
Atacama
Large
Millimeter
Array

ALMA-xxxx

Issue: 3.1.0-pre

2004-03-02

6
ALMA Common Software

Overview

Gianluca CHIOZZI
European Southern Observatory

Matej Šekoranja
Jozef Stefan Institute

Released by: Signature:

Institute: Date:

Keywords: ACS, Installation, Overview

Approved by: Signature:

Institute: Date:

Author Signature: Date:

ALMA ACS Overview

Change Record
REVISION DATE AUTHOR SECTIONS/PAGES AFFECTED

REMARKS
1.0 2001-09-24 G.Chiozzi All.

Document created from notes prepared by M. Šekoranja
1.0-Rev.1 2001-10-08 G.Chiozzi Added

Added section on Environment Variables.
Added minor details and fixed typos.

1.0-Rev.2 2001-10-23 G.Chiozzi First page
Replaced Advanced Common Software with ALMA Common Software
2001-11-13 G.Chiozzi Sec. 2 and 3
Fixed a few typos.

1.0-Rev.3 2001-11-22 B. Jeram Sec. 2.3.8 and 2.3.9
Added information about ORB ports for maciActivator and maciManager

1.1 2002-04-05 G.Chiozzi All
Modified for ACS 1.1

1.1-Rev.1 2002-06-28 G.Chiozzi All
Updated with suggestions/feedback after first set of installations

2.0 2002-12-06 G.Chiozzi All
Updated for ACS 2.0

2.1 2003-06-09 G.Chiozzi All
Updated for ACS 2.1

2.1.1 2003-07-07 G.Chiozzi All
Updated environment variables section

3.0.0 2003-11-15 G.Chiozzi All
Updated for ACS 3.0

3.0.0.1 2003-12-29 G.Chiozzi All
Updated for ACS 3.0. Fixed errors.

3.0.1.0 2004-02-18 G.Chiozzi All
Updated for ACS 3.0.1 and according to comments from J.Schwarz.
Added captions.
Removed Alarm Display.
Added instructions to start LCU Containers.

3.1.0 2004-05-11 M.Schilling Sec. 2.2, 2.3, 3.2
Now mentions acsList, and general “–help” option. Adminc now outdated.

5.0.4 2006-07-24 G.Chiozzi Sec. 6
Updated ports usage information.

Issue.: 3.1.0-pre Page 2 of 29

ALMA ACS Overview

Table of Contents

1 Summary ... 4

 Glossary..4
 References...4

2 Overview of ALMA Common Software 3.1 .. 4

2.1 ACS Command Center ... 5
2.2 ACS Instance .. 6
2.3 ACS Startup .. 6
2.4 ACS Shutdown .. 7
2.5 ACS Processes ... 8

2.5.1 acsStartContainer .. 8
2.5.2 acsStopContainer .. 8
2.5.3 acsStartManager ... 9
2.5.4 acsStopManager .. 10
2.5.5 acsStartJava .. 10
2.5.6 acsLogSvc ... 10
2.5.7 cdbjDAL .. 10
2.5.8 CORBA Services ... 12
2.5.9 loggingClient .. 13
2.5.10 loggingService ... 14

3 ACS User Interface utilities .. 16

3.1 ACS Command Center ... 16
3.2 Administrator Client ... 16
3.3 CDB Browser ... 16
3.4 Logging User Interface ... 16
3.5 Object Explorer .. 17
 Event Browser..19

4 Structure of the Configuration Database .. 20

 Resolving the Configuration Database Reference..20
 Database configuration files..20
 Manager Configuration Database..20

 Manager's own CDB branch..20
 Component definitions for Manager..21

 Container Configuration Database..21
 Container's own CDB branch..21
 Component’s definitions for Manager...22

 Characteristic Component Configuration Database...22
 Configuration Database...22

5 ACS Environment Variables .. 23

5.1 Most Important environment variables ... 23
5.2 Other environment variables set in .bash_profile.acs and used by ACS: 25
5.3 Environment variables deprecated or not used any more: .. 27

6 TCP Ports Allocation for ACS ... 28

Issue.: 3.1.0-pre Page 3 of 29

ALMA ACS Overview

1 Summary

This is a simple Overview of the ALMA Common Software (ACS) version 3.1. Read
it to get an idea of what is provided and how to get the system up and running. It is
also useful to read this manual if you have been using ACS 3.1 and are upgrading
to 3.1.

This document is not intended to be an introduction to ACS features and concepts.

For details on ACS concepts, architecture and APIs look at the main ACS Web Page1 or
directly at the index page of the ACS 3.1 Online Documentation1 and pick the
documents you are most interested in. The ACS Web Page also contains some
introductory papers presented at conferences that provide an overview of ACS concepts.

Glossary

http://www.alma.nrao.edu/development/computing/docs/joint/draft/Glossary.htm

References

All documents referenced here are available in the online ACS 3.1 documentation

[1] ACS Web Page: (http://www.eso.org/projects/alma/develop/acs)

[2] ACS 3.1 Online Documentation:
(http://www.eso.org/projects/alma/develop/acs/Releases/ACS_4_0_Docs/ind
ex.html)

[3] ACS Installation Manual - v. 4.0

[4] ACS Configuration Database, CDB

[5] VLT Common Software - Installation Manual - VLT-MAN-ESO-17200-
0642 v.1.14

[6] VLT Software - Tools for Automated Testing User Manual - VLT-MAN-
ESO-17200-0908 v.1.5

2 Overview of ALMA Common Software 3.1

The following component diagram shows the processes running in a typical ACS 3.1
session and the main relationships between them.

Issue.: 3.1.0-pre Page 4 of 29

http://www.eso.org/projects/alma/develop/acs/Releases/ACS_3_0_Docs/index.html)
http://www.eso.org/projects/alma/develop/acs/Releases/ACS_3_0_Docs/index.html)
http://www.eso.org/projects/alma/develop/acs

ALMA ACS Overview

access Components

Manager

Container

ComponentClient

Naming_Serv ice

Notif y _Serv ice

loggingServ ice

irserv

irf eed

load idl in Interf ace Repository

login/logout

cdbjDAL

publish logs

CORBA
Serv ices

log

login/logout

access conf ig db

log

ACS
Conf iguration
Database

acsLogSv c

log

loggingClient

collect logs

ACS
Serv ices

Tasks involved in a
typical ACS session

access conf ig db

register ref erences

log

Figure 1- ACS Tasks Diagram

The following sections will provide some introductory details on the functionality
covered by these processes and ACS startup/shutdown procedures.

In general, we assume that there will be one ACS Manager and all CORBA
services running on the main Linux workstation. As of ACS 4.0, it is also now
possible to federate different instances of ACS via ACS Manager federation. There
will be one C++ Container per LCU and possibly other Container processes on multiple
workstations. Java Containers and Clients can run anywhere including MS-Window PCs.

2.1 ACS Command Center

ACS can be started, shutdown and administered from the ACS Command Center GUI.

Issue.: 3.1.0-pre Page 5 of 29

ALMA ACS Overview

Figure 2- ACS Command Center

Through the Command Center you can start/stop ACS services, Manager and Containers
as well as ACS tools like the Object Explorer. Your preferred configuration can even be
saved and reused.

To start the application type the following command:

> acscommandcenter

2.2 ACS Instance

In order to allow multiple users to work in completely separate sandboxes on the same
machine, we have introduced the concept of “ACS Instance”

The environment variable ACS_INSTANCE can assume the values from 0 (default) to 9.

Based on this environment variable (and/or the –b <ACS_instance #> option for most
ACS commands), ports used by ACS services and processes are automatically calculated
according to the rules described in section 6.

Users selecting two different values for ACS_INSTANCE will work without interfering
with one another. Which instances are currently used on a machine can be determined
with the acsList command.

2.3 ACS Startup

Command line commands are available to start and stop ACS processes. Invoking most
of the commands with --help will provide usage information.

Before Containers can be started, ACS services and Manager must be active. Therefore
the following commands must be executed:

Issue.: 3.1.0-pre Page 6 of 29

ALMA ACS Overview

1. CORBA Services and Manager:
> acsStart
This includes also the IDL server, logging (acsLogSvc), and the Configuration
Database (cdbjDAL).
This command returns control when the services and Manager are up and running.

2. any needed Container:
> acsStartContainer <-cpp|-java|-py> <Container name>

3. any clients…

We suggest running each command in an independent window/xterm to be able to look
at the output produced.

The command acsStart will try to start everything according to the value of the
ACS_INSTANCE variable (0 by default). Since there can be only one ACS instance
running for a given value of ACS_INSTANCE, if acsStart finds out that ACS
processes are already running with the selected value, it will automatically select a new
one and print the choice to standard output.

Both acsStart and acsStartContainer, like most other ACS commands, accept the
command line option:

-b <acs instance #>

This overrides the value of the ACS_INSTANCE environment variable.

It should be noted that the time allowed for most of the ACS startup commands to
complete can be increased by increasing the value of the
ACS_STARTUP_TIMEOUT_MULTIPLIER environment variable (an integer greater
than 0). The same behavior can be duplicated by using the following command-line
option available in most startup and shutdown scripts:

-t <integer timeout multiplier value>

This overrides the value of ACS_STARTUP_TIMEOUT_MULTIPLIER.

2.4 ACS Shutdown

ACS processes can be stopped with the following command:

 acsStop [-b <acs instance #>]

The command:

 killACS [-Q]

will instead try to KILL all ACS processes in the host for all ACS_INSTANCE values
and clean things up. The optional –Q parameter will kill ACS processes much quicker
but it will not kill all ACS clients. It is an (almost) last resort option to cleanup a host
from dangling ACS processes. In very rare cases killACS might not be sufficient. The
real last resort is to kill -9 the dangling processes/threads.

Issue.: 3.1.0-pre Page 7 of 29

ALMA ACS Overview

2.5 ACS Processes

2.5.1 acsStartContainer

The acsStartContainer command is used to start ACS containers for C++, Java or
Python. To successfully resolve object interfaces (IDL IDs), C++ containers use the
Interface Repository Service. In order to use BACI recovery, Container must use a
dedicated ORB port (by default 3050 for C++, 3052 for Java, 3054 for Python and
ACS_INSTANCE=0).

The ORB port can be changed using the command line option ––port or (for C++
Containers) the same option in the configuration database entry named Command
Line:

acsStartContainer [––port < 0-25 | precise port number >]

 < –cpp | -java | -py > <Container name>

If the Container is running on the same host as the ACS Manager and there are no other
Containers running on the host, it is not necessary to pass any configuration parameters:

acsStartContainer < –cpp | -java | -py > <Container name>

If the Container runs on another host, the corbaloc for the reference to the manager shall
be given on the command line or in the configuration database:

acsStartContainer
 –m corbaloc::<manager_host>:<manager_port>/Manager
 < –cpp | -java | -py > <Container name>

Manager reference is resolved using algorithm described in 2.5.3.1.

For information on the Container’s CDB data see section 4.

Other command-line options can be examined using the –h option.

Instructions on starting a Container under a VxWorks LCU are available in the following
ACS FAQ:

http://almasw.hq.eso.org/almasw/bin/view/ACS/FAQVxWorksContainerStart

2.5.2 acsStopContainer

acsStopContainer is used to shut down one or more Containers whose reference is
retrieved by name from the Manager. Wildcards can be used to specify the name of the
Container(s) to be shutdown. To resolve Manager’s reference, the algorithm described in
section 2.5.3.1 is used:

acsStopContainer <Container name(s)>

 [–m corbaloc::<computer
address>:<manager_port>/Manager]

Other command-line options can be examined using the –h option.

Issue.: 3.1.0-pre Page 8 of 29

http://almasw.hq.eso.org/almasw/bin/view/ACS/FAQVxWorksContainerStart

ALMA ACS Overview

2.5.3 acsStartManager

ACS provides a Java Manager.

To start the Manager, run the command:

 acsStartManager

By default the Manager ties up TCP port 3000 (for ACS_INSTANCE=0). This can be
changed by using the command-line option –ORBEndpoint (also settable in the
configuration database’s Command Line entry):

–ORBEndpoint iiop://<host>:port

If –ORBEndpoint option is not specified from the command-line or in the
configuration database and the environment variable MANAGER_REFERENCE is
defined, then the port number is extracted from it. The environment variable has to be of
the form:

corbaloc::<manager_host>:<port>/<Manager_name>

Manager uses the Naming Service to map activated Components and some special
references (NameService, InterfaceRepository, Log, LogFactory,
NotifyEventChannelFactory, ArchivingChannel, LoggingChannel). Since Manager is the
central communication point, it is necessary that all applications retrieve the needed
references through the Manager and not directly through the NameService.

acsStartManager [–ORBInitRef
NameService=corbaloc::<ns_host>:
 4000/NameService]

To minimize system configuration, Manager uses the following algorithm to resolve
NameService references:

1. Command-line corbaloc

2. CDB option -ORBInitRef

3. Environment variable NAMESERVICE_REFERENCE

4. Using generated reference:
corbaloc::<hostname>:<ns_port>/NameService

For information on the Manager’s CDB data see section 4. To see other command-line
options for Manager, use the –h option.

2.5.3.1 Resolving Manager reference algorithm

ACS services and clients use the following algorithm to resolve Manager reference via
the API function maci::MACIHelper::resolveManager():

1. Command line option: -m or –managerReference

2. ManagerReference value in the configuration database. This is only applicable to
C++ Containers.

3. Environment variable MANAGER_REFERENCE

4. Using generated reference: corbaloc::<hostname>:<manager_port>/Manager

Issue.: 3.1.0-pre Page 9 of 29

ALMA ACS Overview

2.5.4 acsStopManager

acsStopManager is used to remotely shut down the Manager. To resolve Manager’s
reference, the algorithm described in section 2.5.3.1 is used:

acsStopManager

[–m corbaloc::<computer address>:<manager_port>/Manager]

Other command-line options can be examined using the –h option.

2.5.5 acsStartJava

This script is used on Linux to execute any ACS Java application.
It automatically builds the $CLASSPATH environment variable locating all needed jar
files and of setting all Java properties used by ACS/ABeans Java applications:

acsStartJava <java_class_name>

For example:

acsStartJava alma.acsabeans.examples.PSPanel.PSPanel

Other command-line options can be examined using the –h option.

2.5.6 acsLogSvc

This ACS process activates a logging IDL interface implementation that any CORBA-
aware client can use to generate Log messages of the types specified in the ACS Logging
and Archiving specifications without having to manually format the corresponding XML
string. The acsStartORBSRVC script automatically executes this command.

2.5.7 cdbjDAL

This process provides the IDL DAL (Data Access Layer) interface to the ACS xml-
based configuration database (CDB).

For more details, see section 4 and the Configuration Database manual 1.

2.5.7.1 cdbjDAL command

This command starts the Configuration Database service. The acsStartORBSRVC
script automatically executes it.

The Configuration Database service uses the following algorithm to resolve the path of
the directory where the CDB XML files are located:

1. Command line option –root <path>

2. Environment variable ACS_CDB

Once the path has been resolved, it expects to find CDB XML files in the CDB sub-
directory.

When cdbjDAL is executed from within acsStartORBSRVC it is not possible to
pass the –root option. Therefore the only real usable way of defining the path for the

Issue.: 3.1.0-pre Page 10 of 29

ALMA ACS Overview

CDB files is using the environment variable ACS_CDB. The default value for this
variable provided by the login scripts is $ACSDATA/defaultCDB, where the ACS
installation procedure puts the standard sample CDB.

At run-time, the cdbjDAL service searches for schema definitions, in the given order, in
the following directories:

CDBPATH= $ACS_CDB/CDB/schemas
 $PWD/../config/CDB/schemas:
 $INTROOT/config/CDB/schemas:
 $ACSROOT/config/CDB/schemas
Other command line options:

-o <file> writes in the given file the IOR

-OAport specify a TCP port different from the default

2.5.7.2 cdbjDALClearCache command

This command requests the Configuration Database (jDAL implementation) clear its
internal cache and to notify applications (in particular the Manager) that updated data
may be available.

Using this command, it becomes easy to modify the CDB and get the new values
“active” without having to restart ACS processes:

 Edit with a text editor jDAL CDB XML files

 Issue cdbjDALClearCache command to notify the CDB

 The Manager gets automatically notified and updated and reloads its data from
the CDB at the next request.

2.5.7.3 cdbjDALShutdown command

This command shuts down the Configuration Database service. The acsStopORBSRVC
scripts executes this command.

Useful command line options:

-k corbaloc::<HOST>:<CDB_PORT>/CDB
 Host and port where the cdbjDAL is running

2.5.7.4 cdbRead command

This command is a utility to directly dump DAOs from the Configuration database.

The calling syntax is:

cdbRead <DAO name> [-raw]

where <DAO name> is the hierarchical name of the DAO in the CDB, for example the
command:

 cdbRead /alma/LAMP1

produces the output:

Issue.: 3.1.0-pre Page 11 of 29

ALMA ACS Overview

__
 Node brightness
 description="brightness"
 units="%"
 min_step="1.0"
 min_value="0.0"
 max_value="100"
 default_timer_trig="10000000"
 min_timer_trig="10000"
 min_delta_trig="0"
 default_value="0.0"
 graph_min="-1.7976931348623157E+308"
 graph_max="1.7976931348623157E+308"
 archive_delta="0"
 format="%9.4f"
 resolution="65535"
 archive_priority="3"
 archive_min_int="0"
 archive_max_int="0"
__
Other command line options:

-raw as last parameter after the DAO name, dumps the DAO as a raw
XML file.

 -k corbaloc::<HOST>:<CDB_PORT>/CDB
 Host and port where the cdbjDAL is running

2.5.8 CORBA Services

ACS uses a number of standard CORBA Services, which need to be started before any
ACS specific process.

The scripts
 acsStart (or, more precisely, acsStartORBSRVC)
and
 acsStop (or, more precisely, acsStopORBSRVC)
are used to start one by one the CORBA Services, passing the necessary command-line
parameters. All Services are started on the local host and it is assumed that also the ACS
Manager process will be started on the same host.

In particular, it is necessary to configure each service to run on a specific TCP port (see
chapter 3) and to pass the -ORBDottedDecimalAddresses=1 option to allow
communication with LCUs.

These scripts also start/stop the Logging Service (see 2.5.10), acsLogSvc and cdbjDAL
server.

2.5.8.1 Naming Service (TAO)

Naming_Service –ORBEndpoint iiop://<host>:<ns_port>
 -ORBDottedDecimalAddresses=1

Issue.: 3.1.0-pre Page 12 of 29

ALMA ACS Overview

2.5.8.2 Notify Service (TAO)

TAO Notify Service requires Naming Service to run.

Notify_Service –ORBInitRef
 NameService=corbaloc::<ns_host>:<ns_port>/NameService
 –ORBEndpoint iiop://<host>:<notify_port>
 -ORBDottedDecimalAddresses=1

Where <ns_host> is the host where the Names Service is
running.

2.5.8.3 Interface Repository (MICO)

MICO Interface Repository does not automatically register its reference to the Naming
Service. This has to be done via script and the TAO nsadd tool
($ACS_ROOT/TAO/utils/nslist/nsadd):

$MICO_HOME/bin/ird -ORBNoResolve -ORBIIOPAddr inet:$HOST:
$ACS_IR_PORT --ior $IR_IOR &

$ACE_ROOT/TAO/utils/nslist/nsadd --name
InterfaceRepository --ior `cat $IR_IOR` -ORBInitRef
NameService=corbaloc::$HOST:
$ACS_NAMING_SERVICE_PORT/NameService $ORBOPTS

2.5.8.3.1 Feeding the Interface Repository

The interface repository needs to be given all ACS IDL interfaces. The generic command
syntax is:

acsIrfeed [-IRcorbaloc
 corbaloc::$HOST:$ACS_IR_PORT/InterfaceRepository]

The acsIrfeed command can also be used at any time (and in particular during
development and debugging) to (re-)load speficic IDL interfaces in the Interface
Repository:

acsIrfeed <filename>.idl

2.5.9 loggingClient

Logging client is a simple example of an application that attaches to the Notification
Service, retrieves ACS Logs or Archive Monitors, and displays them on standard output.
It is a structured push event consumer. For its operation the Naming Service is queried to
resolve references of notify channels. The current implementation has the capability of
monitoring the Logging and Archiving channels.

loggingClient LoggingChannel
 –ORBInitRef NameService=corbaloc::<ns_host>:
 <ns_port>/NameService

or

Issue.: 3.1.0-pre Page 13 of 29

ALMA ACS Overview

loggingClient ArchivingChannel
 –ORBInitRef NameService=corbaloc::<ns_host>:
 <ns_port>/NameService

It is often convenient to use "| tee fileName" to store at the same time the logs in
a file.

2.5.10 loggingService

This implements ACS 3.1 Centralized Logger (Telecom Logging Service – see Logging
and Archiving specification). loggingService activates Telecom Logging Service Log and
LogFactory interfaces and creates ArchivingChannel and LoggingChannel (with
domain_name=Logging). All these objects are registered with the Naming Service and
are accessible via Manager using get_service() method.

loggingService requires Naming Service and Notify Service to run.

Running loggingService:

loggingService
 –ORBInitRef NameService=corbaloc::<ns_host>:
 <ns_port>/NameService
 -ORBDottedDecimalAddresses=1
 –ORBInitRef NotifyEventChannelFactory=corbaloc::
 <notify_host>:<notify_port>/
 NotifyEventChannelFactory

where <notify_host> is the host where the Notification Service Event Channel Factory is
running.

Specifying -ORBInitRef NotifyEventChannelFactory option is optional.
NotifyEventChannelFactory reference is obtained from the Name Service, but
-ORBInitRef has higher priority then NS lookup, algorithm:

1. resolve_initial_references

2. Name Service lookup

For more detailed information about logging and archiving, see the Logging and
Archiving specification.

Notice that logs are published on the Notification Channel as XML strings.

If no application (such as loggingClient) listens to the Notification Channel, the logs are
lost.

2.5.10.1Controlling logging behavior

The logging system uses as much as possible the standard Logging APIs of C++ and
Java.

See the ACS Logging System documents for details.

C++ Logging System

C++ Logging system is based on ACE Logging API.

Issue.: 3.1.0-pre Page 14 of 29

ALMA ACS Overview

Several macros are defined in $ACSROOT/include/logging.h to make message
logging simpler for user applications. All messages which are logged using the logging
macros are sent to the ACS loggingService except when the application is unable to
connect to the loggingService (for example, if the loggingService is not running). In this
case, log messages are sent to a local text file. Each process/thread writes its own logging
text file, by appending its process name and PID to a standard root.

By default, the standard root name is:

$ACSDATA/tmp/acs_local_log_

For example, ACS Manager would write a file like:

$ACSDATA/tmp/acs_local_log_maciManager_12345

It is possible to change the default destination for ALL ACS temporary files from
$ACSDATA/tmp to any other directory by setting the environment variable
$ACS_TMP.

It is possible to change the root name for logging files by setting the environment
variable $ACS_LOG_FILE. If $ACS_LOG_FILE is set, $ACS_TMP is ignored.

The environment variable ACS_LOG_STDOUT can be used to control the amount of
information sent to stdout at a per-process level. By default, only log messages with
priority equal or higher than LM_INFO are sent to stdout. If ACS_LOG_STDOUT>0,
all log messages with priority >= ACS_LOG_STDOUT are also sent to stdout.

The C++ logging system caches log messages on a per-process basis before transmitting
them to the centralized logging service. Several configuration database parameters
control whether messages are to be logged at all, which messages should be cached
locally, and which messages should be transferred immediately to the logging service (or
the local log file):

 Messages with a priority less than MinCachePriority are not logged at all.
Manager and Container provide a CDB point with this characteristic (see sections 4
and 4). By default, MinCachePriority is set to zero so that all messages are
logged.

 Messages with a priority greater than MinCachePriority but less than or equal
to MaxCachePriority are cached locally. When the cache fills up, all cached
messages are transferred to the logging service.

 Messages with a priority greater than MaxCachePriority are logged
immediately, bypassing the cache.

 The cache size for Manager and Container can be controlled in their CDB definition
using the CacheSize characteristic (see sections 4 and 4). If CacheSize is set
to 0 or 1, all messages (except those with priority less than MinCachePriority)
are logged immediately without caching.

For more information, look at the online documentation for the LoggingProxy class.

This is the class used by applications to interact with the loggingService.

Java Logging System

The ACS Java Logging API is based on the official JSDK Java Logging java.util.logging
and it has been integrated with the implementation of the CORBA Telecom Logging
Service and the rest of the ACS.

Issue.: 3.1.0-pre Page 15 of 29

ALMA ACS Overview

3 ACS User Interface utilities

ACS provides some generic GUIs to administer and interact with a running system.

Each of these applications is described in detail in a specific user manual.

3.1 ACS Command Center

Used to startup/shutdown and administer ACS. Already described briefly in section 2.1

3.2 Administrator Client

The Administrator Client is outdated; its functionality is now provided by the ACS
Command Center (see above).

3.3 CDB Browser

This application is used to browse the run-time configuration database.

Figure 3- CDB Browser

3.4 Logging User Interface

This application is used to display logging system messages.

Issue.: 3.1.0-pre Page 16 of 29

ALMA ACS Overview

You can run it with the command:

> jlog

Figure 4- Logging GUI

3.5 Object Explorer

This application is used to navigate through the hierarchy of Components in the system.
It allows you to call each method, get/set Properties and view Characteristics, install
monitors, and draw trend plots.

You can run it with the command:

> objexp

Issue.: 3.1.0-pre Page 17 of 29

ALMA ACS Overview

Figure 5- Object Explorer

Figure 6- Property Monitor trend plot

You can pass to the objexp command-line all options and Java virtual machine
parameters that can be passed to the acsStartJava command.

In particular you can pass the JVM option

 -Dobjexp.pool_timeout=<time in ms>

to set DSI pool timeout, that by default is 5000ms.

For example the following command line:

objexp -m corbaloc::te98:3000/Manager -Dobjexp.pool_timeout=60000

will configure the Object Explorer to wait 60 seconds before assuming that a timeout is
occurred and to connect to the Manager explicitly specified on the command-line.

Issue.: 3.1.0-pre Page 18 of 29

ALMA ACS Overview

Event Browser

A browser designed to monitor all events generated by the ACS event channel APIs was
introduced with ACS 3.1. A few notes on this:

 The name of the executable which starts the GUI is acseventbrowser.

 This GUI is started automatically by clicking the Event Browser option in the
Tools menu of acscommandcenter.

Figure 8 – Event Browser

Figure 9 – Panel started by clicking the “fridge” channel in the Channels box.

Issue.: 3.1.0-pre Page 19 of 29

ALMA ACS Overview

4 Structure of the Configuration Database

For more information on the ACS 3.1 Configuration Database syntax, look at the ACS
Configuration Database manual1.

Resolving the Configuration Database Reference

ACS applications (like acsStartManager or acsStartContainer) use the following
algorithm to resolve the DAL reference:

1. Command line option –d or -DALReference

2. Environment variable DAL_REFERENCE

3. Using generated reference: corbaloc::<hostname>:<dal_port>/CDB

Database configuration files

Each Configuration Database is defined by a set of XML ASCII files in the directory:

$ACS_CDB/CDB

A standard configuration database contains three sub-directories:

alma – This directory contains configuration data for Components in the ALMA
system, if they actually have configuration stores in the CDB.
CharacteristicComponents ALWAYS have configuration data, but simple
Components do not require having any data in the CDB..

MACI – This directory contains configuration data for MACI Manager, Containers
and the Components’ main configuration file used by ACS Manager to map
Component names into their implementation and the Container responsible for them.

schemas – This directory contains schema files used to resolve default values and
inheritance in CDB DAO instances. Each DAO instance in the Configuration
Database is represented by an XML file and shall be an instance of an XML Schema
file in the schemas directory or in the config/CDB/schemas sub-directory of
$INTROOT or $ACSROOT. When the cdbjDAL server gets a request for a DAO,
the XML parser uses the corresponding XML Schemas to expand the complete
structure of the DAO.

Manager Configuration Database

Manager's own CDB branch

The Configuration Database for the Manager is in the database branch:

/MACI/Managers/Manager

 The definition of the configuration parameters for the Manager is in schema file:

$ACSROOT/config/CDB/schemas/Manager.xsd

Important parameters are:

Issue.: 3.1.0-pre Page 20 of 29

ALMA ACS Overview

CommandLine: Default command-line added to given command-line
Startup: List of Components to be automatically created on
startup

/// Logging configuration data
CacheSize 25 number of logs to be cached before
 logging
MinCachePriority 0 minimum log priority
 messages with lower priority
 are ignored
MaxCachePriority 31 maximum log cache priority
 messages with higher priority are not
 cached and are logged immediately

Component definitions for Manager

For each Component in the system, the Manager must be able to find on request all
information needed to return its reference to clients and to start/stop it when commanded.

Therefore, the Configuration Database used by the Manager MUST also contain the file:

/MACI/Components/Components.xml

The definition of the Components configuration file is in the schema file:

$ACSROOT/config/CDB/schemas/Components.xsd

This consists of a table with one record per each known Component, like in the
following example:

<_ Name="PBEND_B_01" Code="acsexmplPS"
 Type="IDL:ALMA/PS/PowerSupply:1.0"
 Container="Container"/>

- Three attributes must be defined for each of these instances:

/// Executable for the Component
/// i.e. Component`s DLL name ('xxx'
/// on Unix becomes 'libxxx.so')
/// for C++ Container Components (or Java class for Java
/// Components)
Code for example "ps"

/// Component`s type name, i.e. its IDL interface
Type for example "IDL:ALMA/PS/PowerSupply:1.0"

/// Name for the Container where the
/// Component shall be activated
Container for example "abm1”

Changing this information allows relocating Components and replace versions without
having to stop and recompile the system.

Container Configuration Database

Container's own CDB branch

The Configuration Database for a C++ Container is in the database branch:

Issue.: 3.1.0-pre Page 21 of 29

ALMA ACS Overview

/MACI/Containers/<Container name>

The CDB entry for a C++ Container is optional (defaults are used if not present), while
Java Containers currently do not support storing configuration parameters in the CDB.
Python Containers have only limited support for Container info at the present.

The definition of the configuration parameters for the C++ Container is in schema file:

$ACSROOT/config/CDB/schemas/Container.xsd

Important parameters are:

CommandLine: Default command-line added to given command-line
ManagerReference Manager reference in the format
 corbaloc::<host>:<port>/Manager
Autoload: DLLs to be loaded automatically on Container startup

/// Logging configuration data
CacheSize 25 number of logs to be cached before
 logging
MinCachePriority 0 minimum log priority
 messages with lower priority
 are ignored
MaxCachePriority 31 maximum log cache priority
 messages with higher priority are not
 cached and are logged immediately

Component’s definitions for Manager

Whenever the Manager requests a Container for a Component, it passes to it information
about the DLL to be loaded.

Characteristic Component Configuration Database

Characteristic Components, i.e. Components implemented according the BACI Design
Patterns, keep the configuration for their Properties and Characteristics in the CDB.

Each Characteristic Component looks for its configuration information in the database
branch:

/alma/<Component name>

The actual structure of the database depends on the type of Component, but will
essentially contain characteristics for each Property as defined in
$ACSROOT/config/CDB/schemas/BACI.xsd

Configuration Database

After the installation of ACS 3.1, the directory

 $ACSDATA/config/defaultCDB:

will contain a sample configuration database.

This is the configuration database that is used by default when ACS is started.

Issue.: 3.1.0-pre Page 22 of 29

ALMA ACS Overview

This database declares a number of Component instances that are defined in the ACS
example module acsexmpl as well as the Java and Python example modules
(jcontexmpl and acspyexmpl).

These Components are provided as examples for the users of ACS and for testing ACS.

It is suggested to make a backup copy of defaultCDB and to modify your own copy.
It is also a good practice to create new Configuration Databases for specific applications,
assigning them explicit names, like corrCDB, instead of using defaultCDB all the time.

But do NOT forget to export the environment variable ACS_CDB to point to the
configuration database instance you want to use.

5 ACS Environment Variables

The configuration of ACS is determined by a number of environment variables.

Generally, these variables are set to a proper default value by the default login script
whose template is available in $ACSROOT/config/.acs/.bash_profile.acs. Each user has
to take care of copying this script into his home directory (typically in the .acs directory),
eventually adapting it and executing it to prepare the environment.

Some variables have been already described in the previous sections, but we give below
a list of the most interesting ones.

5.1 Most Important environment variables

ACS_CDB (default: $ACSDATA/config/defaultCDB)
Location of the configuration database files to be used when cdbjDAL is started.

ACSDATA (default: /alma/ACS-<version>/acsdata)
The root directory where all ACS configuration files (including Configuration
Database files) are stored.

ACS_LOG_FILE ($ACSDATA/tmp/acs_local_log_, when not set)
Location and root file name for ACS log files. Each process/thread generates a
unique file name by appending process name and PID to the root file name. See
section 2.5.10.1.

ACS_LOG_STDOUT
Control the amount of information sent to stdout.
By default, only LM_INFO log messages are sent to stdout.
See section 2.5.10.1.

ACS_NAME_SERVICE (default:
$MANAGER_COMPUTER_NAME:4000/NameService)
CORBA Initial Reference for the Naming Service.
Usually the reference of the Manage is sufficient for applications, but some special
applications, like cdbjDAL need it.

ACSROOT
The place where ACS CMM modules are installed. For ACS 3.1 this is typically:
/alma/ACS-3.1/ACSSW

Issue.: 3.1.0-pre Page 23 of 29

ALMA ACS Overview

ACS_STARTUP_TIMEOUT_MULTIPLIER
An integer value used to increase the amount of time ACS startup scripts are given
to execute. For example, setting this value to “3” would effectively triple the
amount of time the acsStart script has to finish before exiting abnormally.

ACS_TMP ($ACSDATA/tmp/, when not set)
The path where all ACS temporary files are written.
This environment variable “cooperates” with the following other variables to allow
specifying in a flexible way where ACS temporary files are written:

 ACS_LOG_FILE

 ACS_BACI_RECOVERY_FILE

 ACS_RECOVERY_FILE

The following policy is used to determine where an ACS temporary file is written:

 if none of the above is defined, all files are put in the $ACSDATA/tmp directory

 if ACS_TMP is defined, then temporary files are put in the ACS_TMP directory

 if ACS_LOG_FILE, ACS_BACI_RECOVERY_FILE or
ACI_RECOVERY_FILE_NAME is/are defined than file(s) should are created
using the env. variable(s) and ACS_TMP is ignored

The utility function getTempFileName() allows applications to generate a
temporary filename according to this policy.

ALMASW_RELEASE
The current ACS release. This is ACS-<version>.
This is (together with ALMASW_ROOTDIR) the main variable used to derive all
other environment variables; for example, ACSROOT is built as:
 $ALMASW_ROOTDIR/$ALMASW_RELEASE/ACSSW
 Users can overwrite the default value to switch between different versions of ACS.

ALMASW_ROOTDIR
The root directory for all ALMA ACS software components and all releases.
This is (together with ALMASW_RELEASE) the main variable used to derive all
other environment variables.
By default it points to /alma.

INTROOT
The integration area where user software is installed.
Typically each user has their own integration area.
See the ACS Installation Manual1 for details

MANAGER_REFERENCE
CORBA Reference for the MACI Manager (see section Error: Reference source not
found for details)

NAMESERVICE_REFERENCE
CORBA Reference for the Naming Service (see section Error: Reference source not
found for details)

Issue.: 3.1.0-pre Page 24 of 29

ALMA ACS Overview

5.2 Other environment variables set in .bash_profile.acs and used by ACS:

CLASSPATH

 form: <JARFILE01>:<JARFILE02>:<JARFILE03>

 used by: Java runtime and compile time

 Tells Java where to look for Java class files

JAVA_HOME

 form: <DIRECTORY>

 used by: Java tools

 Tells Java/Java tools where to find the Java installation currently being used.

ACE_ROOT

 form: <DIRECTORY:$ACE_ROOT_DIR/linux>

 used by: ACS environment initialization

 This tells where ACE is installed (used by ACE)

ACE_ROOT_DIR

 form: <DIRECTORY>

 used by: ACS environment initialization

 ACS environment variable which tells where the various architecture specific
versions of the ACE wrappers can be found

ALMASW_RELEASE

 form: <DIRECTORY>

 used by: ACS environment initialization

 Tells what is the version of the current ACS system

ALMASW_ROOTDIR:

 form: <DIRECTORY:/alma>

 used by: ACS environment initialization

 Tells where the root of all ALMA software is found.

ALMASW_INSTDIR

 form: <DIRECTORY:$ALMASW_ROOTDIR/$ALMASW_RELEASE>

 used by: ACS environment initialization

 Tells where ALMA subsystems are installed.

Issue.: 3.1.0-pre Page 25 of 29

ALMA ACS Overview

ANT_HOME

 form: <DIRECTORY>

 used by: ACS make system

 Tells where the ANT make system can be found

OMNI_ROOT

 form: <DIRECTORY>

 used by: ACS make system

 Tells where OmniOrb is installed.

OMNIORB_CONFIG

 form: <DIRECTORY:$OMNI_ROOT/config>

 used by: OmniOrb

 Tells where the configuration files for OmniOrb are found.

IDL_PATH

 form: -I<DIRECTORY> -I<DIRECTORY> -I<DIRECTORY>

 used by: ACS make system

 Where to find IDL files.

JACORB_HOME

 form: <DIRECTORY>

 used by: ACS make system

 Where JacOrb is installed.

PYTHON_ROOT

 form: <DIRECTORY>

 used by: ACS make system

 Where Python is installed

PYTHONPATH

 form: <DIRECTORY01>:<DIRECTORY02>:<DIRECTORY03>

 used by: Python tools

 Where Python source files can be found

GNU_ROOT

 form: <DIRECTORY>

Issue.: 3.1.0-pre Page 26 of 29

ALMA ACS Overview

 used by: <<UNKNOWN>>

 Where ACS shipped GNU tools are found.

TCLTK_ROOT

 form: <DIRECTORY>

 used by: ACS make system

 Where ACS shipped TCL/Tk

LD_LIBRARY_PATH

 form: <DIRECTORY01>:<DIRECTORY02>:<DIRECTORY03>

 used by: dynamic loader, ACS containers

 Specifies where share libraries can be found.

PATH

 form: <DIRECTORY01>:<DIRECTORY02>:<DIRECTORY03>

 used by: Unix shells, ACS make system

 Specifies where binaries can be found for shell & makefiles

5.3 Environment variables deprecated or not used any more:

CMM_HOST

 form: <IPADDRESS:te13.hq.eso.org>

 used by: <<UNKNOWN>>

 For ESO CMM Configuration Management System. Not used by ALMA

VLTDATA

 form: <DIRECTORY:$ACSDATA>

 used by: <<UNKNOWN>>

 For VLT development environment. Use ACSDATA instead

VLTROOT

 form: <DIRECTORY:$ACSROOT>

 used by: <<UNKNOWN>>

 For VLT development environment. Use ACSROOT instead

RTAPENV

 form: <<UNKNOWN>>

 used by: <<UNKNOWN>>

Issue.: 3.1.0-pre Page 27 of 29

ALMA ACS Overview

 For VLT Configuration database. Not used any more

6 TCP Ports Allocation for ACS

All TAO CORBA Services can locate themselves using TAO Multicast mechanism. This
is a very useful feature, but it is not a CORBA standard and it is not usable with multiple
services, e.g. more than one Naming Service.

ACS uses a port allocation scheme and API functions are available in C++, Java, Python
and Bash shell to retrieve/calculate the port of each ACS service.

See also: http://almasw.hq.eso.org/almasw/bin/view/ACS/AcsPortsAllocation for more
details and for a discussion.

In order to allow multiple users to work in completely separate sandboxes on the same
machine, we have introduced the concept of “ACS Instance”

The environment variable ACS_INSTANCE can assume the values from 0 (default) to 9.

Based on this environment variable (and/or the –b <ACS_instance #> option for most
ACS commands) ports are calculated according to the following formula:

<service port> = 3000 + 100 * ACS_INSTANCE + <offset>

ACS_INSTANCE=0 is treated in a special way for what concerns ports used by
Containers: The whole range from 4000 to 4999 is allocated to this purpose. This is done
to allow the ACS_INSTANCE=0, to be used in operations and for larger test setups, to
handle many more Containers and services than basic developer’s configurations.

The ACS daemon infrastructure which allows starting ACS services and containers
requires fixed ports, as one daemon process is responsible for all ACS_INSTANCEs
used on that local machine.

Below are the ports and port offsets used by ACS:

Daemon Process Port

Container Daemon 2970

Services Daemon 2980

Naming Service Imp 2981

Notification Service Imp 2982

CDB Imp 2983

Manager Imp 2984

acsLogSvc Imp 2985

Log service Imp 2986

IR Imp 2987

Issue.: 3.1.0-pre Page 28 of 29

http://almasw.hq.eso.org/almasw/bin/view/ACS/AcsPortsAllocation

ALMA ACS Overview

ACS Service Port Offset

Standard Manager 0

CORBA Services Range 1 to 10

Naming Service 1

Notify Service 2

Logging Service 3

Interface repository 4

(Logging) notification service 5

(BACI monitor archiving notification
service

6

ACS Extended Services Range 11 to 20

ACS Log Service 11

Configuration Database 12

Alarm Service 13

Additional Notify Service instances 20-30

ACS Containers Range 4000 to 4999 for
ACS_INSTANCE==0, 50-
98inside range for other
values of ACS_INSTANCE
(even numbers only)

If the Container port passed to a Container startup command is smaller or equal to 24 it
is considered an offset in the range of the instance. If it is greater than 24, the TCP port is
used as provided.

Issue.: 3.1.0-pre Page 29 of 29

	1 Summary
	2 Overview of ALMA Common Software 3.1
	2.1 ACS Command Center
	2.2 ACS Instance
	2.3 ACS Startup
	2.4 ACS Shutdown
	2.5 ACS Processes
	2.5.1 acsStartContainer
	2.5.2 acsStopContainer
	2.5.3 acsStartManager
	2.5.3.1 Resolving Manager reference algorithm

	2.5.4 acsStopManager
	2.5.5 acsStartJava
	2.5.6 acsLogSvc
	2.5.7 cdbjDAL
	2.5.7.1 cdbjDAL command
	2.5.7.2 cdbjDALClearCache command
	2.5.7.3 cdbjDALShutdown command
	2.5.7.4 cdbRead command

	2.5.8 CORBA Services
	2.5.8.1 Naming Service (TAO)
	2.5.8.2 Notify Service (TAO)
	2.5.8.3 Interface Repository (MICO)
	2.5.8.3.1 Feeding the Interface Repository

	2.5.9 loggingClient
	2.5.10 loggingService
	2.5.10.1 Controlling logging behavior

	3 ACS User Interface utilities
	3.1 ACS Command Center
	3.2 Administrator Client
	3.3 CDB Browser
	3.4 Logging User Interface
	3.5 Object Explorer

	4 Structure of the Configuration Database
	5 ACS Environment Variables
	5.1 Most Important environment variables
	5.2 Other environment variables set in .bash_profile.acs and used by ACS:
	5.3 Environment variables deprecated or not used any more:

	6 TCP Ports Allocation for ACS

