitesseeesseseessssssseiesssseeseessssssssssiiiettstsesseesssssssssiiitsttssssesecsssrsiiiiicesssirerees 14
4.2 Adding user defined data 10 & COMPONMENT i iuue ittt i it eeiesieeessteeessessstaeesstiesssestestiessenteassensees 15

4.2.1 MapPiNg t0 XSD ...ttt ettt eeeeae et eeeens 16
5 Modifying the data: WDAL and WDAO.........cceueeemzmnnssssssseeieireneesnnnsssssssssseerersessnnnsssssssssssseesnsssssensssssnnss 21
B CODTD AL ...iiieieiesssnsnssssssssssseressssssassssssssssssssrssssssasassssssiiisseEesssssa88S8AAAEALLEEEE e e s e anREARAR AR AR Aaeeerbsnnnnnanns s ennns 24
7 _Command line utilities for dealing With the CDB.........c..iiiiremsssiiiremsssiiireasssssirensssssrrsnssssssssnssssssssnsssssnns 26
7.1 cdbjDALCIlearCache COMMEANG ..i....iiiiieee et et e e et e e ereeetesreeseeesreeeetestesesaeesresenteerereneaeenss 26
7.2 CAD D AL SNUIOOWN COMIMIANA iitiiiitiiit e iiie e sieseete s seeea s saee s eseessseee e teesseeensaseasteseasteesssesasserensseranterensens 27
7.3 COD R EAA COMIMIANA L.ttt ittt i it ieieeieses e iess s tesssesse s seeestessaisee e eesessesaaeeseassesastaeeasassssaesnssensens 27
74 G B BrOW SOl iiieeui ittt ittt e ettt e ettt et ee e te et ee e essee e tessee e eessee e eeeees e eeteer et eeeer e arenterearents 28
7D G DB GO O . . ittt ittt ettt ettt eeee e seeaeeese s sessesseseese s ese e seee e sessseseaesseaeeseatee s teseaeseenssesansssenaseasensen 28
8 Resolving the Configuration Database Reference...........ccuzeeeeerereemnmmnmnssssssrerrreeesnmnmsnsssssrennsssrenssssenans 29
9 Manager Configuration Database........uzzuereemzzsserrennssssreennssssreenssssseeeasssssreensssseresnssssesesnssssesensssensssnsssans 29
10 Container Configuration DatabasSec..ccceeeceisiieeszssiiieeszssiieeenmssirieenmsssiieesssssreeenssiensseessrnnssrnsseensses 30
11 _Component Configuration Database............ccviieeiiiinsiiisssiiiieiisss i 31
12 Characteristic Component Configuration Database..........ccceeeraaesaierrrnnnessiereeiniesnccizeneeeennnne, 31
13 Alternative CDB structure for component’s deployment..........cccccccceemmreererririeeienieeiisssssssssseeeeenaaeeen. 32
14 Hierarchical components and CDB StruCture.........c.uuessesiiismssiissssiiissesiisssssiissss s ssssses s sasnnnees 33
14.1 COMPONENES . XM ittt ittt ittt e ettt eeee et teeee e eeseeees e eeesee e eeese et eteese et tessessnteersnssateeeenaensarens 35
14.2 Hierarchical components as dir€CtOry treivueuiiiiieessiiiiiisiieieeseeiei e eesseetesseerseereerneereeeeens 35
14.3 Hierarchical components as SiNQIE fil@ciiu.iiieiiiii ittt i it i i e eiieseeiesiaieasiesesaeessisanaeaaenss 36
14.4 Deep hierarchy wWith pure-10QiCal NOTESiiieeeniiiiee it e et ieieeeeteeireaeeeereeseteeieeteeeneaeeeeens 36
14.5 Hierarchy with pure-logical nodes and sub-nodes in 0Ne fil€oeeiiiieeeiiiiieeiieiiiieie e ieeeieee, 37
14.6 Putting multiple XML files in the same directory using XINClUAEoouuniiieiiiiiiii i iieieiiaeaenes 37
14.7 Deployment of Dynamic Components in multiple fileS........ccceceuueeueeeeeeiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeee 39
Appendix A. Obsolete CDB Table interfaces.........cccurirmminremrinissrnsssssssssssssses s s s sass e 40

Revision: 1.2 Page 4 of 42

ALMA CDB

Revision: 1.0 Page 5 of 42

ALMA

CDB

Introduction

The Configuration Database (CDB) in ACS serves as a repository for a variety of configuration
data that is needed by the ALMA system. Information contained in the CDB includes
configuration and deployment information for Components, Containers, and the ACS Manager.
This configuration and deployment information consists of data needed during startup or at
runtime for the ALMA system.

In its basic form, the CDB is a set of simple text files (e.g. XML instance documents and XSD
schema documents) that are used to configure the system. Because ALMA is a distributed
system, with various pieces running on different computers simultaneously, it would be costly,
confusing, and a maintenance nightmare to require such configuration files on every machine in
the system. By using a single CDB, maintenance of configuration data is much simpler. At the
same time, the CDB supports development, testing, and configuration of components in the
system, along with the ability to easily and transparently switch between development and
production configurations.

As noted, the CDB can be used to store configuration settings for Components, Containers, and
the Manager. There can be many types of Components in the system and for each type of
Component there can be potentially many instances. Typically', the number of Component
instances which will exist in the system and how those instances will be configured is stored in
the CDB. Similarly, there can be many Containers in the system, and these can be configured in
the CDB. While there will often be only a single Manager, it is possible to have multiple
Managers in certain contexts; in either case, various settings for the Manager(s) can be
configured in the CDB.

For programmers, the CDB API allows both remote and local C++, Java, and Python processes
to read and write the configuration database. In addition, a set of utilities allows the user to
manipulate, browse, and validate the configuration database:

* CDB Browser is a java process to read and write the database through a Graphical User
Interface [RDO7].

* CDB Checker: is a tool to check consistency and syntactical correctness of the CDB
* cdbRead: reads a record writing the output to stdout
* cdbjDALClearCache: clears the cache of the cdb

e cdbjDALShutdown: shuts down the CDB

'In some cases, e.g. dynamic components, it may not be the case that each instance is individually configured in the
CDB:; rather, a single CDB configuration entry may suffice for one to many instances of such components.

Revision: 1.2 Page 6 of 42

ALMA

1.1

1.2

CDB

The directory SACSDATA/config/defaultCDB contains a sample configuration database. This is

the configuration database that is used by default when ACS is installed. This database declares a
number of Component instances that are defined in the ACS example module, acsexmpl, as well

as the Java and Python example modules (jcontexmpl and acspyexmpl).

These Components are provided as examples for the users of ACS and for testing ACS. It is
suggested to make a backup copy of defaultCDB and to modify your own copy. It is also a good
practice to create new Configuration Databases for specific applications, assigning them explicit
names, like corrCDB, instead of using defaultCDB all the time. Each of the items mentioned
above will be described in more detail in the following sections.

Reference Documents

[RDO01] Basic Control Interface Specification, M.Plesko, G.Tkacik, G.Chiozzi -
(http://www.eso.org/projects/alma/develop/acs/OnlineDocs/ACS_Basic_Control_Interface_Spec
ification.pdf)

[RD02] Adaptive Communications Environment (ACE) -
(http://www.cs.wustl.edu/~schmidt)

[RD03] ALMA Common Software Technical Requirements - COMP-70.25.00.00-003-A-
SPE, G.Raffi, B.Glendenning, J.Schwarz
(http://www.eso.org/~almamgr/AlmaAcs/MilestoneReleases/Phase1/ACSTechReqs/Issuel.0/200
0-06-05.pdf)

[RD04] ALMA Common Software Architecture, G.Chiozzi, H. Sommer -
(http://www.eso.org/projects/alma/develop/acs/OnlineDocs/ACS ArchitectureNL.pdf)

[RD05] XML Schema files -
(http://www.eso.org/projects/alma/develop/acs/OnlineDocs/ACS_docs/schemas/index.html)

[RD06] C++ Component/Container Framework Tutorial
(http://www.eso.org/projects/alma/develop/acs/OnlineDocs/BACI_Device_Server_Programming
_Tutorial.pdf)

[RD07] Configuration Database Browser User's Manual
(http://www.eso.org/projects/alma/develop/acs/OnlineDocs/CDB_Browser_Users_Manual.pdf)

Acronyms

Revision: 1.0 Page 7 of 42

http://www.cs.wustl.edu/~schmidt

ALMA CDB

ACS ALMA Common Software
CDB Configuration Database
DAL Data Access Layer
DAO Data Access Object
IOR Interoperable Object Reference
POA Portable Object Adapter
XML Extensible Markup Language
XSD XML Schema Definition

2 Basics

The actual implementation of the database consists of a set of XML files parsed against a set of
XSD files. The user edits these files entering the configuration data; a text editor, an XML
editor, or the cdbBrowser can be used for this purpose. The different configurations can then be
stored using version control software, such as CVS, if desired.

The CDB is a three-tiered architecture including: database clients, a data access layer, and a
database engine.

Revision: 1.2 Page 8 of 42

ALMA

Data client

Read-only
Data interface

CDB

Administration

Read-write
admin

e

DAL/CDB
Server

Database

CDB

3 — Database clients

2 — Database access
laver (DAT)

1 — Database engine

Data clients can be Components (that read the CDB) as well as tools like the cdbBrowser. Data
clients can also write the CDB, changing the actual content of the database, through an
administrative interface. The cdbBrowser utility can also be used to edit the database.

The Data Access Layer (DAL) is the server (middle level) that replies to requests from clients
(upper level), by querying the database (lower level). The interface to the database is the Data
Access Object (DAO), which will be discussed in Section 4.1 . The DAL server is started

automatically as part of ACS (by the acsStart script or by the acscommandcenter graphical tool)
and does not normally need to be started explicitly. The command to start the sever is cdbjDAL

and it is described in section 6.

The database engine is independent of the upper and middle levels and can therefore be changed
transparently. For example, the current implementation of the CDB consists of a set of XML and
XSD files. However, the three-tiered architecture makes it possible to change the CDB engine in
the future, if desired, in a transparent manner. For example, we could change the implementation

of the CDB to a set of plain text files, a relational database, or some other mechanism, without

requiring any changes to the upper layers.

3 Structure of the CDB

The ACS Configuration Database (CDB) addresses ALMA’s needs for defining, accessing, and
maintaining the configuration of the system. This configuration consists of a set of parameters
that have to be configured in a (quasi) persistent store and read at run time. Information

Revision: 1.0

Page 9 of 42

ALMA

$ACS_CDB/CDB

CDB

contained in the CDB includes configuration and deployment information for Components,
Containers, and the Manager. This configuration and deployment information consists of the
data needed during startup or at runtime.

There can be many types of Components in the system and for each type of Component there can
be potentially many instances. Typically®, the number of Component instances which will exist
in the system and how those instances will be configured is stored in the CDB. Similarly, there
can be many Containers in the system, and these can be configured in the CDB. While there will
often be only a single Manager, it is possible to have multiple Managers in certain contexts; in
either case, various settings for the Manager(s) can be configured in the CDB.

The basic structure of the CDB is a directory tree containing various text files (XML, XSD)
describing the system. The directory structure is:

—» MACI
Containers
Components
Manager
> alma
schemas

As seen above, a standard configuration database contains three primary sub-directories:

MACI - This directory contains configuration data for the Manager(s) and Containers,
as well as the main deployment configuration file for Components. The Components'
deployment configuration file contains information needed by the ACS Manager to
determine which Container is responsible for hosting each Component, as well as where
the actual implementation (logic) resides for each Component. Future examples will
elaborate on these points.

alma — This directory contains configuration data, in the form of XML files, that is
required for certain types of Components in the ALMA system; some components
require configuration information in the CDB, while others do not. For example,
CharacteristicComponents (i.e. components with properties) always have configuration
data in the CDB, but simple Components do not require such data. However, both simple

Revision: 1.2

’In some cases, e.g. dynamic components, it may not be the case that each instance is individually configured in the
CDB:; rather, a single CDB configuration entry may suffice for one to many instances of such components.

Page 10 of 42

ALMA

CDB

Components and CharacteristicComponents require deployment information in the
MACI directory (more specifically, in the file: MACI/Components/Components.xml —
this will be explained in more detail later in this document, as well as alternate ways to
organize this data). The XML files here are instance documents of the corresponding
schemas contained in the schemas directory, described below.

* schemas — This directory contains schema (xsd) files which define a type of Component;
each schema defines what individual instances of the Component type are required - or
able in the case of optional information - to define in their XML instance documents
(located under the alma directory tree, described above). The schemas can be used to
define default values, max and min values, units, descriptions, etc. for the properties of
CharacteristicComponents. They can also be used to add custom user-defined
information to the CDB, as described in Section 4.2.

Each CharacteristicComponent instance in the Configuration Database is represented by an XML
file in the alma folder. Each of those XML files is an instance of an XML schema (xsd) file
located in the $ACS_CDB/CDB/schemas directory’. When the XML instance document is
parsed, the XML parser uses the corresponding XML schema to expand things like default
values, etc.

As can be seen from the above discussion, each of these directories can contain various text files
(XML, XSD) to describe the ALMA system configuration. Depending on what kind of
Components and Containers exist in the system, different files may or may not be necessary.
These ideas will be explored in more detail in Sections 12 and 13.

DAL

The Data Access Layer (DAL) is the definition of an API (application programmer’s interface)
for accessing CDB data programmatically; if you are only interested in how to configure the
CDB by hand and do not need to programmatically query or manipulate data in the CDB, you
may skip this section. The DAL is a three-tiered database access architecture. The first tier is the
implementation of the CDB Data Access Object (DAO) interface, the second tier is the DAL
server, and the third tier is data storage (i.e. the database). This three-tiered design maps directly
to the three tiers discussed previously in Section 2, e.g. the DAO interface maps to (i.e. is used
by) data clients, while the DAL server and database are as described in Section 2.

In the DAL architecture, data is accessed through DAOs. The DAO is a representation of one set
of data (i.e. one record in DAL data storage). The DAO has a predefined interface, which is
strongly typed. This means that data is fetched according to its type (long, double, string, etc.).

? There are multiple possible locations for the schemas, see the discussion of the cdjDAL server in Section 6 for
details.

Revision: 1.0 Page 11 of 42

ALMA CDB

Each DAO object can be local or remote; you can request the DAL server to create a DAO as a
remote object or you can request data from the DAL server and create a DAO locally from that
data. As a general rule, when you need small amounts of data it is much easier to create a DAO
on the DAL server and get the required information from it. But if you need to make many
requests on such a DAO, the network overhead will be significant. In such a situation, to save
bandwidth and increase the performance, it is better to get the data from the server and build the
object locally. Conceptually, you can imagine that the DAO object migrates from the remote
machine to the local machine so that its functions are executed locally without network
overhead.

The IDL interface for the DAL is as follows:

interface DAL {
string get_DAO(in string curl) raises (RecordDoesNotExist,XMLerror);
DAO get_DAO_Servant(in string curl) raises (RecordDoesNotExist,XMLerror);
oneway void shutdown();

//data change handling

long add_change_listener(in DALChangelListener listener);
void listen_for_changes(in string curl, in long listenerID);
void remove_change_listener(in long listenerID);

// listing
string list_nodes(in string name);

As mentioned, to access the data in the configuration database, you have to get either a local or a
remote DAO. To get a remote DAO you should call the get_DAQO_Servant method passing the
curl of the record you want to access. If you prefer to create the DAO locally, then you should
call the get_DAO method, which returns an XML string representing the record that must be
used to instantiate the local DAO.

The following C++ code is part of acsexmplFilterWheel.cpp*; it shows how to access a DAO
(Java and Python snippets are also shown):

C++:

1 CDB::DAL_ptr dal_p = getContainerServices()->getCDB() ;
2 CDB::DAO_ptr dao_p = dal_p->get_DAO_Servant(m_fullName.c_str());

Java:
// within context of a try/catch block (see subsequent examples)
1 com.cosylab.CDB.DAL dal = getContainerServices().getCDB();

2 com.cosylab.CDB.DAO dao = dal.get_DAO_Servant(m_fullName) ;

Python:

0 import Acspy.Util.ACSCorba

* This example is part of the acsexmpl module.

Revision: 1.2 Page 12 of 42

ALMA CDB

1 dal = Acspy.Util.ACSCorba.cdb()

2 dao = dal.get_DAO_Servant(m_fullName)

The first step is to get a pointer to the DAL (Java and Python do not use pointers, of course)
from the ContainerServices as shown in line 1. Line 2 shows how to get a remote DAO from the
DAL. The parameter m_fullName is the curl of the record being accessed. In this example we
are accessing the XML describing the Component itself, so the m_fullName is
“alma/FILTERWHEEL” (we will see later the structure of the CDB).

The following examples show how to create a DAO locally:

Ct++:

1 CDB::DAL_ptr dal_p = getContainerServices()->getCDB();

2 CDB::DAO_ptr dao_p = dal_p->get_DAO_Servant(m_fullName.c_str()); //01ld
3 ACE_CString xml(dal_p->get_DAO(m_fullName.c_str()));

4 DAOImpl* dao_local = new DAOImpl(xml.c_str());

Java:

// within the context of a try/catch block; see other examples
1 DAL dal = getContainerServices()->getCDB();

2 DAO dao = dal.get_DAO_Servant(m_fullName); //01d
3 String xml(dal.get_DAO(m_fullName));

TODO - find out how to do this from Heiko

4 DAOImpl dao_local = new DAOImpl (xml);

Python:

1 import Acspy.Util.ACSCorba

2 dal = Acspy.Util.ACSCorba.cdb()

3 dao = dal.get_DAO_Servant(m_fullName) //01d

TODO - find out how to do this from David

4 String xml(dal.get_DAO(m_fullName));
5 DAOImpl dao_local = new DAOImpl (xml);

Line 1 and 2 are the same as before. Line three calls the get_DAO that returns the xml string

representing the record of our component. Eventually, line 4 instantiates a DAOImpl object by
passing the xml string from line 3 as parameter. The local DAOImpl object can be used in the
same way as the remote object, but all the calls will be executed locally thereby reducing the
network overhead. At the present the local DAO in C++ is not fully implemented.

Revision: 1.0 Page 13 of 42

ALMA CDB

41 DAO
The Data Access Object, as mentioned in the previous section, is an interface used to
programmatically access the data of an individual record in the configuration database. The IDL
interface of the DAO is shown below:

interface DAO : ACS::0ffShoot {

long get_long(in string propertyName) ;

double get_double(in string propertyName);
string get_string(in string propertyName);
string get_field_data(in string propertyName);

stringSeqgget_string_seqg(in string propertyName);
longSeq get_long_seg(in string propertyName);
doubleSeqgget_double_seq(in string propertyName) ;

void destroy();
}i

The DAO interface contains typed methods which are used to access the data in the record; the
user must be aware of the type of the data being read in order to invoke the appropriately typed
method.

For example, the following lines show how to read the value of the alarm_timer_trigger attribute
of the cmdAz property’ of the mount component (the full C++ example can be found in the
acsexmpl module):

Ct++:
double att = dao_p->get_double("cmdAz/alarm_timer_trig");
Java:

// within context of a try/catch block (see subsequent examples)
double att = dao.get_double("cmdAz/alarm_timer_trig");

Python:

att = dao.get_double(“cmdAz/alarm_timer_trig”)

The DAO insulates user code from changes in the underlying database and DAL layers. It would
be possible for ACS to change the implementation of the DAO (while leaving the DAO IDL
interface unchanged), such that the implementation used, for example, a relational database; by
leaving the IDL interface unchanged, user code using the DAO would not require any changes.

° The value of that attribute is read from the XML (describing the component specified) he DAO obtained from the
DAL. If this attribute is not explicitly defined in the XML, then it e oned from the schema to the component (f there is
a default value specified in the schema file).

Revision: 1.2 Page 14 of 42

ALMA CDB

4.2 Adding user defined data to a component
In the current implementation of the CDB, each XML file is parsed against a schema (i.e. XSD
file). When creating a new CharacteristicComponent (i.e. a Component with properties), you
have to define its xml description in the alma directory of the CDB. You must also write a
schema file and place it in the config/CDB/schemas directory of the module for the
CharacteristicComponent’. These steps are all described in the BACI programming tutorial
[RDO6].

There are situations when you need to add custom information to the XML description for a
Component in the CDB. In this case you must define the schema accordingly. The FilterWheel
and the LampWheel C++ examples, in the acsexmpl module in the ACS distribution, give two
examples of such a situation.

The simplest situation shows the changes needed to add a simple attribute to the component’s
XML tag. This is shown in the LampWheel example. Suppose we have more then one lamp
wheel in our system and we want to add a string describing the position of each wheel. We can
add this description as an attribute of the tag for the component, e.g. <LAMPWHEEL...>. For
this purpose we have to change both its xsd and xml files’.

In the schema (xsd) file, we have to add the description of the new attribute for the
LAMPWHEEL tag specifying its name, LampWheelDescription, and its type, (xs:string). This is
shown, below:

<xs:complexType name="LAMPWHEEL">

<xs:attribute name="LampWheelDescription" type="xs:string" use="optional"
default="UNDEFINED" />

</xs:complexType>

Then, in the XML file for the Component, the attribute and its value may be specified as shown:

<LAMPWHEEL xmlns="urn:schemas-cosylab-com:LAMPWHEEL:1.0"
xmlns:baci="urn:schemas-cosylab-com:BACI:1.0"
xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
LampWheelDescription="Example of a dumb lamp wheel"

® In order for the schema file to be properly installed at build time (e.g. by using “make install”), the developer must
edit the CDB_SCHEMAS variable of the Makefile. In our example, we have created FILTERWHEEL .xsd in
config/CDB/schemas and we have added the following line in the Makefile:

CDB_SCHEMAS = FILTERWHEEL

7 Only the relevant part of the xml and xsd files are reported in this document. Refer to the ACS distribution for their
complete version.

Revision: 1.0 Page 15 of 42

ALMA CDB

The value of this user-defined attribute is then read in the initialize method of the component
(see source code in acsexmpl module for the complete code listing for C++) with the following
code:

Ct++:

CDB: :DAL_ptr dal_p = getContainerServices()->getCDB();
CDB: :DAO_ptr dao_p = dal_p->get_DAO_Servant(m_fullName.c_str());
char* descr = dao_p->get_string("LampWheelDescription");

Java:

try {
com.cosylab.CDB.DAL dal = getContainerServices().getCDB();
com.cosylab.CDB.DAO dao = dal.get_DAO_Servant(m_fullName);
String descr = dao.get_string(“LampWheelDescription”);

}

catch(alma.acs.container.ContainerException ex) {
// unable to get DAL from the container

}

catch(com.cosylab.CDB.XMLerror ex) {
// problem with the XML in the CDB

}

catch(com.cosylab.CDB.RecordDoesNotExist ex) {
// no record by that name found in CDB

}

Python:

import Acspy.Util.ACSCorba

dal = Acspy.Util.ACSCorba.cdb()

dao = dal.get_DAO_Servant(m_fullName)

descr = dao.get_string(“LampWheelDescription”)

For more complex situations, in order for the DAO to be able to read your user-defined data, the
XML and the XSD must be written following a mapping between the type of the data to be
stored in the XML and the way it is written in the XML/XSD files; this mapping is explained in
Section 4.2.1. You are free to create the XML and the XSD files without following the mapping,
but in that case in order to read the data from the CDB you would have to get the raw XML
(using the get_ DAO method of the DAL) and parse the XML on your own, using whatever XML
parser you prefer. This last situation is out of the scope of this document but you can look at the
acsexmplLampWheel in the acsexmpl module, where the XML is parsed using the expat XML
parser, to see how this can be done.

4.21 Mapping to XSD
In order to extend the XML to add user-defined data to a record of the configuration database,
the XSD must be written according to the following mapping:

Revision: 1.2 Page 16 of 42

ALMA

Revision: 1.0

CDB

Classes: Every class maps to an XSD complex type with the exact same name.
Interfaces: Every interface maps to an XSD complex type with the exact same name.

Inheritance: Single inheritance is implemented using the restriction or extension XML
complex type inheritance. An intermediate type is introduced with an underscore prefix
when both restriction and extension are required simultaneously. Multiple inheritance is
achieved by containing instances of base classes. For example, if D is derived from A
and B, element D will contain subelements A and B, of complex types A and B,
respectively.

Simple attributes: Class attributes which have a simple type are mapped into XML
attributes, whose name is the same as the class attribute. Their types are mapped into the
XSD equivalents (for example, strings map into xs:string).

Complex by-value attributes: Class members which are of a complex type and are
contained by value are mapped into XML sub-elements, whose name is the same as the
class member’s name, and whose type matches the complex type.

Complex by-reference attributes: Class members which are of a complex type and are
contained by reference are mapped into an element of the same name, which has only a
single attribute, ref, of type xs:string. The value of this attribute may be used as a token
with which the dereferencing can be made (e.g., a CURL).

Array attributes: Array attributes are mapped into elements of the same name. The
XML element contains one XML subelement per each element in the array. The XML
subelements form a sequence. If the subelements are simple types, the XML subelement
name is _, and it carries only one attribute whose name matches the name of the simple
type. Otherwise, the name of the subelement is the name of the complex type.

Map attributes: Map attributes are mapped into elements of the same name. The XML
element contains one XML subelement per each element of the map. The subelement has
at least one attribute, Name, which specifies its key. In other respects, maps are
represented in the same way as arrays.

acsexmplFilterWheel is an example that shows how to use this mapping. In this example we
have a filter wheel and we want to persistently store in the CDB the exact position of each slot as
well as the type of each filter mounted. The XML is:

Page 17 of 42

ALMA CDB

01 <FILTERWHEEL FilterWheelDescription="Example" AvailableSlots="6">
02 <position />

03 <desc />

04 <slots />

05 <Filter>

06 <_ Name="Red" Delta="140" Slot="0" />

07 <_ Name="Green" Delta="-346" Slot="3" />
08 <_ Name="Blue" Delta="12" Slot="1" />

09 </Filter>

10 <SlotStep>

11 <cdb:_ long="8123"/>

12 <cdb:_ long="15432"/>

13 <cdb:_ long="23698"/>

14 <cdb:_ long="53140"/>

15 <cdb:_ long="44325"/>

16 </SlotStep>

17 </FILTERWHEEL>

The XML shows the usage of the mapping. It contains

* an array of long describing the step, the position, of each slot of the wheel. The array,
called SlotStep is described in lines 10 to 16: each sub element has a ‘_’ as tag with a
single attribute with the name of the type of the stored value.

* amap of filter with the key represented by the name of the filter. The map, Filter,
extends from row 5 to 9. Here you can see that the tag of each element of the map is *_’
and the key is represented by the attribute Name. Other attributes, Delta and Slot are also
present.

The XSD (schema) for this example is:

0l <xs:schema ... >

02...

03 <xs:complexType name="FILTER">

04 <xs:attribute name="Name" type="xs:string" />
05 <xs:attribute name="Delta" type="xs:integer"/>

06 <xs:attribute name="Slot" type="xs:integer" />
07 </xs:complexType>

08

09 <xs:complexType name="FILTERWHEEL">

10 <XS:sequence>

11 <xs:element name="position" type="baci:ROdouble"/>
12 <xs:element name="desc" type="baci:ROstring"/>

13 <xs:element name="slots" type="baci:ROlong"/>

14

15 <xs:element name="Filter">

16 <xs:complexType>

17 <xXs:sequence>

18 <xs:element name="_" type="FILTER" maxOccurs="unbounded"/>
19 </xs:sequence>

20 </xs:complexType>

21 </xs:element>

Revision: 1.2 Page 18 of 42

ALMA CDB

22

23 <xs:element name="SlotStep" type="cdb:Array"/>

24

25 </xs:sequence>

26

27 <xs:attribute name="FilterWheelDescription" type="xs:string" use="optional"/>
28 <xs:attribute name="AvailableSlots" type="xs:integer" use="required" />

29 </xs:complexType>

30

31 <xs:element name="FILTERWHEEL" type="FILTERWHEEL" />
32</xs:schema>

The structure of the LAMPWHEEL tag is described from rows 9 to 29. An XML document
adhering to the schema will contain only a FILTERWHEEL tag, as described in the schema on
line 31.

The array SlotStep is defined in line 23. The attribute cdb::Array says that it is an array, but does
not specify the type of the elements of the array. The type for the array elements is described in
the XML, as previously mentioned.

The map, Filter, is described in lines 15-21. Line 18 states that the name of each tag is ‘_’ and
the type is filter. Remember, the name must be ‘_’ as previously noted in the mapping
description.

The type of each element of the map is described in lines 3-7. The key, Name, is in line 4 and it
is another element required by the mapping.

The code to read the array of long (for C++) is also shown in the acsexmplFilterWheel module.
After getting the DAL and the DAO, the following line reads the array of long named SlotStep,
returning a CORBA sequence:

Ct++:
CDB::longSeg* 1lngSeq = dao_p->get_long_seqg("SlotStep");
Java:

// within the context of a try-catch block (see other examples)
int longSeq[] = dao.get_long_seq(“SlotStep”);

Python:

longSeq = doa.get_long_seqg(“SlotStep”)

To read the map is slightly more complicated:

Revision: 1.0 Page 19 of 42

ALMA CDB

C++:

01 CDB::stringSeg* fltKeys = dao_p->get_string_seqg("Filter");
02 for (CORBA::ULong t=0; t < fltKeys->length() && t < availableSlots; t++)
03 {

04 char key[64];

05 char deltaName[128]; char slotName[128];
06 strcpy(key, ((*£1tKeys)[t]));

07 sprintf (deltaName,"Filter/%$s/Delta",key);
08 sprintf(slotName,"Filter/%s/Slot",key);
09 int delta = dao_p->get_long(deltaName) ;
10 int slot = dao_p->get_long(slotName) ;

11 ... // Store the data

12 }

Java:

String filterString = "Filter/";

String deltaString = “/Delta”;
String slotString = “/Slot”;
try {
DAO myDAO = m_dal.get_DAO_Servant("alma/FILTERWHEEL") ;
String fltKeys[] = myDAO.get_string_seq("Filter");
for(int t = 0; t < fltKeys.length && t < availableSlots; t++) {
String key = fltKeys[t];
String deltaName = filterString + key + deltaString;
String slotName = filterString + key + slotString;
int delta = myDAO.get_long(deltaName) ;
int slot = myDAO.get_long(slotName) ;

}

catch(com.cosylab.CDB.XMLerror ex) {
// XML error

}

catch(com.cosylab.CDB.RecordDoesNotExist ex) {
// no such record in CDB

}

catch(com.cosylab.CDB.FieldDoesNotExist ex) {
// no such field in CDB

}

catch(com.cosylab.CDB.WrongDataType ex) {
// incorrect data type

Python:

filterString = “Filter/”

deltaString = “/Delta”

slotString = “/Slot”

fltKeys = dao.get_string_seq(“Filter”)

for key in fltKeys:
deltaName = filterString + key + deltaString
slotName = filterString + key + slotString
delta = dao.get_long(deltaName)
slot = dao.get_long(slotName)

The first step is to read the keys(e.g. line 01 in the C++ example code) as an array of string. If
you already know the keys you could optionally skip this step.

Revision: 1.2 Page 20 of 42

ALMA CDB

For each key, to read the Slot and the Delta we need to build the name (as shown in lines 7 and 8
for C++) using the key (e.g. line 6 for C++). Then the Slot and Delta attributes are read with a
get_long (e.g. lines 9 and 10 for C++).

5 Modifying the data: WDAL and WDAO

The DAL and the DAO can only be used to read records or values from the CDB. If you need to
change records in the CDB, you can do one of the following:

* manually edit the XML and/or XSD (using your preferred XML or text editor)
e use the cdbBrowser (see the cdbBrowser manual)

* use the WDAL and the WDAO from inside your program to modify the CDB
programmatically

The WDAL is an IDL interface that extends the DAL with writing capabilities:

interface WDAL : DAL {

WDAO get_WDAO_Servant(in string curl)

raises(RecordDoesNotExist, RecordIsReadOnly, XMLerror);
void add_node(in string curl, in string xml)

raises(RecordAlreadyExists, XMLerror, CDBException);
void remove_node(in string curl) raises(RecordDoesNotExist, RecordIsReadOnly);
void set_DAO(in string curl, in string xml)

raises(RecordDoesNotExist, FieldDoesNotExist, RecordIsReadOnly,

XMLerror, CDBException);

}i

It allows adding or removing a node, to replace an existing node with an xml string, as well as to
get a WDAO remote object.

The WDAUO is an IDL interface that extends the DAO with writing capabilities. It is similar to
the DAO, but adds methods to update values (for each type of variable).

Revision: 1.0 Page 21 of 42

ALMA CDB

interface WDAO : DAO {

void set_long(in string propertyName, in long value)
raises(FieldDoesNotExist, FieldlsReadOnly);

void set_double(in string propertyName, in double value)
raises(FieldDoesNotExist, FieldI[sReadOnly);

void set_string(in string propertyName, in string value)
raises(FieldDoesNotExist, FieldIsReadOnly);

void set_field_data(in string propertyName, in string value)
raises(WrongDataType, FieldDoesNotExist, Field[sReadOnly);

void set_string_seq(in string propertyName, in stringSeq value)
raises(FieldDoesNotExist, FieldI[sReadOnly);

void set_long_seq(in string propertyName, in longSeq value)
raises(FieldDoesNotExist, FieldIsReadOnly);

void set_double_seq(in string propertyName, in doubleSeq value)
raises(FieldDoesNotExist, FieldlsReadOnly);

}:

Both the WDAL and the WDAO follow the mapping described previously. If you do not want to
follow the mapping, then you must write the XML directly by using the WDAL set_DAO
method, passing the XML directly as the second parameter.

ascexmplFilterWheel illustrates a C++ example of the writing capabilities offered by WDAL and
WDAO. The following code updates the Filter map, changing the value of the attribute Delta of
one entry.

Ct+:

01 CDB::DAL_ptr dal_p = getContainerServices()->getCDB();

02 CDB: :WDAL_ptr wdal_p = CDB::WDAL::_narrow(dal_p);

03 CDB::WDAO_ptr wdao_p = wdal_p->get_WDAO_Servant(m_fullName.c_str());
04 ACE_CString deltaStr("Filter/");

05 deltaStr+=name;

06 deltaStr+="/Delta";

07 wdao_p->set_long(deltaStr.c_str(),delta);

Java:

DAL myDAL = null;
try {
myDAL = m_containerServices.getCDB();
}
catch(alma.acs.container.ContainerException ex) {
// unable to get DAL - abort/print out error here..
}

WDAL wdal = WDALHelper.narrow(myDAL) ;

try |

// m_fullName is, e.g., “alma/FILTERWHEEL1”
WDAO wdao = wdal.get_WDAO_Servant (m_fullName) ;

Revision: 1.2 Page 22 of 42

ALMA CDB

String deltaStr = "Filter/";
deltaStr += name;
deltaStr += "/Delta";
wdao.set_long(deltaStr, delta);

}

catch(com.cosylab.CDB.XMLerror ex) {
// XML error

}

catch(com.cosylab.CDB.FieldIsReadOnly ex) {
// requested field is read only

}

catch(com.cosylab.CDB.RecordIsReadOnly ex) {
// requested record is read only

}

catch(com.cosylab.CDB.RecordDoesNotExist ex) {
// requested record does not exist

}

catch(com.cosylab.CDB.FieldDoesNotExist ex) {
// requested field does not exist

Python:

import Acspy.Util.ACSCorba

wdal = Acspy.Util.ACSCorba.cdb()

m_fullName is, e.g., “alma/FILTERWHEELL1”
wdao = wdal.get_WDAO_Servant (m_fullName)
deltaStr = “Filter/”

deltaStr += name

deltaStr += “/Delta”
wdao.set_long(deltaStr, delta)

In Line 1 (C++ example code), a pointer to the DAL is obtained by calling the getCDB method
of ContainerServices. In line 2, the WDAL is obtained via casting using the standard CORBA
narrow technique. In line 3, the remote WDAO is obtained by calling the get. WDAQO_Servant
method; this is very similar to the get_ DAQO_Servant method call shown in Section 4.1.

To write the new Delta value, we first have to write the key (lines 4-6), similar to what was done
when reading its value. In line 5, “name” is the key - for example “Red”.

The following code describes how to write the array of long, SlotStep:

Ct+:

01 CDB::longSeg* 1lngSeq =wdao_p->get_long_seqg("SlotStep");
02 (*1ngSeq)[(CORBA::ULong)slot] = step;
03 wdao_p->set_long_seq("SlotStep", *1lngSeq);

Java:

Revision: 1.0 Page 23 of 42

ALMA CDB

01 int longSeqg[] = wdao.get_long_seq(“SlotStep”);
02 longSeg[slot] = step;
03 wdao.set_long_seq(“SlotStep”, longSeq);

Python:

01 longSeq = wdao.get_long_seqg(“SlotStep”)
02 longSeqg[slot] = step
03 wdao.set_long_seqg(“SlotStep”, longSeq)

In line 1 we read the CORBA sequence (i.e. the array of long), SlotStep. Then in line 2, we
update the slot element of the CORBA sequence with the new value, step. Eventually, in line 3,
we write the entire sequence to the CDB.

6 cdbjDAL

This command starts the Configuration Database service, the process name for which is
cdbjDAL. The cdbjDAL process implements the IDL. DAL (Data Access Layer) interface, which
is the API for the ACS configuration database (CDB). The acsStartORBSRVC script (which is
invoked automatically upon ACS startup via either the acsStart command or from within the
ACS command center GUI) automatically executes it.

The Configuration Database service uses the following algorithm to resolve the path of the
directory where the CDB XML files are located:

e Command line option —root <path>
¢ Environment variable ACS_CDB

Once the path has been resolved, it uses the directory to find the schemas and XML documents
for the CDB.

When cdbjDAL is executed from within acsStartORBSRVC (which is, in turn, called from the
acsStart script and/or when starting ACS from the command center GUI), it is not possible to
pass the —root option. Therefore, in that case the only real usable way of defining the path for the
CDB files is using the environment variable ACS_CDB. The default value for this variable
provided by the login scripts is SACSDATA/defaultCDB, where the ACS installation procedure
puts the standard sample CDB.

At run-time, the DAL server searches for schema definitions, in the given order, in the following
directories:

Revision: 1.2 Page 24 of 42

ALMA

CDB

* $ACS_CDB/CDB/schemas

+ $CWD/../config/CDB/schemas

* $INTROOT/config/CDB/schemas
* $ACSROOT/config/CDB/schemas

cdbjDAL is a DAL server implemented as a JAVA CORBA servant. The main implementation
class is com.cosylab.cdb.jdal.Server. cdbjDAL can use both Jacorb or the JDK ORB. The
command line argument -jacorb is passed down to the Java class by the cdbjDAL startup script,
since in ACS we normally want to use Jacorb. Other implementations of ORBs could be used as
well, but might require slight changes due to the way that exporting the CORBA server is done
(JDAL exports the CORBA server to listen at a specified port and name so the corbaloc from
clients can be used - this is done differently depending upon the ORB vendor, so it should be
checked if another ORB implementation is used). In the following table, other command line
parameters are described:

Parameter name Description

-root The path of the directory where XML data is stored. jDAL
searches data files relative to that directory. When a request is
made for a record, jJDAL will compose the full path to the XML
data depending on this directory. The default is the current
directory.

Example: -root \home\myData

-o <filePath> Specifies the file where jDAL ior should be written. If filePath is
omitted, then DAL.ior file name in current directory is used.

-OAport Specifies a TCP port different from the default

-orbacus This parameter is here for backward compatibility because at the
present ORBacus is no longer supported

-jacorb If this parameter is present then Jacorb is used (for default it uses
JDK ORB)

During its startup, jDAL initializes the XML parser factory using the JAXP standard. This means
that it is possible to replace the XML parser with another JAXP compliant parser. By default,
jDAL uses the Apache Xerces2 Java parser. Replacement with another JAXP parser is just a
matter of ensuring that the classpath encounters a new implementation prior to the Xerces
parser.

Revision: 1.0 Page 25 of 42

ALMA

71

CDB

JDAL scans for all xsd (schema) files in root/schemas directory and in the directories mentioned
above. Schema files found are added as external schema location files. The reason for this is the
fact that jDAL ensures that all data in the system will be checked against its schema. In the case
where a schema file is not found, an error message is printed to the console.

JDAL configures the XML parser to validate each XML file against its corresponding schema
(xsd) file. If the XML parser doesn’t understand the schema language, an error message is
printed and XML CDB entries will be useless.

When a request comes to the jDAL server, it first checks to see if the requested XML entry
exists. If there is no XML entry satisfying the request, a RecordDoesNotExist exception is
raised. After the XML entry is found, the parsing is performed, validating against the schema
file. In cases where a parsing error occurs, jDAL prints an error message and constructs/raises an
XMLerror exception so the client can see what is wrong with the data.

If everything is fine after the parsing phase, jJDAL creates a DAO object or returns the expanded
XML file to the requestor. Instantiated DAOs are transient objects and are destroyed by the POA
when their reference counter drops to 0.

Command line utilities for dealing with the CDB

cdbjDALClearCache command

This command requests the Configuration Database (JDAL implementation) to clear its internal
cache and notify applications (in particular the Manager) that updated data may be available.
Using the cdbjDALClearCache command, it is easy to modify the CDB and make new values
“active” without having to restart ACS processes. The procedure is as follows:

* Using a text editor or XML editor, edit the CDB XML files

* Issue the cdbjDALClearCache command to notify the CDB’s DAL server (jJDAL) that it
should clear its cache

* The Manager automatically gets notified, and then updates and reloads its data from the
CDB upon the next request

The cdbjDALClearCache command is very useful when the user changes the CDB contents and
wants to notify the Manager of the new changes without restarting ACS and the services. The
cdbjDALClearCache command forces the DAL server to invalidate its cache. For each
subsequent new request for data that the DAL server, data is read directly from the configuration
database rather than from the DAL’s cache; this will prevent reading “stale” data from the cache.

If the CDB is edited through the cdbBrowser there is no need to issue a cdbjDALClearCache
command because the cdbBrowser talks directly to jDAL through the WDAL/WDAO interfaces
and the server will update the files after having updated its internal cache. The following figure
explains this behavior:

Revision: 1.2 Page 26 of 42

ALMA CDB

WDALAYDIAD

cdhjDALClearCache * cdhjDAL

File editing Files

When the user edits the CDB using the cdbBrowser, the changes are notified to the server (1)
and then the server updates the files (2). If the user edits the files with a text editor (3) he has to
notify the server about the changes he did by issuing a cdbjDALClearCache command (4). This

command says to the server that the cache it has in memory disagrees with the files on the file
system and has to be refreshed when the data are accessed again.

72 cdbjDALShutdown command
This command shuts down the Configuration Database service. The acsStopORBSRVC script,
which is invoked from the acsStop script (or when stopping ACS from the acscommandcenter
GUI) executes this command, so the user will normally not need to run this command.

It is possible to specify the host and port where the cdbjDAL is running in the command line:
-k corbaloc::<HOST>:<CDB_PORT>/CDB

7.3 cdbRead command
This command is a utility to dump DAOs to the standard output.

The calling syntax is:

cdbRead <DAO name> [-raw]

where <DAO name> is the hierarchical name of the DAO in the CDB, for example cdbRead
/alma/LAMP1. The command produces output such as the following:

Node brightness
description="brightness"
units="%"
min_step="1.0"

Revision: 1.0 Page 27 of 42

ALMA

74

7.5

min_value="0.0"

max_value="100"
default_timer_trig="10000000"
min_timer_trig="10000"
min_delta_trig="0"
default_value="0.0"
graph_min="-1.7976931348623157E+308"
graph_max="1.7976931348623157E+308"
archive_delta="0"

format="%9.4f"

resolution="65535"
archive_priority="3"
archive_min_int="0"
archive_max_int="0"

CDB

The -raw parameter after the DAO name, dumps the DAO as araw XML file.

It is possible to specify the host and port where the cdbjDAL is running in the command line:
-k corbaloc::<HOST>:<CDB_PORT>/CDB

CDB Browser

This graphical application can be used to browse and edit the run-time configuration database
[RDO7]. The cdbBrowser command line accept the —k parameter:

-k corbaloc::<HOST>:<CDB_PORT>/CDB

CDB Checker

This application can be used to check a CDB for consistency and correctness. A separate
document is being prepared to explain its proper usage; explaining its proper usage is therefore
outside the scope of this document.

The synopsis of the cdbChecker command is:

cdbChecker [-v] [path to CDB XML files] [path to CDB XSD files]

All xml files recursively found in [path to CDB XML files] are checked. The optional argument
contains a ":" separated list of files and directories with absolute path. Normally this command
line argument points to the root directory of the CDB to be checked, i.e. it is SACS_CDB/CDB.

If not [path to CDB XML files] is given, $ACS_CDB is used by default.

All xsd files are recursively found in [path to CDB XSD files] are checked in addition to the
standard search path automatically build and passed in the ACS.cdbPath property. The optional

non

argument contains a ":" separated list of files and directories with absolute path.

The other parameters that can be specified in the command line are:

-v Verbose: this option provides details about the checking process

-n Download schemas from the internet

Revision: 1.2 Page 28 of 42

ALMA CDB

-r Disable the recursively search of .xsd and .xml files

8 Resolving the Configuration Database Reference

ACS applications (like acsStartManager or acsStartContainer) use the following algorithm (in
the order listed) to resolve the DAL reference:

e Command line option —d or -DALReference
¢ Environment variable DAL_REFERENCE
* Using generated reference: corbaloc::<hostname>:<dal_port>/DAL

9 Manager Configuration Database

The Configuration Database for the Manager is in the database branch:
/MACI/Managers/Manager. The definition of the configuration parameters for the Manager is in
its schema file: $ACSROOT/config/CDB/schemas/Manager.xsd®.

Important parameters are (for a complete list, consult the schema file):
* CommandLine: Default command-line added to given command-line
* Startup: List of Components to be automatically started on startup
* CacheSize: number of logs to be cached before logging
* MinCachePriority: minimum log priority (messages with lower priorityare ignored)

* MaxCachePriority: maximum log cache priority (messages with higher priority are not

cached and are logged immediately)

For each Component in the system, the Manager must be able to find, on request, all information
needed to return its reference to clients and to start/stop it when commanded. Therefore, the
Configuration Database used by the Manager must contain the mandatory configuration file:
/MACI/Components/Components.xml.

The definition of the Components configuration file is in the schema file:
$ACSROOT/config/CDB/schemas/Components.xsd and consists of an array with one entry per

each known Component, as in the following example:

<_ Name="PBEND_B_01" Code="acsexmplPS" Type="IDL:ALMA/PS/PowerSupply:1.0"
Container="Container"/>

¥ See the schema documentation for further details.

Revision: 1.0 Page 29 of 42

ALMA CDB

The attributes of the array have the following meaning:
* Name: the name of the component

* Code: the code of the component (in UNIX it is typically a shared library name for C+
+). Changing the value of this attribute allows running different implementations of the
same IDL interface.

e Type: the IDL interface implemented by the component

e Container: the container where the component is to be deployed. Changing the value of

this attribute allows relocating the component.

Changing the Code and/or the Container attribute of a component’s entry allows one to run
different implementations of a single IDL interface and/or (re)deploy a component from one
container to another. This operation can be done without restarting ACS in this way:

* stop the component in such a way that it is unloaded

* change the Code and/or Container attribute of the entry of that Component in
Components.xml.

* clear the cache of the CDB with cdbjDALClearCache

* restart the component

10 Container Configuration Database

The Configuration Database for a Container is in the database branch:
/MACI/Containers/<Container name>.

The CDB entry for a C++ Container is optional (defaults are used if not present), while Java
Containers currently do not support storing configuration parameters in the CDB. Python
Containers have only limited support for Container info at the present.

The definition of the configuration parameters for the C++ Container is in schema file:
$ACSROOT/config/{CDB/schemas/Container.xsd

Important parameters are (consult the schema file for the complete list):
* CommandLine: Default command-line added to given command-line

* ManagerReference: The Manager reference in the format
corbaloc::<host>:<port>/Manager

Revision: 1.2 Page 30 of 42

ALMA

11

12

CDB

* Autoload: DLLs to be loaded automatically on Container startup
* CacheSize: Number of logs to be cached before logging
* MinCachePriority: Minimum log priority (messages with lower priority are ignored)

¢ MaxCachePriority: Maximum log cache priority (messages with higher priority are not

cached and are logged immediately)

Whenever the Manager requests a Container for a (C++) Component, it passes to it information
about the DLL to be loaded. Similarly, Java and Python Components require information in the
CDB to allow the Manager to activate them.

Component Configuration Database

For simple ACSComponents, you only need to put static deployment information in the
configuration database; you have to supply some information which the Manager needs for all
statically defined instances of your Component. For example, you should fill in the file:

CDB/MACI/Components/Components.xml

adding entries for the instances you want to statically define.

Characteristic Component Configuration Database

Characteristic Components, i.e. Components implemented according the BACI Design Patterns
[RDO06], keep the configuration for their Properties and Characteristics in the CDB. Each
Characteristic Component looks for its configuration information in the database branch:
/alma/<Component name>. The actual structure of the database depends on the type of
Component, but will essentially contain characteristics for each Property as defined in
$ACSROOT/config/CDB/schemas/BACI.xsd. You can find a detailed description of the format
of the XML file for a CharacteristicComponent in [RDO06].

As we said before, the developer can customize the XML file describing a component by
changing its schema file (see Section 4.2).

Revision: 1.0 Page 31 of 42

ALMA CDB

13 Alternative CDB structure for component’s deployment

Instead of just having one file, Components.xml, in your CDB you have the option to replace it
with a separate directory which includes a single xml file for each Component. To support this
structure, ACS has added an additional schema, Component.xsd (notice that the schema schema
name is singular), to be used instead of the Components.xsd schema that the Components.xml
file uses.

For example, if you previously had $ACS_CDB/CDB/MACI/Components/Components.xml
Where the Components.xml file looked as follows:

<?xml version="1.0" encoding="utf-8"7?>

<Components xmlns="urn:schemas-cosylab-com:Components:1.0"
xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"
xmlns:baci="urn:schemas-cosylab-com:BACI:1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >

<_ Name="MOUNT1" Code="acsexmplMountImpl"
Type="IDL:alma/MOUNT_ACS/Mount:1.0"
Container="bilboContainer"/>

<_ Name="MOUNT2" Code="acsexmplMountImpl"
Type="IDL:alma/MOUNT_ACS/Mount:1.0"
Container="bilboContainer"/>

<_ Name="HELLODEMO1l" Code="alma.demo.HelloDemoImpl.HelloDemoHelper"
Type="IDL:alma/demo/HelloDemo:1.0"
Container="frodoContainer"/>

<_ Name="HELLOLAMP1" Code="alma.demo.LampAccessImpl.LampAccessHelper"
Type="IDL:alma/demo/LampAccess:1.0"
Container="frodoContainer"/>

</Components>

The new CDB structure you would have would look like:

SACS_CDB/CDB/MACI/Components/MOUNT1/MOUNTI .xml
SACS_CDB/CDB/MACI/Components/MOUNT2/MOUNT2 . xml
SACS_CDB/CDB/MACI/Components/HELLO1/HELLO1 .xml
SACS_CDB/CDB/MACI/Components/HELLO2/HELLOZ2.xml

An example of the xml file (C++ example for the MOUNT1.xml) would be

<?xml version="1.0" encoding="utf-8"?>

<Component =xmlns="urn:schemas-cosylab-com:Component:1.0"
xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"
xmlns:baci="urn:schemas-cosylab-com:BACI:1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Name="MOUNT1"
Code="acsexmplMountImpl"
Type="IDL:alma/MOUNT_ACS/Mount:1.0"
Container="bilboContainer"

Revision: 1.2 Page 32 of 42

ALMA CDB

(Java example for HELLO1.xml)

<?xml version="1.0" encoding="utf-8"7?>

<Component xmlns="urn:schemas-cosylab-com:Component:1.0"
xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"
xmlns:baci="urn:schemas-cosylab-com:BACI:1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Name="HELLODEMO1"
Code="alma.demo.HelloDemoImpl.HelloDemoHelper"
Type="IDL:alma/demo/HelloDemo:1.0"
Container="frodoContainer"

About this CDB structure, there are important things to note:

e The Component’s xml filename must match the directory name in which it resides. For
example, if you create $ACS_CDB/CDB/MACI/Components/COMP1, the xml file must
be called COMP1.xml

* Some Components, particularly C++ Components, require instance xml files. This is
usually associated with Components which use properties (i.e.
CharacteristicComponents). In this case the file hierarchy in the
$ACS_CDB/CDB/MACI/Components directory and the $ACS_CDB/alma directory
must match. For example if you have $ACS_CDB/CDB/MACI/Components/MOUNT1/
MOUNT1.xml then you must have $SACS_CDB/CDB/alma/MOUNT 1/MOUNT1.xml

If you are not using properties in C++ you do not need this matching because you do not have an
entry in $ACS_CDB/CDB/alma. Likewise for Java components or Python components, which
usually do not require properties (support for CharactersticComponents in Java and Python is
still not entirely complete), you can call the new directory and xml file anything you want.

14 Hierarchical components and CDB structure

In a small system, with few Components, each Component can be given a simple name and they
can just be deployed using this name by writing entries in the
MACI/Components/Components.xml file. But for a more complex system, this file becomes
very big and it may become difficult to see the relationships between the various Components.

Most systems have a naturally hierarchical logical structure, i.e. it is possible to group
Components according to functional groups and sub-groups and with logical and/or physical (for
hardware devices) containment rules. The ACS CDB allows you to configure Components
according to these rules.

Revision: 1.0 Page 33 of 42

ALMA CDB

The following is an example of a hierarchical structure for the Components of the system, where
the names in BOLD correspond to actual Components, while the other names are simply logical

grouping names and do not correspond to actual Components.

ALMA_DOOR
ALMA_BACK_DOOR
LAMP
CONTROL
ANTENNAS
ANTENNA_1
MOUNT
LAMP_1
POWER_SUPPLY
ANTENNA_ 2
MOUNT
POWER_SUPPLY
ANTENNA_ 3
MOUNT
POWER_SUPPLY
ANTENNA_H
MOUNT
POWER_SUPPLY
TOWER_1
FRONTDOOR
TOWER_H
FRONTDOOR
TestInclude_01
TestInclude_02
TestInclude_03

... dynamic components defined using XInclude ...

From the logical point of view, the complete name of each Component is built taking the
hierarchical path using the '/’ path separator.

For example:

e CONTROL/ANTENNAS/ANTENNA_1
Is a logical entity to group all Components that have to do with ANTENNA_1.

¢ CONTROL/ANTENNAS/ANTENNA_1/MOUNT
Is the actual Component for the Mount of ANTENNA_1

e CONTROL/ANTENNAS/ANTENNA_1/MOUNT/LAMP_1
Is another Component logically in ANTENNA_1
Moreover this LAMP Component is also part of MOUNT

Remember that this is just a logical containment and not a physical containment.

CONTROL/ANTENNAS/ANTENNA_1/MOUNT and

Revision: 1.2 Page 34 of 42

ALMA CDB

CONTROL/ANTENNAS/ANTENNA_1/MOUNT/LAMP_ 1 might be physically deployed
in different Containers and in different hosts’

The configuration of the deployment of the system is done in the branch MACI/Components of
the configuration database.

141 Components.xml
The simplest option consists in listing all Components in the Components.xml file according to
the schema urn:schemas-cosylab-com:Components:1.0 . Hierarchical names can be put here by
putting the complete name with '/' separators in the Name attribute of the Component .

For our example we have simply put here two Components that are at the root level of the
hierarchy:

<?xml version="1.0" encoding="utf-8"7?>
<Components xmlns="urn:schemas-cosylab-com:Components:1.0"
xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"
xmlns:baci="urn:schemas-cosylab-com:BACI:1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xi="http://www.w3.0rg/2003/XInclude">
<_ Name="ALMA_DOOR"
Code="acsexmplDoorImpl"
Type="IDL:alma/acsexmplBuilding/Door:1.0"
Container="Container" />
<_ Name="ALMA_BACK_DOOR"
Code="acsexmplDoorImpl"
Type="IDL:alma/acsexmplBuilding/Door:1.0"
Container="Container" />

</Components>

14.2 Hierarchical components as directory tree

Another option to build hierarchies consists of creating layers:

* one directory per layer with the name of the directory matching the name of the
Component

* one XML file in each directory named <Component-Name>.xml
TOWER _1 is such an example:
A TOWER

* has a main Component

* and contains a FRONTDOOR sub-Component

Therefore we have:

° r example because the LAMP_1 is controlled by an analog I/O board in another computer.
Usually this logical hierarchy means that LAMP_1 is essential for the functioning of the parent node MOUNT and
tivated by it. But this is not a requirement.

Revision: 1.0 Page 35 of 42

ALMA CDB

e TOWER_1 directory

o TOWER_1.xml file, following the urn:schemas-cosylab-com:Component:1.0
schema to describe one single Component

o FRONTDOOR directory

0 FRONTDOOR.xml file, following the urn:schemas-cosylab-
com:Component: 1.0 schema to describe one single Component

With this solution the xml file in each directory describes just a single Component. On the one
hand, this structure makes it very easy to add and remove Components. On the other hand, it is
more difficult to get an overview of the entire CDB structure from the UNIX command line
compared to using a single Components.xml file. The cdbBrowser, a good editor, and/or the
usage of more advanced UNIX commands may be used, however.

14.3 Hierarchical components as single file
The second option is to group an entire sub-hierarchy into one single file.

TOWER_H is such an example:
e It has a TOWER similar to the example above.

« Butin this case, everything is described in the TOWER_H.xml file, following the urn:schemas-
cosylab-com:HierarchicalComponent: 1.0 schema to describe the root component and the
FRONTDOOR sub-component:

<?xml version="1.0" encoding="utf-8"?>

<HierarchicalComponent xmlns="urn:schemas-cosylab-com:HierarchicalComponent:1.0"
xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"
xmlns:baci="urn:schemas-cosylab-com:BACI:1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Name="TOWER_H"
Code="acsexmplBuildingImpl"

Type="IDL:alma/acsexmplBuilding/Building:1.0"
Container="Container" >
<_ Name="FRONTDOOR"
Code="acsexmplDoorImpl"
Type="IDL:alma/acsexmplBuilding/Door:1.0"
Container="Container"/>
</HierarchicalComponent>

This structure gives an advantage when we are dealing with true hierarchical Components that
always must be deployed together. In this way, a single file is sufficient to describe the
deployment of the whole hierarchy.

14.4 Deep hierarchy with pure-logical nodes
In many cases it is useful to group Components under logical nodes that do not correspond to
actual Components.

Revision: 1.2 Page 36 of 42

ALMA

14.5

CDB

For example we want to group all Components in the Control System under CONTROL, but
CONTROL is not a Component itself.

In this case it is sufficient to create a CONTROL directory without putting a Control.xml file and
then sub-directories for the child layers.

The CONTROL/ANTENNAS/... hierarchy is an example of this.

Hierarchy with pure-logical nodes and sub-nodes in one file

One might also want to put multiple sub-nodes inside the same logical node. This is a parallel to
the previous case where we have put the definition of both the TOWER_H component and of its
sub-component(s) FRONTDOOR in a single file.

Let's assume we want to do a similar thing for CONTROL/ANTENNAS/ANTENNA_H and put
the entire ANTENNA definition in a single file.

Since ANTENNA_H is just a logical node and does not correspond to a Component, we cannot
use the Hierarchical Component schema as above. But we can use the Components schema as for
the Components.xml file.We create then the file
CONTROL/ANTENNAS/ANTENNA_H/ANTENNA_H.xml like this:

<?xml version="1.0" encoding="utf-8"?>
<Components xmlns="urn:schemas-cosylab-com:Components:1.0"

xmlns:cdb="urn:schemas-cosylab—-com:CDB:1.0"

xmlns:baci="urn:schemas—-cosylab-com:BACI:1.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:xi="http://www.w3.0rg/2003/XInclude">

<_ Name="MOUNT"
Code="acsexmplMountImpl"
Type="IDL:alma/MOUNT_ACS/Mount:1.0"
Container="Container"/>

<_ Name="POWER_SUPPLY"
Code="acsexmplPowerSupplyImpl"
Type="IDL:alma/PS/PowerSupply:1.0"
Container="Container" />

</Components>

14.6

In principle, the whole CONTROL configuration could be placed in just one single CONTROL.xml
file, but this is not advisable because then we would lose the modularity of the configuration
database.

Putting multiple XML files in the same directory using Xinclude
In all these examples we always have just one single xml file per directory in the hierarchy.

It is also possible to put multiple xml files in the same directory, each with a number of
components inside, by using the recent XInclude and XPointer XML specification.

* We can put Component specifications in separate files to be included in a main
Components.xml

Revision: 1.0 Page 37 of 42

ALMA CDB

e Each of these external files must be a well formed Components description file

e The Components described in such files are included in the main Components.xml using
the following syntax:

<xi:include href="<relative path>/MyIncludeFile.xml" xpointer="element(/1)" />

Using this technique include XML files can be in principle generally used everywhere in the
CDB.
The only hard constraint is that:

e the name of the include file cannot be the <directory>.xml,
because this is the file that the CDB engine will try to load directly when navigating the CDB
structure.

We can put in the Components directory (or in a subsystem sub-directory) the file
IncludeTest.xml

<?xml version="1.0" encoding="utf-8"?>
<Components xmlns="urn:schemas-cosylab-com:Components:1.0"
xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"
xmlns:baci="urn:schemas-cosylab-com:BACI:1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<_ Name="TestInclude_01"
Code="acsexmplPowerSupplyImpl"
Type="IDL:alma/PS/PowerSupply:1.0"
Container="Container"/>
<_ Name="TestInclude_02"
Code="acsexmplPowerSupplyImpl"
Type="IDL:alma/PS/PowerSupply:1.0"
Container="bilboContainer" />
<_ Name="TestInclude_03"
Code="acsexmplPowerSupplyImpl"
Type="IDL:alma/PS/PowerSupply:1.0"
Container="bilboContainer" />
</Components>

* Using the hierarchical CDB structure describe here above, CORRELATORmight have the file
CORRELATOR/ IncludeComponents . xminside the CORRELATOR directory.

* Both files will be included in the main Components . xmleventually together with other component
specifications:

Revision: 1.2 Page 38 of 42

ALMA CDB

<?xml version="1.0" encoding="utf-8"?>
<Components xmlns="urn:schemas-cosylab-com:Components:1.0"
xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"
xmlns:baci="urn:schemas-cosylab—-com:BACI:1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xi="http://www.w3.0rg/2001/XInclude">
<_ Name="ALMA_DOOR"
Code="acsexmplDoorImpl"
Type="IDL:alma/acsexmplBuilding/Door:1.0"
Container="Container" />

<xi:include href="IncludeTest.xml" xpointer="element(/1)" />
<xi:include href="CORRELATOR/IncludeComponents.xml" xpointer="element(/1)" />
</Components>

This technique is particularly useful to define Dynamic Components in multiple files per each

subsystem.

14.7 Deployment of Dynamic Components in multiple files.
DynamicComponents are described in the Component . xm1 file by entries whose name is "*" .

This works fine if we are happy to put all DynamicComponents in the same Components.xml
file. But it is impossible to place their description in a separate, own file, because:

* We would have to create a directory called "*" containind a file calles *.xml

* We would be in any case limited to just one component.

This is a problem when trying to factorize the CDB in a structured and hierarchical way.
It is possible instead to use the recent XInclude and XPointer XML specification.

Using the hierarchical CDB structure describe above , CORRELATORmight have the file
CORRELATOR/IncludeDynamic.xmlnside the CORRELATOR directory:

<?xml version="1.0" encoding="utf-8"?>
<Components =xmlns="urn:schemas-cosylab-com:Components:1.0"
xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"
xmlns:baci="urn:schemas-cosylab-com:BACI:1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<_ Name="=*"
Code="corrDynamic_1"
Type="IDL:alma/MountDynamic_1:1.0"
Container="Container"/>
<_ Name="*"

Code="corrDynamic_2"

Type="IDL:alma/MountDynamic_2:1.0"

Container="corrContainer" />
</Components>

The file will be included in the main Components . xmleventually together with other
component specifications:

Revision: 1.0 Page 39 of 42

ALMA CDB

/>

<?xml version="1.0" encoding="utf-8"?>
<Components xmlns="urn:schemas-cosylab-com:Components:1.0"
xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"
xmlns:baci="urn:schemas-cosylab—-com:BACI:1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xi="http://www.w3.0rg/2001/XInclude">
<_ Name="ALMA_DOOR"
Code="acsexmplDoorImpl"
Type="IDL:alma/acsexmplBuilding/Door:1.0"
Container="Container" />
<xi:include href="CORRELATOR/IncludeDynamic.xml" xpointer="element(/1)"

</Components>

Appendix A. Obsolete CDB Table interfaces

The CDB Table interfaces are now obsolete and should be replaced by the DAL interfaces.

Since the CDB Table is still being used internally and by some user application, we keep here in
appendix the design documentation.

We will remove this appendix when there is no longer code using them.

At the heart of this interfaces to access a Configuration Database, is an abstract interface named
‘Table’ and a simple pattern for registering, creating, accessing, and destroying object instances
that implement interfaces.

The core pattern is a singleton class called TableStorage. Its functionality is accessed through a
small set of exported functions.

Every implementation must be registered in the CDB by providing its factory functions.

Currently there are four different implementations of the Table interface and the CDB module
itself registers them. Those implementations are named INI, IMDB, CCS and DAL.

e INI - data is stored in plain text file.
e IMDB - data is stored in memory only
e CCS -datais stored in the VLT CCS database

* DAL - data is based in XML files and accessed through a remote ACS DAL server and
could be stored depending on the DAL server implementation. This implementation
allows to use the Table interfaces to access the ACS XML based Configuration
Database.

These predefined interfaces and the mechanism for registering/instantiating implementations
provides a very flexible way for using different methods of data storage. Even other

Revision: 1.2 Page 40 of 42

ALMA

CDB

implementations can be mixed and coexist at runtime, completely transparent to the clients. For
example, one Component can use INI while another Component uses CCS, and both of them can
coexist in a container that itself uses a DAL implementation. Components use the CDB method
getDatabase() without worrying about its type, but they can require special type and
configuration if needed.

CDB is a form of shared library and therefore can be used without tight coupling to other ACS
modules. New implementations for the CDB must inherit from the Table interface and provide
its virtual functions. After an interface is implemented, a simple registration function must be
called to register the new implementation to the CDB. The registration function has the
following prototype:

void cdb::registerTable(const char* name, TableFactory pTf);

Parameter name is the name of new implementation while p7fis a factory function. This
function is called from CDB every time a new instance of implementation is required.

The factory function is pretty simple and its declaration is:

Table* createTable(int argc, char** argv, CORBA::0ORB_ptr orb);

For example, a factory function for a CCS table looks like this:

Table* CCS::createTable(int argc, char** argv, CORBA::0ORB_ptr orb)

{

const char* pProcess = "";
if(argec > 0)

pProcess = argv[0];
return new CCS(pProcess);

The CDB module calls this registered function in standard way - using argc, argv. All entries
given by the user at the command prompt are passed to the factory function so that the
implementation is free to interpret command line arguments. In the example given above, the
factory function for the CCS tables uses argv[0] to create a new instance of CCS implementation
since the CCS implementation requires that information. On the other hand, the DAL factory
function simply passes given parameters to the constructor of DAL table, which scans for
keywords in order to configure itself. In such a way, any implementation is free to decide what
parameters to use and how the parameters will be interpreted. An additional parameter in the
factory function prototype is the ORB pointer - orb. This parameter is added for implementations
of the Table interface that want to reuse an ORB instance created by other modules (i.e.,
Activator). Such an implementation is the DAL. The ORB can be resolved by using argc/argv
too, and therefore the third parameter is redundant but it is added to make it more visible to the

developers of new tables. The CDB itself uses one command line parameter named ACS_CDB.

Revision: 1.0 Page 41 of 42

ALMA CDB

This parameter is used to choose which type of registered instances should be used as default.
For example the command line:

maciContainer —-ACS_CDB CCS '

tells CDB to use the CCS implementation as default.

To access an instance of database access, a simple function is exported:

Table* getDatabase(int argc = 0, char** argv = NULL, CORBA::ORB_ptr orb =

CORBA::0ORB::_nil(), const char* defaultTable= NULL, int forceNew = 0);

This function is written in a such way that the programmer simply invokes getDatabase() when
he needs a DAO and forgets about it after that. In other places, the same approach can be used
without worrying about creation, destruction lifetime, and memory leaks of such a constructed
Table object. The TableStorage class will take care of creation of that object and will destroy it if
the programmer forgot to.

The Table interface was chosen because of simplicity for the first integration of the new CDB
with existing modules. The new CDB interface is hidden behind the Table interface and because
of that, existing code can use the new CDB without any modifications.

Revision: 1.2 Page 42 of 42

	1 Introduction
	1.1 Reference Documents
	1.2 Acronyms

	2 Basics
	3 Structure of the CDB
	4 DAL
	4.1 DAO
	4.2 Adding user defined data to a component
	4.2.1 Mapping to XSD

	5 Modifying the data: WDAL and WDAO
	6 cdbjDAL
	7 Command line utilities for dealing with the CDB
	7.1 cdbjDALClearCache command
	7.2 cdbjDALShutdown command
	7.3 cdbRead command
	7.4 CDB Browser
	7.5 CDB Checker

	8 Resolving the Configuration Database Reference
	9 Manager Configuration Database
	10 Container Configuration Database
	11 Component Configuration Database
	12 Characteristic Component Configuration Database
	13 Alternative CDB structure for component’s deployment
	14 Hierarchical components and CDB structure
	14.1 Components.xml
	14.2 Hierarchical components as directory tree
	14.3 Hierarchical components as single file
	14.4 Deep hierarchy with pure-logical nodes
	14.5 Hierarchy with pure-logical nodes and sub-nodes in one file
	14.6 Putting multiple XML files in the same directory using XInclude
	14.7 Deployment of Dynamic Components in multiple files.

