KGB-DOC-01/05

Revision: 2.1

: Large 2001-09-15
- Software
4 | A Manual
Millimeter
Gasper Tkacik

Abeans Programming Tutorial

Software Manual

Gasper Tkacik (gasper.tkacik @ijs.si)
KGB Team, Jozef Stefan Institute

Keywords: KGB-DOC-01/05

Author Signature: Date:
Approved by: Signature:
Institute: Date:
Released by: Signature:

Institute: Date:

mailto:gasper.tkacik@ijs.si

ALMA

Abeans Programming Tutorial

Change Record
REVISION DATE | AUTHOR | SECTIONS/PAGES AFFECTED
REMARKS
1.0 2000-07-17 | Gagper Tkagik | Al
Created
2.0 2001-03-31 | Gagper Tkagik | Al
2.1 2001-09-15 | Gagper Tkagik | Al

Corrections for the new Abeans ACS Release.

Revision: 2.1

Page 2 of 38

ALMA Abeans Programming Tutorial

Table of Contents
1 PART I IntrodUCtioN.......cceeeemmcummeessssiseeeisssennnnmnnsssssssssseersrsnnnanmsnsssssssseeeeennnnnnnnnsssssssssserernnnnnnmnnnnns 5
1.1 Purpose of the DOCUMENT.....uuuureeieeieiiiiiiiiiiiie ittt eee e e e eaeeeees 5
1.2 The Power SUppPly EXamMPIE....ouoeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeee 5
1.2.1 Definition of 8 POWEr SUPDIY.....ceeeeeiiieeeeeeeeeeeeeeeeeeeeeee e 6
1.2.2 The Model of a Power SUPPIY......ceviiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeae e 7
1.3 OVErVIEeW Of ADBANS. ...oiiiiiieeeeeee ettt 9
1.3.1 Java beans, visual BUIlders........uuuuueeieieiieieieeeeeeee et 9
1.3.2 Compile time, design time, ruN fiMe........eeeeeeeeiiiiiiieiiiiii i 9
1.3.3 ADBANS. et e e e e e 10
1.3.3.1 Abeans representing devices and Properties.......... e eeeeeeiieeeeeiiieeeeee e 10
1.3.3.2 What do abeans A0, . .euiiieiiiieeeeeeeeee ettt 10
1.3.3.3 What Abeans d0 NOt A0 2. euuuueeeeieieeeeeieeeeee ettt e e e 10
1.3.4 Steps in developing an abean application.........cc...eeeeeeeeeeeeeeiiiiieeeeeeeeeeeeeeeeeeieeeeeen 11
2 PART II: Creating Device Proxies, Implementations and Beans..........ccocniiimeniiscissesiiiniiianes 12
2.1 Creating deVICE PrOXIES. . .oiieiieeeeeeeee e eee et e e et e et et e e e eeereeeeeeeeeeeeens 12
211 EXAMPIE. ittt e et e e e e e 13
2.2 Creating abeans for controlled deViCesS........uuuueiiiiiiiiiiieicieeeeeeieee e 15
2.2.1 EXAMPIC. it eraanne 16
2.2.2 Class header and data fieldS........eeeeeeeiiiiieeiiiiiiiiiiiiieeeieieeeeeeieeeeeeee e 16
2.2.3 CONSIIUCIOIS. .ottt ettt ettt e e e e e e e e e e e i e 17
2.2.4 Property accessor MethOdS.ouveiiviieeeieiiieeeee et eeeeeeeeeis 17
2.2.5 Remote MethodS.uuuuueeeeeeeiiiiiiiiiiiiiiii et 17
2.2.6 RUN MEthOd.....uuueeeieiiiiiiiiii ittt 18
P TV 1001 00T U0 AN 19
3 Part lll: Building an application.......cccccczueerririiiiiieiiiiiisiiississsssssnsscmseeeseessssr s eeseeessssssss e e e e nmaneeas 20
3.1 Deciding on how to use abeans: visual mode vs. manual Mode.......c.eeeeeeiiicieeiieiiiiiiiiieen, 20
3.1.1 Finding out the mode of the abean...........ccceeeeeeeeeiiiieiiiiiiiiieiieisieeee 21
3.1.2 Differences between MOdesS......ceuuuuuuueieiiiiiiiiieeeeeeee e 21
3.2 SynchronizationLock ObJECtuuiieiiiiiiiii i 23
3.3 CompIletion ODJECES. ...uvueiiiiiiiieiii et 24
3.4 The CONNECHON PrOCESS. ...ttt ettt e e et e e e e e ee e eeeiieeas 24
3.4.1 ManUal MO, ..eeiiiiiiieiiiee ettt ettt ettt e e e e 24
3.4.2 VisUal MOAE...ceiiieeiiiiiiiie ittt ettt et ettt a e 24
3.5 Our First Abean APPlCAtiON. ..o 26
3.6 Using Abeans in an ApplicatioN.......uuuieieieeeiiiiieieeeeeeeeeee ettt eeeeeen 28
3.6.1 Action COMMANG. .. .uuuueiiiiiiiiiieee ettt ettt ettt ettt e e e e 28
3.6.2 Static data item accessors and property aCCeSSOIS..uuuuuurriiiiieeeieeeeeieeeeeeeeeeeiieeeenees 29
3.6.3 Accessors, mutators and monitors of the property’'svalue..........oeeeeeceeeeieeieeeenn.. 30
3.7 Common events and properties of the abeans library..........ccccceeeeeeeeeeeeeiiiiiiiiieccccccen 32

Revision: 2.1 Page 3 of 38

ALMA

3.8 ServiceBean...................

Abeans Programming Tutorial

3.8.1 Device queries

Revision: 2.1

Page 4 of 38

ALMA

1.1

1.2

Abeans Programming Tutorial

PART I: Introduction

Purpose of the Document

The purpose of this document is to illustrate the usage of abeans. It describes step-by-step
procedures for creating new device beans and building applications. The main goal is to
present several examples with code snippets and screen shots, alert the user about
possible caveats and give advice about how to use the software optimally. The document
neither explains architecture in depth nor is it a comprehensive API documentation.
However, the examples are as broad as possible to cover a wide range of possible
applications. It is also advisable to get in-depth acquaintance with the concepts of the
basic control interface (BACI), as described in a detailed technical document (BACI
Specification) and KGB conference articles.

Part I covers in depth which classes are needed to write a new device bean, revealing
some of the principles of the abeans package. By using the implementation of the Power
Supply Bean as an example, all necessary steps are explained. This part can be skipped in
first reading, in particular if only an application is to be written.

Part II is devoted to the creation of applications in the so-called manual mode, i.e. with
textual programming and not using visual building tools to manipulate abeans. Manual
application development is preferred in cases where a short test without a GUI is to be
run or when a complex algorithm based on many controlled devices is to be
implemented. Visual programming, a powerful approach for quickly building GUI-based
applications is described in a separate document (Using Abeans with Visual Age for Java
Tutorial), as it depends on the particular IDE (integrated development environment). The
recommended IDE for Abeans is IBM’s Visual Age for Java.

The Power Supply Example

The fil rouge of this tutorial, used in all examples, will be a power supply. Such devices
are abundantly used in particle accelerators to deliver a stable electric current to magnets.
Power supplies are well defined objects and are completely independent of other objects,
at least in their simplest form, therefore they make good and clean examples. We will
describe them here in some detail in particular for those, who do not come from the
accelerator community. But also readers familiar with power supplies should read the
following few paragraphs in order to get acquainted with the concepts of how abeans are
used to model controlled devices.

Revision: 2.1 Page 5 of 38

ALMA

Abeans Programming Tutorial

1.21 Definition of a Power Supply
A power supply, as all devices that are modeled by abeans, has two types of items that

are controlled remotely from a control system: properties and commands. The

properties of a power supplies are its physical parameters:

current: the reference current, which the power supply should deliver to the
magnet. Contrary to conventional power supplies, where the voltage is adjustable
(voltage sources), magnet power supplies have adjustable currents (current
sources), because the magnetic field depends directly on the current. An
electronic circuit with a feedback system constantly adjusts the voltage of the
power supply in order to deliver the required current.

readback: the actual current delivered by the power supply, as measured (i.e.
read back) by a current transformer built into the feedback loop. Ideally, the
values of current and readback are equal, however, due to fluctuations in the
feedback loop and measuring imprecision, the readback always differs slightly
from the reference current. A case, where the current and readback differ
significantly, is, when the power supply is switched off: the readback is zero,
independent of what current has been requested.

status: the status is described by a series of alternative conditions: ON/OFF,
LOCAL/REMOTE, ALARM/NO-ALARM, READY/NOT-READY, etc.. Each condition
is represented electrically by a digital input, or - in software - by one bit,
respectively. Depending on the type of power supply, several conditions can be
active at the same time. Therefore, the status is a collection of bits, which can be
called a bit-pattern. A variable of type unsigned integer is used to keep the values
of this bit-pattern.

Note that in order to change the status, one can not simply change the value of a
bit; e.g. to change from OFF to ON, the command on () has to be called explicitly
(see below). And the transition from NO-ALARM to ALARM is completely out of
the hands of the user — an alarm is an external event, for example a burned fuse, a
high temperature, etc.

From the above discussion, several concepts can be deduced immediately:

Revision: 2.1

A property contains exactly one controlled value and is therefore an atomic
control point of a device. This concept is known in many SCADA and control
systems under the name channel, or tag, respectively.

A property is described by more data than just its value. There are also limits
(maxValue and minValue), some describing text (name, description, units) and
other relevant data. They are called characteristics. Such data are constants and
are usually read from a configuration database.

The value of a property can be only read, as in the case of readback, or written,
as in the case of current. Properties that can only be read are called read-only, or
ROproperty. Properties that can be written, can always be read — either the

Page 6 of 38

ALMA Abeans Programming Tutorial

hardware remembers the last set value, or the software keeps it in memory.

Therefore such properties are called read-write, or RWproperty.

Commands of a power supplies are actions that are requested from the power supply:

on: switches the power supply on
* off: switches the power supply off

¢ reset: resets all alarm bits of the status, if the reasons for the alarms have
disappeared. The power supply logic is such that if an alarm is triggered by the
hardware, the PS goes off and the alarm bits are left on until a reset command
has been issued.

* ramping: some power supplies have a built in function generator, which is
setting the current as a function of time according to a predefined curve. This is
usually used to increase the magnetic field along a well-defined monotonic
curve, therefore the name ramping.

A Power Supply also has characteristics of its own: name, position, etc.

1.2.2 The Model of a Power Supply
We believe that the most human-oriented way is to represent each accelerator device with
a respective Java Bean. With a control system we control accelerator devices, such as
power supplies, beam position monitors, etc. So it is natural that we represent those
devices in the computer with Beans. In the network, they become CORBA objects.

The example analysis of a power supply in Table 1 shows how a device object looks and
what kind of properties it has.

Table 1: properties and commands of a power supply:

Property Type Access

readback double Read only

current double Read/write

status bits Read only

Command | Input Return value
type

on none void

off none void

reset none void

Revision: 2.1 Page 7 of 38

ALMA

Abeans Programming Tutorial

In most cases, all properties have the same type of characteristics. There is a difference
between read-only and read-write properties, as the former have no command to write.
Another difference is between properties of type double and type bits (actually an
unsigned integer containing a bit pattern), as the latter have no minimum or maximum.
But all these differences can be systematized into a matrix of few classes (see Appendix
A and references therein).

An example of a model of a power supply using CORBA IDL (skipping the formalities)
is:

interface PowerSupply : DO {

// properties

readonly attribute RWdouble current;
readonly attribute ROdouble readback;
readonly attribute ROpattern status;
// commands

void on(CBvoid) ;

void off (CBvoid);

void reset (CBvoid) ;

The interface of the power supply extends the generic object DO (which has a name,
methods to access resources and other general properties and methods) and contains 3
properties: current, readback and status. The power supply can execute 3 commands: on,
off and reset.

Most of the device commands and property methods are executed asynchronously by the
remote object. The results of the operations are communicated to the client by means of a
callback. A callback is an object interface that must be implemented by the client, so that
it can be invoked by the remote object. During this process, the remote object functions
as a client and the client performs as a server.

A client will often need to get the value of a property on a regular basis, either at given
time intervals or whenever the value changes. A regular callback with the updated value
is invoked by means of a monitor. The client creates a remote monitor on the server with
a single call, where a reference to a callback is passed as a parameter. Then the monitor
on the server invokes the callback whenever the requested conditions are met. An
important type of monitors are alarms: A client registers a callback which is triggered
every time an alarm condition appears, changes, or disappears.

Java Beans use events to communicate data, which are just a special type of callbacks.
Therefore all callbacks that have been described above are mapped into Java events, as
will be seen in the later chapters.

Revision: 2.1 Page 8 of 38

ALMA

1.3
1.3.1

1.3.2

Abeans Programming Tutorial

Overview of Abeans

Java beans, visual builders

Java beans are components that can be manipulated in a visual builder tool. A visual
builder tool, for example IBM's VisualAge for Java, is an integrated development
environment with the capability of automatic code generation. Java beans are ordinary
java classes and thus retain all advantages of object oriented programming, like code
reusability and easier maintenance; they are, however, also a special subset characterized
by conformance to java beans design patters. The most important benefit of java beans
architecture is interaction with the visual builder tool. It recognizes beans as a special
subset of java classes; it analyses them and offers the user their services. These take the
form of events that the beans fire (for instance when their internal state changes) or
properties (values that can be retrieved and / or set). To use the beans the user can then
graphically establish the connections between them. For instance, drawing a line which
begins in one bean and ends in the other might be interpreted by the visual composition
editor as follows: when en event has happened in the first bean (if the first bean is a
button, someone might have pressed it and thus it generated an event), invoke a method
on the second bean (the second bean could be a File Open dialog and the method invoked
could be show). From this graphical representation the visual builder would then generate
the code, which would amount to an application with a button, which, when pressed,
shows the File-Open dialog box. Of course the visual builders and the beans offer many
more ways of interaction, but it is not our purpose to discuss them here. To summarize:
beans in visual builders enable the user to generate the application without writing a
single line of code. Moreover, learning how to create an application involves learning
how to use the development tool but at the same time reduces the amount of knowledge
the user has to have concerning the actual bean.

Compile time, design time, run time

Java and especially java beans have divided the life cycle of an application into three
main phases. The compile time and run time are known from classical C/C++
programming: at compile time the syntax of the programs is checked and the output of
this process is a valid executable file (in case of java, this is a class file). During run
time this file is loaded and executed (in Java Virtual Machines some security steps are
taken additionally, such as verifying). For our discussion the most important phase is the
design time, that is the period in application development, when the beans are actually
inside of the visual builder and the application is being built. This is important because
the beans can (and do) detect, whether they are currently in design time and can modify
their behaviour accordingly. When the application builder is creating a button and
dropping it into the frame, for instance, s/he is not just manipulating the picture of a
button. A button was actually created by the visual composition editor and is fully
functional. Abeans for example detect the environment and if it is design time, they will
not attempt network connection to remote objects (or device server).

Since the visual builder and the beans are so interconnected, a tutorial that tries to
provide some insight into the visual programming cannot be written without reference to

Revision: 2.1 Page 9 of 38

ALMA

1.3.3
1.3.3.1

1.3.3.2

1.3.3.3

Abeans Programming Tutorial

some specific visual builder tool. Since the author and abeans developers have used IBM
VisualAge for Java for this purpose, all of the snapshots and examples in this tutorial
refer to it.

Abeans

Abeans representing devices and properties

Abeans stands short for Accelerator Java beans. Abeans are java bean components that
wrap up all the functionality needed to access the control system. They enable the user to
view the control system as a collection of devices (there is one abean type for each device
type) and thus provide intuitive approach to application writing. An accelerator device is
thought to be a container consisting of simple methods (like on, off on a
PowerSupply) and properties. Properties represent physical quantities or device states
that need to be controlled. A current in a PowerSupply is a good example. A current,
however, is not a single double value, it also has to be put into a physical context: it has
maximum and minimum values, it can be periodically monitored (let us say once per
second), its value can be retrieved and set, it can trigger alarms if the value is outside a
certain range etc. To make things manageable, all methods that concern a property like
current are grouped into a Property class. There is actually a number of such classes,
each representing a type, for example RODoubleProperty (stands for read-only double
property, for instance readback of a PowerSupply), RWDoubleProperty (read-write
double property, for instance our current), ROPatternProperty (read-only pattern
property, could represent a bit collection describing the state of a PowerSupply), RO-
and RWStringProperties etc..

What do abeans do?

Abeans hide network communication details, manage object instantiation, handle errors,
exceptions, timeouts, expose a consistent and uniform java beans interface to the user and
the visual builder - this means that all methods (regardless of whether they are
synchronous or asynchronous in the actual control system implementation) look like
ordinary java method calls, that communication with other beans is done through java
beans events mechanism etc., and also provide a number of additional services such as
logging, persistent settings storage and the like.

What Abeans do not do?

Abeans do not visualise data. More simply put, abeans do not have any means to display
the data since they do not have any visual representation. An abean is an invisible bean; it
leaves the work of displaying the data to other beans, perhaps commercial ones (like
trend charts), or standard ones (java swing components), or even components written
specifically for interaction with abeans (like Gauger). With this approach any
visualisation of the data can be chosen and used (even more then one for a single
quantity) and as new updated components become available, they can be used easily

Revision: 2.1 Page 10 of 38

ALMA

1.3.4

Revision: 2.1

Abeans Programming Tutorial

without rewriting the code. Abeans and graphical beans communicate through events and
properties (sometimes with the help of adapters).

Steps in developing an abean application
To use abeans, the following steps have to be taken:

Installing abeans packages into the development tool: The procedure involves
importing the packages, setting the design time and run time environments. A
special document describes these steps for IBM’s Visual Age for Java, the
preferred development environment for abeans.

Configuring abeans system: The abeans system provides a centralized
mechanism for applications to store configuration data. Therefore it requires a
special configuration path to be set aside for the storage of configuration files.
This path needs to be present in java classpath system variable. By default, two
configuration files are located there: AbeansSystem.data and
DefaultAbean.data. The first file contains only the pointer to the path itself.
DefaultAbean.data contains default property values used by the abeans
system as application options. These are, for instance, default connector type to
be used when none is specified explicitly, timeout, all available plug libraries etc.
The configuration can be changed by starting the AbeanCustormizer
application, which comes with the abeans distribution, as do the two
configuration files with default values. If an installer has been used, it is usually
not necessary to perform any changes. If the configuration path is not present in
the classpath, it must be specified explicitly using the command line option
-Dabeans.config Java System property.

Creating device proxies, implementations and beans: An abean is a bean
representing controlled accelerator device. A proxy is an interface describing the
device methods and properties. A proxy is very similar to IDL specification, the
difference being only in that it is CORBA independent. There is one proxy
implementation per pluggable subsystem. An abean, a proxy interface and a
proxy implementation for a given pluggable subsystem must be present for a
single device type to be accessible from the abeans system.

Building an application: The chapter demonstrates some of the most used abean
functions and design patterns for an application that uses abeans, discusses issues
connected to building applications manually and visually.

Page 11 of 38

ALMA

2.1

Revision: 2.1

Abeans Programming Tutorial

PART lI: Creating Device Proxies, Implementations and Beans

Note: For most of the devices, proxies, implementations and beans are already
written. Normally, there is no need to do this by hand, since these classes will all be
provided. Therefore you can skip to the next section, as this is provided for the sake
of completeness and architecture overview.

Note: It is possible to create code generators that automate the procedures outlined
in this chapter. Documentation for code generators is provided in a separate
document.

Creating device proxies

A device proxy completely describes the interface to the device, that is, the interface
through which the device is controlled. It also completely determines the interface of the
abean that represents the device. This dependence is so strong that it is possible to write a
generator that automatically creates an abean from the device proxy.

How can a device proxy describe a controlled device? It does so exactly like an IDL
definition, only in Java language instead of IDL. Because the purpose of the IDL
definition and device proxy is so similar, abeans adopt the following conventions on how
to create a device proxy from the IDL:

e Take the IDL file compiled to java; leave the number and method names intact.
e Perform these transformations:

o Letdevice proxy reside in si.ijs.anka.abeans.devices package;
this is the default. It is also possible for the device, its proxy and other
necessary classes to reside in non-default packages.

o If the IDL device extends another IDL device x, then device proxy
extends device proxy for x.

o If the IDL device does not extend any other IDL device, then device

proxy extends
si.ijs.anka.abeans.pluggable.AbstractDevice.

o If an IDL method takes a basic type for a parameter, so does the proxy
method (type remains intact)

o If an IDL method takes a callback for a parameter (for instance CBvoid
or CBdouble), the proxy method takes the corresponding callback from
the package si.ijs.anka.abeans.datatypes for the parameter
(VoidCallback or DoubleCallback respectively).

Page 12 of 38

ALMA

211 Example

Abeans Programming Tutorial

If an IDL method returns a basic type for a parameter, so does the proxy
method (type remains intact)

If an IDL method returns a class type, the proxy method returns the
corresponding type proxy (for instance, if an IDL method returns
RWdouble, proxy method will return RWDoubleProxy; if an IDL
method returns Monitor, proxy method returns MonitorProxy).

All these proxy return and parameter types are already created and reside
in si.ijs.anka.abeans.datatypes package.

Let us create a device proxy from the IDL for PowerSupply:

si.ijs.aci.powerSupply.PowerSupply generated from IDL2java from IDL for
PowerSupply (see BACI specification)

package si.ijs.aci.powerSupply;

public interface PowerSupply extends si.ijs.aci.Device {
public
public
public
public
public

si.ijs.aci.RWdouble current();
si.ijs.aci.ROdouble readback();
si.ijs.aci.ROpattern status();
void off(si.ijs.aci.CBvoid cb);
void on(si.ijs.aci.CBvoid cb);

si.ijs.anka.abeans.devices.PowerSupplyProxy

public
public
public
public
public

package si.ijs.anka.abeans.devices;
public interface PowerSupplyProxy extends
si.ijs.anka.abeans.pluggable.DeviceProxy {

si.ijs.anka.abeans.datatyoes.RWDoubleProxy current();
si.ijs.anka.abeans.datatypes.RODoubleProxy readback();
si.ijs.anka.abeans.datatypes.ROPatternProxy status();
void off(si.ijs.anka.abeans.datatypes.VoidCallback cb);
void on(si.ijs.anka.abeans.datatypes.VoidCallback cb);

You see that there is a complete one-to-one correspondence between the interface created

from the IDL and the device proxy. Why then do double work? Because all of the types
used in IDL generated file (such as ROdouble or CBvoid) are finally extended from
classes that need CORBA libraries to function. Because abeans want to be CORBA
independent and writing proxies is such a simple task, device proxies such as the one

described above are used. As you can see, proxies for properties and callbacks already

exist (we did not need to write special proxies like RWDoubleProxy and

VoidCallback which we reference, because they are already there). Note the name

patterns, they are important: apart from callbacks (which are technically not really

proxies, but we will leave that to specialized chapters) all proxy names end with "Proxy".

Revision: 2.1

Page 13 of 38

ALMA

Revision: 2.1

Abeans Programming Tutorial

A PowerSupplyProxy is now complete. This proxy serves as a link between the part of
the abeans which is independent of the communication subsystem - these will be our
PowerSupplyBean when we write it) and the part, which is dependent on the
communication subsystem (these are classes in the pluggable subsystem packages).
Therefore PowerSupplyBean stays the same regardless of the communication
subsystem, while the abeans mechanism takes care at run time to actually load the correct
pluggable package the user wants. For instance, if the user tells the PowerSupplyBean
to connect using CORBA, abeans mechanism will load the pluggable package
si.ijs.anka.abeans.pluggable.CORBA and in it, find the PowerSupplyProxy
implementation for CORBA.

Page 14 of 38

ALMA Abeans Programming Tutorial

Pluggable system

PowerSupplyBean

¥

PowerSupplyProxy

r L
PowerSupplyPraxylmpl PowerSupplyProxylmpl
CORBA pluggable | CDEV pluggable
package package
netwark s
CORBA deviceserver CDEY gateway

The diagram illustrates the relationships between PowerSupplyBean,
PowerSupplyProxy and proxy implementations. The bean only sees a proxy that is
independent of the communication subsystem. Then, during run time, the user tells the
PowerSupplyBean whether s/he will use CORBA, the simulation or some other
communication protocols like low level socket protocol to connect. Based on this
decision the abean system then loads appropriate pluggable package with the proxy
implementation. All remote calls that the Power SupplyBean makes on the proxy are in
turn called on the appropriate proxy implementation.

2.2 Creating abeans for controlled devices
As we have already mentioned, a device proxy determines the interface of the bean.
Beans, like the PowerSupplyBean that we will write, have a number of methods, which
can be divided into four categories:

o Constructors (by default, each abean for a device must support at least two
constructors)

o Property accessor methods (because abeans for devices contain properties, they
have to provide methods for accessing them)

o Remote methods (such method called on the bean is immediately called on the
remote object)

Revision: 2.1 Page 15 of 38

ALMA Abeans Programming Tutorial

o A run() method (which executes the connection code)

By default, beans are placed into si.ijs.anka.abeans.devices package along with
their proxies. Let us start with an example. We will be creating a PowerSupplyBean:

221 Example

package si.ijs.anka.abeans.devices;

import si.ijs.anka.abeans.*;

import si.ijs.anka.abeans.datatypes.*;

public class PowerSupplyBean extends DeviceBean

{

private PowerSupplyProxy remote;
public PowerSupplyBean() throws InitializationException {
super(si.ijs.anka.abeans.devices.PowerSupplyProxy.class);
}
public PowerSupplyBean(ConnectionParameters connParams) throws
InitializationException ({
super(si.ijs.anka.abeans.devices.PowerSupplyProxy.class, connParams);

public ROPatternProperty getStatus() {
return (ROPatternProperty)getProperties().get("status");
}
public void run() {
try
{
remote = (PowerSupplyProxy)getConnector().connect();
setHandle(remote) ;
} catch (Exception e)

{

reportError (toString() + " Connection Exception.");

reportStatus(new StatusReportEvent(this, toString() + " Additional
exception info: " + e, false, true));

return;

}
reportConnectionStatus(si.ijs.anka.abeans.Constants.CONNECTION_SUCCESS) ;

return;

}

public void off() throws RemoteException {
VoidCallback cb = VoidCallback.newInstance(this, "off", this);
try

{
remote.off (cb);
cb.startTimer () ;
} catch (Exception e)
{

throwCallException("/off network error.", e);

}

return;

Note: this bean does not implement on, reset, getCurrent and getReadback methods,
because they are completely analogous to the of f and getStatus methods.

2.2.2 Class header and data fields
Let us dissect it step by step. First, notice how we extend DeviceBean class; we do it
because in the IDL specification a PowerSupply extends Device (Device has
functions like shutDown, startUp and the like). DeviceBean in turn extends
si.ijs.anka.abeans.Abean which is the root of all abeans that represent devices.
Then we create a private handle called remote to a PowerSupplyProxy. You can see

Revision: 2.1 Page 16 of 38

ALMA

2.2.3

224

2.2.5

Abeans Programming Tutorial

now, why this bean is independent of the communication subsystem. It only uses proxies
and these are the same for all subsystems.

Constructors

Two constructors are present. One is the default constructor. It takes no parameters. Such
a constructor must be present if the bean is to be used visually. A visual builder always
instantiates beans with their default constructors. The only task of the default constructor
is to pass the proxy class to the superclass constructor. The root class of all beans
representing devices Abean will introspect this class (at runtime query its methods etc.)
to determine from the proxy which properties are contained in the device. In our case, we
pass PowerSupplyProxy to the superclass DeviceBean, which passes it to its
superclass Abean. Abean will inspect PowerSupplyProxy and find three methods,
namely current, readback and status, which return property proxies. It will thus
deduce that it has to create RWbDoubleProperty called current, RODoubleProperty
called readback and ROPatternProperty called status, it will initialise them and put
them into a hashtable, accessible through getProperties () function of the Abean
class.

The other constructor does exactly the same as the default one, with the addition that it
passes over to the superclass an instance of ConnectionParameters, which describes
bean name, family and the like. These concepts will be explained later.

Invoking either one of the constructors determines the bean mode. If the default
constructor is invoked, bean will be created in automatic (visual) mode. If the other
constructor is invoked, the bean will be created in manual mode. Both modes of usage
differ, and their differences are explained in Deciding on how to use abeans: visual mode
vs. manual mode.

Constructors throw InitializationException on invalid parameters or (if in manual
mode) if the connection has failed.

Property accessor methods

getStatus () method is a property accessor method. It returns an instance of
ROPatternProperty named status, which is consistent with the proxy description. As
explained in the constructors, this object has been created by the Abean and placed into a
hashtable. All we have to do is to take the property out of the hashtable and return it.
Properties are stored in a hashtable with their name as a hash.

Why should the bean have a special method for each property that returns it (we could
always access it manually from the hashtable)? It is not just a matter of convenience: if
the bean has method without parameters with name that starts with "get" this is a sign to
the visual builder, that there is a java beans property with name that follows "get" and
type that equals the "get"- method return type. This method is therefore a sign (a design
pattern) that tells something to the visual builder. We shall see later why that is useful.

Remote methods

off () isan example of a remote method. If you look closely into the code, you will see
that it calls the of £ method on the PowerSupplyProxy remote. In addition it catches
exceptions, reports them and re-throws as RemoteException — see documentation on

Revision: 2.1 Page 17 of 38

ALMA

Abeans Programming Tutorial

throwCallException() (so that all exceptions generated by the method are
RemoteExceptions and not ones specific to the underlying communication subsystem).
Another thing that a remote method must take care of is callback management. Obviously
the of £ method is asynchronous: it takes a single VvoidCallback parameter. When of f
is invoked on a proxy, a proxy invokes it on the remote object (for instance device
server). Such a server returns immediately, even before the power supply has actually
been turned off. When the request comes to the real, physical power supply and is
fulfilled the device server calls back (therefore a "callback") a VoidCallback object
and reports to it about the final success of the "off" operation.

Our of £ method hides the whole complicated process from the user. But in order to
occur, we must create a callback, which is done with static newInstance method, pass
it to the proxy function (in call remote.off (cb)), and start the timer on callback. The
timer will notify us through TimeoutEvent (to be discussed later) if there was a
timeout. It is stopped automatically if there is no timeout. Generally, callbacks are
complicated objects and their constructors support a number of different parameters and
configurations.

Sometimes we may want to get an event whenever the callback has occurred. Such an
event, called CallbackDoneEvent is already prepared in the abeans library. To have it
delivered when the callback completes (regardless of whether it has completed with an
error or no-error code — this can be queried from the event), the callback creation stanza
is somewhat different:

VoidCallback cb = VoidCallbackInitializer.newInstance(this,
"off", this, this, getCallbackDonelisteners(),

Constants.CB_SIMPLE, "si.ijs.anka.abeans.CallbackDonelListener");

2.2.6

The code segment shows that the callback management is a very powerful feature
of abeans: the programmer can select exactly into which listener interface the
callback will fire the events when it completes; you must, naturally, also provide
an array of listener objects (that is the purpose of getCallbackDoneListeners()
method in our example). The rules for callback notification dispatching are very
strict and are described in the reference manual.

Run method

This method must be implemented in every bean, because the root bean Abean declares
that it implements the Runnable interface. It enables the bean to connect in a separate
thread. This method is never called explicitly in the user code; we will see later how to
tell the beans when to connect. The heart of connection is the call remote =
(PowerSupplyProxy)getConnector().connect (). The method getConnector
() of the Abean parent class returns a class that is responsible for connection. All we have
to do is call connect and cast the return value into PowerSupplyProxy. We then pass
the handle into the superclass with setHand1le method. If the connection has failed (an

Revision: 2.1 Page 18 of 38

ALMA

23

Abeans Programming Tutorial

exception was thrown and catch block is being evaluated), the bean reports the fact and
returns from run, otherwise, we notify the hierarchy that the connection was successful
by a call to reportConnectionStatus function (this function will also inform, by
means of events, other interested parties that this bean has connected).

Summary

This section has demonstrated how classes that are specific to a device are written. It
shows that so much of the functionality is hidden in superclasses and support classes that
writing Power SupplyBean is very straightforward and involves writing a lot of code
that repeats itself - to see how an on function, which is not in the example, would look
like, just exchange every occurrence of "off" in of £ function with "on"! Furthermore,
you see how an abean, which represents a device, constitutes a central entity in the
abeans collection of classes. All other needed classes, like properties, connector classes
and the like are created automatically by internal mechanisms.

There exist generators for canonical abeans methods that take proxy declaration as an
input and generate bean, beaninfo and proxy implementation. Canonical methods are
action methods, which take a single callback as a parameter. Other action methods
(arbitrary number of parameters) can then be written by hand. The development of beans
for new devices is therefore only a matter of applying an existing template to the bean
specific data.

We have also created more powerful generators that produce code directly from the
BACI compliant IDL stored in CORBA Interface Repository. Such generators use XML
and XSLT technologies to code canonical BACI design patterns and copy non-BACI
compliant constructs verbatim to the output.

Revision: 2.1 Page 19 of 38

ALMA Abeans Programming Tutorial

3

3.1

Part llI: Building an application

Before trying to build an application, we should explore abeans more in depth. The areas
of interest to cover are:

o Choose the mode how to use abeans — either in visual or manual mode

o The connection process, including families, ConnectionParameters objects
and ServiceBean objects

o Abean events and methods
o Property events and methods, including monitors and alarms

Note: Abean spelled with a capital letter denotes class si.ijs.anka.abeans.Abean,

the superclass of all abeans that represent a device.

Deciding on how to use abeans: visual mode vs. manual mode

An abean can be used either in a visual development tool or in a manually written
procedure. Both modes differ somewhat in behaviour in order to simplify the most
common tasks (like synchronization and connection) that are typically programmed in
each mode

Why is it beneficial to the user of abeans to have two modes of usage? The component
behaviour differs in procedural programming and GUI programming. GUI should be
asynchronous by nature, so that the process execution does not block the graphical
components. The goal of the visual mode is to make the system responsive. On the other
hand procedural and script programming must guarantee a linear execution flow, where
subsequent statements depend on the completion status of the first statement. Consider
the following code snippet:

PowerSupplyBean ps = new PowerSupplyBean(new

ConnectionParameters("PS1"));
ps.on();
ps.getCurrent().set(0);
ps.off();

It creates a Power SupplyBean in manual mode (it would be visual if default constructor
was used), which connects to a device called "PS1". Then, in succession, it calls on
method, sets the current to 0 and calls o££ method. Do these events really happen in
succession? There is no guarantee: all three calls are in fact asynchronous, meaning that
on () returns before the physical power supply was actually turned on. What would
happen if somewhere on the network or field bus the packets got mixed up so that the
set on current would be called before on? Such things could easily happen and the
results are very unpredictable. A scenario that is even more probable would be the

Revision: 2.1 Page 20 of 38

ALMA

Abeans Programming Tutorial

successful delivery of the "on" request, which for unknown reasons fails on the power

supply device. Further function calls should probably not occur after failure. But you

cannot check the successful completion when you are calling set on current, because the

callback for on has not yet been received.

Now these problems could easily arise in manual programming, where the above

sequences are common. A means of locking / synchronization is therefore needed: wait at
the on call until the callback has been received, check the status and if it is OK, continue.
Quite another approach is appropriate for graphical panels. There asynchronous calls are

desired, because they do not block the user interface. If there is an error, the bean is

expected to notify you through event mechanism. If there are any synchronization risks,

the user interface should be designed so that it is impossible for the user to do things in

the incorrect sequence (disable button for action 2 until action 1 completes, for instance).
In conclusion, it is desirable to have the beans behave differently in the two modes. It is
understood that by such a course of action some confusion could arise, however, we think

that the benefits outweigh the disadvantages, especially if the different behaviours are

well documented.

For these reasons abeans behave differently when they are used in manual mode

(constructed with parameters, like in the example) or in visual/automatic mode

(constructed with the default constructor — no parameters). Once the constructor invoked

determines the mode, it cannot be changed. You can query the mode of the bean by

3.1.1 Finding out the mode of the abean
calling boolean isVisualMode () function on the abean.
3.1.2 Differences between modes

Manual mode

Visual mode

et when constructor with parameters is
xecuted

Set when default constructor is executed

Asynchronous calls can block (i.e. return
only after the callback has been received
from the device server), if the
synchronization lock is installed

Asynchronous calls do not block (i.e. return
immediately after device server returns)

Property monitors are not created
automatically, but must be created
manually by calling getMonitor ()
method on a property class

Property monitors are created automatically; when
there are any listeners for the property value, the
monitor is created; when there are none, it is
destroyed

onnection to a remote device is
stablished in the constructor; if the

Fonnection is established only when
C

onnectionParameters are set, the bean family

Revision: 2.1

Page 21 of 38

ALMA Abeans Programming Tutorial

onstructor returns successfully, the is allowed to connect and the application signals that
andle is valid it is ready

Monitoring and establishing a connection will be discussed later; let us now turn the
attention again to asynchronous calls.

Revision: 2.1 Page 22 of 38

ALMA Abeans Programming Tutorial

3.2

SynchronizationLock object

How exactly do the beans achieve the blocking of the asynchronous function calls? You
tell the abean to synchronize on the calls by installing a synchronization lock object (this
is done by default if the abean is in manual mode, see the table above). The following
code snippet illustrates the principle:

PowerSupplyBean ps = new PowerSupplyBean();
ps.setConnectionParameters(new ConnectionParameters("PS1"));
ps.setSynchronizationLock(SynchronizationLock.getInstance());
ps.on();

ps.getCurrent().set(0);

ps.off();

The code has exactly the same effect as the first snippet. It creates a PowerSupplyBean
object, but notice the use of the default constructor. This puts the abean into visual mode,
which means that the asynchronous calls do not block. Thus we call
ps.setSynchronizationLock (SynchronizationLock.getInstance()), which
installs a new lock. The remote calls block from this point forward. We can be sure that
the current is set only after the power supply has been turned on. This is not the only use
of the lock, though. If we extend the code to look like this:

boolean timeout;

Completion c;

SynchronizationLock lock = SynchronizationLock.getInstance();
ps.setSynchronizationLock(lock);

ps.on();

boolean timeout = lock.isTimeout();

if (timeout == false) c = lock.getLatestCompletion();

It demonstrates nicely how we can use the lock to query the results of the last
asynchronous call: i sTimeout tells us if the lock blocked for such a period of time that
a timeout was generated, while getLatestCompletion () returns the
si.ijs.anka.abeans.pluggable.Completion object describing the status / failure
information about the last call.

In the above example we dealt with callbacks of type void, which return no value. There
exist callbacks, however, that can return a value, such as DoubleCallback. Hence the
lock also implements method Object getValue(), which returns the value that was
returned through the callback call. You must cast the Object to the appropriate type
(basic types are wrapped in corresponding java wrapper classes).

You can change the lock on the fly. If you set the lock to nul1l, no synchronization
locking occurs (identical to visual mode default). You can get the current lock that the
abean uses by a call to getSynchronizationLock().

Revision: 2.1 Page 23 of 38

ALMA

3.3

Abeans Programming Tutorial

Completion objects

A Completion object is used to return the status of the request to a remote device.
Completion objects are returned in each callback and also by some synchronous calls
(like synchronous set on a property). In most cases, they are handled by the abeans
automatically: in each callback completions are checked against the error-free value. If
no errors are detected, noting happens. Otherwise the error codes are decoded and a
string message is dispatched to all ReportListeners of the abean. Usually, these
messages are printed out into the text area in a panel.

Completion object consists of three components:

public class Completion {

public short type;
public short code;

public int time;

34

3.4.1

3.4.2

Type and code describe the nature of the problem (type 0, code 0 means no
problems) or status. Time is the time when the action that Completion object describes
was carried out by a remote server. It is an integer representing a number of milliseconds
from a reference date (Unix beginning of time). Descriptions of completion codes can be
obtained by querying ConnectorInformation class in the pluggable package. It
produces a string message from code and type parameters. Consult the API
documentation for details.

The connection process

Manual mode

If abeans are used in manual mode, their lifecycle is simple: they connect when they are
constructed. If they connect successfully, no exception is thrown and a non-null handle
returned from the constructor can be used directly to make calls to remote objects. They
remain connected until the destroy () function is called. This function releases
resources connected with monitors and other pluggable dependent resources (network
connection etc.). As soon as the clean up phase is complete, the abean is marked as dead -
you can query its status by calling boolean isDead () method. It notifies other abeans
(if any listen) that it is in the dead mode by dispatching PropertyChangeEvents. Once
the bean is dead, it cannot be connected again; you must instantiate a new bean for that
purpose, or, instead of destroying the bean in the first place, tell the bean to reconnect

using reconnect (ConnectionParameters c) method.

Visual mode

The connection process for abeans used in visual mode is performed and managed
automatically and transparently by the abeans libraries. This section briefly describes the
process that goes on beyond the scenes in order to give some insight on some more
advanced concepts of abeans.

Revision: 2.1 Page 24 of 38

ALMA Abeans Programming Tutorial

Managing connection is more complicated in visual mode for a number of reasons. To
name just the most important ones:

o Java Beans specification requires that visual builders always instantiate the
beans with default constructor. That means that an abean representing a device
cannot have the access to the settings that it needs for connection (such as the
remote device object) at construction time. Hence an abean must necessarily wait
until the builder sets all the properties that it requires for connection
(encapsulated by ConnectionParameters object), such as remote object
name, timeout, family etc.

o Construction time of the abean cannot be exactly determined. The visual builder
might create all the beans when the application starts or it might wait until the
bean is first used (called by another bean, for instance). In an application where
there are many abeans, most of them not used unless the user explicitly requests
so, it is undesirable for all the abeans to be instantiated and / or connected at the
application initialisation. On the other hand, in a simple PowerSupply panel
application the simplest scenario from the viewpoint of the user is for the
application to automatically create and connect the single PowerSupplyBean
when the application starts.

In order to resolve new problems in timing connected to the differences in automatic
code generation and to allow the user to fine tune the exact moment when the connection
is to begin, several new concepts had to be introduced. These are:

o A manager object, called AbeanInitializer.
o A family object that groups abeans together, called AbeanFamily

o An interface that every application which uses abeans has to implement, called
AbeanApplication

Therefore a life cycle of the abean created in the visual mode is described by the
following sequence:

o An abean is constructed with the default parameters and it waits (default timeout,
no remote name, default family, default pluggable type)

o Parameters that are required for connection are set by a call to
setConnectionParameters(ConnectionParameters c)

o Abean checks if these parameters are valid. If not, an exception is
thrown.

o If they are valid, a
PropertyChangeEvent (“connectionParameters”) is dispatched
to all listeners

Revision: 2.1 Page 25 of 38

ALMA

3.5

Abeans Programming Tutorial

o By default, a special manager class called AbeanInitializer listens

to these events. When it receives an event, it inspects it to see to which

family the abean belongs. It then adds the abean to the specified family.

o If this manager is notified by the application that the application itself is

ready (for example, that it has painted itself), it scans through all existing

families

o If a family is a default family (a special family into which all abeans that

have not explicitly stated to which family they belong, are automatically

placed) the abean begins connection process.

o If the family is not a default family, then the manager looks if this

specific family is allowed to connect. If yes, the abean begins connection

process. If no, the abean waits for the explicit approval from its family,

telling it that it may connect.

Fortunately, all these steps are handled by the Abean framework and the designer of an

application in a visual builder environment does not need to worry about them at all. The

visual mode will not be discussed further in this document, as the life cycle of beans in

visual mode is handled automatically. Other features of working with abeans in visual

mode depend on the choice of the visual builder environment. A separate tutorial exists

for using Abeans with Visual Age for Java, our official VBE.

Our First Abean Application

Although the process described in the previous sections seems a bit complicated, it is

actually very straightforward to use, which can be seen from the following code snippet,

where a power supply abean is created in manual mode:

class Test implements AbeanApplication {

public static void main(String argl[]) {
new Test();

public Test()
{

AbeanInitializer.initialize(this);
try
{
PowerSupplyBean ps = new PowerSupplyBean(new
ConnectionParameters ("PBEND_M.01"));
/* operations on the power supply */

ps.destroy();
} catch (Exception e)

{

System.err.println(e);

}

}

public ApplicationIdentifierSupport getApplicationIdentifier()

Revision: 2.1

{

Page 26 of 38

ALMA

Abeans Programming Tutorial

return new ApplicationIdentifierSupport(this);

}

The code snippet shows a fully functional application that connects to a single
device of type PowerSupplyBean named PBEND_M.01. An application that uses
the abeans system must implement AbeanApplication interface, which declares a
single method getApplicationldentifier(). In addition, the first method from the
abeans library that is invoked by the program must be the static invocation of
Abeanlnitializer.initialize(this), passing an instance of AbeanApplication as the
parameter. The purpose of such program header is the following:

Abeanlnitializer constructs objects necessary for the abeans system functioning. It
queries AbeansApplication instance passed as this parameter to the initialize() call for
an ApplicationldentifierSupport object. This object contains the application name
(which is by default the class name of the application), application resource path (relative
to the abeans configuration directory) and similar settings.

e Based on data stored in ApplicationldentifierSupport, the Abeanlnitializer will
load the configuration data for the abeans system and the given application; it
will instantiate a default abean family, which, by default, contains each
instantiated abean. If the AbeanApplication is actually of
VisualAbeanApplication subtype, it will register as ApplicationStatusListener
to the VisualAbeanApplication. It is then up to the VisualAbeanApplication to
inform Abeanlnitializer about the state of the application (initialising, closing),
and the Abeanlnitializer will respond by either telling all abeans to connect in
case of initialising event, or to destroy themselves in case of closing event.

* After the abeans system has been initialised, the abeans components can be used.
In try-catch block a new instance of a PowerSupplyBean is constructed.
Because a non-default constructor is used, the abean is created in manual mode
and it connects immediately as a side effect of construction. If the constructor
returns without raising an exception, the connection has been successful (remote
methods can be invoked). The abean has also been automatically added to the
AbeanFamily. DEFAULT_FAMILY, i.e. an application-wide container that
holds all abeans that have been instantiated and have not yet been destroyed
(regardless of whether they are connected or not). Comment lines are where the
actual remote command invocations can be inserted. How the actual
communication is performed will be demonstrated shortly. Finally, the abean is
destroyed by calling destroy(). This guarantees that the abean will release all
remote resources that it will be removed from any containers and will be put into
a state, where no remote function can be invoked. The application programmer

Revision: 2.1 Page 27 of 38

ALMA Abeans Programming Tutorial

should let such abean be garbage collected. See reference manual for
documentation about Abeanlnitializer and AbeanFamily.

3.6 Using Abeans in an Application
When a reference to a connected abean exists, there are several ways of communicating
with the remote device:

o Action commands; an action is a remote asynchronous method, which can take
any number of parameters. It normally causes an execution of a time-consuming
request on remote device.

o Static data accessors; a static data accessor method reads a static data item value
from the device server. Since the request propagates to some sort of easily
accessible remote database, the call is synchronous.

o Property accessors; a property accessor returns the reference to the remote
property that is contained within a device

o Various get / set methods and monitors; since a property encapsulates a value in
a context, properties provide a set of accessor and mutator methods that access
the value and also provide push style value delivery from the server to the abean,
called monitor, based either on periodic timer or delta value change criterion.

3.6.1 Action command
An action command is of the form void action_name(paraml, param2...).For
instance, a power supply supports action on, which is invoked in the following manner:

ps.on();
When the execution flow enters ps.on (), several execution paths are open:

1. Each remote method may throw a RemoteException to indicate that the error
has occurred somewhere in the pluggable (communications) layer

2. Each remote method is timed and may raise a timeout. A timeout condition is
raised when the bean containing the action method (a device bean or a property
bean) fires a TimeoutEvent. As a timeout side effect the same bean will also
fire a ReportEvent with timeout error condition.

3. If the method successfully reaches the remote object, is processed there and
returns the completion data through the callback object, the action may:

o Complete without any further notification

o Complete by firing CallbackDone event that carries completion
information

Revision: 2.1 Page 28 of 38

ALMA Abeans Programming Tutorial

o Fire a ReportEvent with an error condition as a result of a completion
object that indicates such a condition; this event will be fired as a side
effect to any of two execution flow options 1) and 2).

Whether the action will fire CallbackDone events depends on the specific
implementation of the bean. For performance reasons actions, for which the completion
will not be checked, should not fire CallbackDone events. Some critical actions,
however, should do so. The behaviour of the bean is thus discretionary and left to the
bean implementer.

The following code segment illustrates a complete treatment of a remote action: The
command ramp is called on a power supply. The code handles all three cases 1) 2) and 3)
mentioned above. A ReportEventListener has not been implemented here, because
this is usually done by a GUI component or by the main class:

class TimeoutListenerImpl implements TimeoutListener {

public void timeout(TimeoutEvent e) {

System.out.println(“Timeout while executing: “ + e.getCallback());
}

public void timeoutsStarted(TimeoutEvent e) {}

public void timeoutsEnded(TimeoutEvent e) {}

}

class CallbackDoneListenerImpl implements CallbackDoneListener {
public void callbackDone(PropertyUpdateEvent e) {
System.out.println(“Completed: ” + e.getDataSourceName() +
e.getCompletion());

}

}

“

with completion “ +

ps.addTimeoutLister (new TimeoutListenerImpl());
ps.addCallbackDonelListener (new CallbackDonelListenerImpl());

try {

ps.startRamp(rampData) ;

} catch (RemoteException re) {

System.err.println(“Error while executing remote action: ” + re);

}

The code creates two listener objects, that handle timeout conditions and invalid
completion conditions and it also catches remote exceptions. See reference manual for
specific documentation about the supported features and data that can be obtained
through events. The try-catch block could have contained a sequence of remote actions
and the code would still remain fully functional, including the event handling. The
startRamp () action used as an example takes rampData parameter only. No callbacks
are visible at the beans API, because they are handled behind the scenes and reprocessed
as events.

3.6.2 Static data item accessors and property accessors
Static data item accessors and property accessors fetch information that is considered
static during the lifetime of the remote object. Static data item accessors return a typed
value and are synchronous remote calls. Property accessors return references to property
objects. Since the data returned is static, it is buffered by abeans system, i.e. only the first
call to the method is truly remote. Otherwise the methods return the buffered values with

Revision: 2.1 Page 29 of 38

ALMA Abeans Programming Tutorial

virtually no overhead. Property references are even fetched during connection time, so
that they are available as soon as the bean gets connected. The user may enforce the
buffers to be flushed by calling refresh () on the Abean instance.

3.6.3 Accessors, mutators and monitors of the property’s value
Property accessors and mutators behave exactly like action commands invoked on
property objects and they will not be described separately. The same rules apply as in the

subsection on action commands; even the example just needs to replace the lines
ps.ramp();

by
ps.getCurrent.get();

The discussion will concentrate on the monitoring of the property’s value. By creating a
monitor, the value of the property can be obtained as event notification when the value of
the property changes. There are several important points that must be mentioned with
respect to monitoring:

o When a user creates a monitor on a property, s’he will receive event notifications
about value changes of the property whenever the property value changes, i.e.
whenever the abean property receives a new value from the remote CORBA
object.

o The user will receive one event immediately after the monitor has been created.

o There are two basic modes of a monitor that differ in the triggering condition:
on-change and on-timer. The setting of the mode influences the server trigger,
i.e. the condition that has to be fulfilled for the server to send a callback to the
bean. Regardless of the triggering condition, the bean will only fire an event if
the value changed, i.e. if oldvalue != newvalue.

o On-change triggering is useful because the response of the system is very fast,
that is, as fast as it is possible. Naturally, that consumes a lot of bandwidth and
processing power. On-timer notification guarantees that the bean will receive
periodic value updates, which will not be more frequent that the specified
interval (so that there is no flooding), but will also not be late (so that the
monitoring pulse can be used as a heartbeat).

o The heartbeat (on-timer monitor) is interpreted by the beans in the following
way:

o If the value actually changed, a new instance of
PropertyUpdateEvent is fired by the monitored property to all
listeners. The event data contains the new value, completion and
timestamp.

Revision: 2.1 Page 30 of 38

ALMA

Abeans Programming Tutorial

o If the value remains unchanged, no PropertyUpdateEvent is fired.
However, certain fields in the monitored property bean are updated, for
instance the latestReceivedTime field, which holds the timestamp of
the latest received monitor callback.

o If the bean has received no callback from the remote object in a certain
time period, a timeout condition is raised. The property will fire a
TimeoutEvent (timeoutsStarted () method of the listener
interface). The timeout condition persists until a callback (heartbeat
pulse) is received again by the property, after which it will fire a new
TimeoutEvent (timeoutsEnded () method of the listener interface).

o At any time the property bean may be queried by invoking

latestReceivedTime(), latestReceivedvalue() and

latestReceivedCompletion () methods. These methods are all non-
remote and will return the latest (most fresh, by timestamp comparison) value
that the property holds. This value is therefore the value of the latest monitor.
Note that these methods may return uninitialized values, if no monitoring has
been enabled on the property. If the monitor existed and has been destroyed, the

methods will return the latest available value.

The following code snippet illustrates how to monitor a property value:

class PropertyChangelistenerImpl implements PropertyChangeListener {
void propertyChange(PropertyChangeEvent ev) {

PropertyUpdateEvent e = (PropertyUpdateEvent)ev;
System.out.println(“New property value: “
e.getDeviceServerTime()) ;

}

}

RWDoubleProperty current = ps.getCurrent();

try {
current.addPropertyChangelListener (new PropertyChangeListenerImpl());
PropertyMonitor m = current.getMonitor();

Thread.sleep(100000) ;

m.destroy () ;

}

PropertyUpdateEvents are propagated as standard java beans

PropertyChangeEvent subclasses through the PropertyChangelListener interface
(this facilitates the use in visual builders). The getPropertyName () method of the

+ e.getDoubleValue() + “ time:

“

PropertyChangeEvent will always be “latestReceivedvalue” and the

getNewValue () will return the new value of the property. If, however, the type of the
property is known in advance (for instance, if it is a double), a getDoubleValue()
invocation is much faster (see example). An equally efficient way for the event listener is
to query event.getSource().getLatestReceivedvValue (), since the source of the
event will always be the property the value of which has changed. The abeans system

Revision: 2.1

ALMA

3.7

Abeans Programming Tutorial

also guarantees that the getLatestReceivedvalue () invoked on the property will
return the new value when queried in response to a PropertyUpdateEvent. Note that
the actual monitoring starts when getMonitor () is called by the user (in visual mode
this step is unnecessary). Monitors must be destroyed when the monitor is no longer
needed. This can be done explicitly, as in our example, or implicitly. The monitor will be
destroyed whenever its corresponding device bean is destroyed. In visual mode, the
monitor handling is different (the monitor is destroyed when there are no more property
update listeners registered with the property, or when the visual application is closing,
which causes all abeans to be destroyed as a side effect).

Note that the complete implementation of the above example should also include timeout
handling, but the issue is fundamentally the same, as it was demonstrated in case of
action commands.

For more information about monitoring, see reference on PropertyMonitor interface.

There also exists a special kind of monitoring that is started on the whole family of
abeans. This is called a PackedMonitor and enables the application to receive any
number of property value updates in a single network call. The use of the packed monitor
is the same as for the ordinary monitor, except that the monitor is created on the family
object and not on the single bean. When the packed monitor notification arrives, the
fields of all monitored properties are automatically updated (new value, new completion,
new timestamp).

Common events and properties of the abeans library

Practically all information in the Abeans system is obtained through Bean events and
Bean properties, in order to optimize their use in VBEs. The following two tables list the
most useful ones. For a complete list see the API reference.

Event name Fired by Signals

AlarmEvent RO- property types | An alarm condition. This event is fired if

alarm monitor has been created on the
property. Alarm event can signal either the
beginning or the end of an alarm
condition. AlarmEvents are subtypes of
PropertyUpdateEvents and carry, in
addition to property value, completion
codes and timestamp, also an alarm
description that is obtained by decoding
the alarm type and code.

ApplicationStatus | VisualAbean The event is fired when an application is
Event

Application initialised or when it is being closed. The
AbeanInitializer catches the event.

Revision: 2.1 Page 32 of 38

ALMA Abeans Programming Tutorial

The default response to initialising phase
is the connection of the default family. The
default response to the application closing
is the destruction of all abeans.

ConnectionEvent Abean The change in connection status of an
abean. The event is fired 1) on successful
connection, 2) on failed connection, 3) on
disconnection. When the bind has been
completed and signalled by this event, you
can call remote methods on the abean.

FamilyEvent AbeanFamily The change in family membership. This
event is fired whenever an abean is added
to the AbeanFamily or removed from it.

Property Property The change in property connection status.
InitializedEvent After the abean has connected, the
connection mechanism automatically
reinitialises the properties of that abean.
Such initialisation may include monitor
creation (if any listeners are registered)
and buffering of some static data. After
this event has been fired, it is safe to call

remote methods on the property instance.

PropertyMonitor Property The change in property monitor status.
Event The event is fired whenever the monitor is
created, destroyed, suspended or resumed.
Visual components that display the
property value may respond by
appropriate visual indication of the

monitor status.

PropertyUpdate Property The change in property value. The
Event property value is changed when a new
monitor notification arrives. Note that
PropertyUpdateEvents subclass
PropertyChangeEvents and are fired
into either CallbackDoneListener or
PropertyChangelListener interfaces.
In the first case they signal that a callback
connected with an action has completed.
In the second case they signal an arrival of

a new monitor value; they also carry the

new value, completion, timestamp and a

Revision: 2.1 Page 33 of 38

ALMA Abeans Programming Tutorial

reference to the data source.

PropertySequence | AbeanFamily This event is used for packed monitors and

UpdateEvent contains an array of changed properties,

their corresponding new values and

completions.
ReportEvent Any object, A general-purpose report event that carries
ErrorHandler a string message, flagged with a severity
instances flag. Used especially to display status and

€ITor messages.

TimeoutEvent Abean, Property Fired by any object capable of invoking
asynchronous remote actions. Signals a
timeout condition. If it is fired in response
to an action timeout, a timeout method of
the listener interface is invoked. For
monitors, timeouts are identified by their
starting time and ending time (i.e. timeout
conditions are not created periodically, but
persist until a timeout is cleared).

Revision: 2.1 Page 34 of 38

ALMA Abeans Programming Tutorial

Property name Bean Description
connection Abean Contains the data necessary for the bean
Parameters (R/W) to start the connection, including the

remote device name, connector type,
connection timeout, and bean family
name. Setting this property in visual
mode starts the connection if the bean
belongs to the default family.

debug (R/W) Many components If set to true, the component produces
additional debug info and dispatches it to
the log service.

synchronizationLock | Abean If set to non-null value, the remote

(R/W) asynchronous calls will block until the
callback is received or timeout has
expired.

alive (R) Abean True if the bean has not been destroyed.

If false, the remote methods must not be
called; otherwise an exception will be
thrown.

visualMode (R) Abean True if the bean has been created with a
default constructor and is operating in a
visual mode.

connecting (R) Abean True if the bean is currently connecting,
but the connection has not yet been
completed.

connected (R) Abean, Property True if the connection has completed
successfully. Remote methods may be
called.

latestChange Property Indicates the time of the latest value

Timestamp (R) change of the property obtained by
monitoring.

latestReceived Property Contains the latest received completion

Completion (R) object obtained by monitoring.

latestReceived Property Indicates the time of the latest heartbeat.

Timestamp (R) If the l1atestReceivedTimestamp and

latestChangeTimestamp do not

Revision: 2.1 Page 35 of 38

ALMA Abeans Programming Tutorial

coincide, a heartbeat monitor was
obtained which carried the same value as
the previous monitor.

latestReceivedvValue | Property Contains the latest value received by a
(R) monitor. Note that the actual source of
this value may be the property or packed
monitor. The most recent value is
retained in either case.

sourceBean (R) Property The bean that contains the property.
monitored (R) Property True if the property has an active value
monitor.

family (R/'W) Specifies the family for which the

ServiceBean
ServiceBean is responsible.
allowedToConnect (R/ | ServiceBean Specifies if the family of the service bean
W) can begin its connection process.

3.8 ServiceBean
The serviceBean is a general-purpose bean that can be used for the following
purposes:

o It enables the user to query for all available devices and device types on the
communication system dependent layer.

o It enables the user to control the families (instances of AbeanFamily type).

More than one ServiceBean can be instantiated. By default, when a ServiceBean is
instantiated, it ties itself to the AbeanFamily.DEFAULT_FAMILY (i.e. the family to
which all instantiated beans belong by default). The family for which a given
ServiceBean is responsible can be changed by calling its setFamily () method. Why
is it necessary to have a ServiceBean operating on the AbeanFamily — why not
control the family directly? You can, but it is inconvenient to do so in a visual builder (if
you are programming by hand, it is easy). You cannot simply drag & drop an instance of
AbeanFamily, because they are not beans themselves. Therefore a ServiceBean acts
as a decorator bean for the abean family instance. Aside from the operations enumerated
in the reference manual, most important actions that the ServiceBean can invoke on its
family are:

o It can multiplex ReportEvents originating in all family members and forward
them. If many beans are instantiated and need to pass ReportEvents toa
TextPane, you do not have to connect each bean to the TextPane; rather

Revision: 2.1 Page 36 of 38

ALMA

Abeans Programming Tutorial

instantiate a ServiceBean and connect only its ReportEvent feature to the
TextPane. It will collect the events of the whole family and will forward them.

o If you created some of the beans so that they do not belong to the default family
in a visual builder, they will not connect automatically when the application has
initialised itself. Rather, the beans will wait for the user to invoke:

ServiceBean sb = new ServiceBean();
sb.setFamily (“myFamily”) ;

sb.setAllowedToConnect (true) ;

3.8.1

o The code segment indicates how to use the ServiceBean to signal
“myFamily” to connect. The family will then begin the connection process for
each of its members. The procedure is useful when you want to have explicit
control over the bean connection time.

o Suspend and resume operations. If you are programming an application that
consists of a set of panels, you may want to conserve network bandwidth by
using families and ServiceBeans. If not all panels are active at the same time,
you should create a separate family that holds beans belonging to each panel.
Then, you can instruct the beans to connect only when a user activates the panel.
Moreover, when the panel is minimized, you can use the sb.suspend ()
operation on the ServiceBean responsible for the panel’s abeans. The method
will suspend all monitors and thus increase the responsiveness of the application
and the network. When the panel is activated again, you can use sb.resume ()
to return the beans to normal operation. This style of usage is very appropriate
for visual composition editors, where you do not explicitly control the creation /
destruction of the beans, since these features belong under the control of the
builder and are automatically generated. Suspend and resume operations also
consume fewer resources than explicit construction and bind operation.

Device queries
Device queries are used in powerful generic applications, where the type and name of a
device are determined at run-time and are not hardcoded.

A serviceBean instance is also a gateway to the communication dependent (pluggable)
layer. While it does not permit the user to detect the actual communication protocol used
and keeps the interface uniform, the user has the possibility to query the pluggable layer
for data on all available devices (devices to which the bind can be performed) or all
available device types (a device type is defined to be equal to the string value of the
device bean, with “Bean” suffix removed). Note that the query operations are completely
independent from the families, i.e. the methods are grouped in one class just for the sake
of convenience. A simple example will demonstrate the usage.

Revision: 2.1 Page 37 of 38

ALMA Abeans Programming Tutorial

ServiceBean sb = new ServiceBean();

DeviceInfo[] infos = sb.queryAllDevicesSynchronous (new

Type (“PowerSupply”), “*");

for (int i = 0; 1 < infos.length; i++) {
System.out.println(“Device name *“ + infos[i].name + “ Connection
type: “ + infos[i].connType + *“ Queried type: “ +

infos[i].deviceType + * Actual type: “ +
infos[i].implementationType) ;

}

There are several things to note in the preceding code segment:

o A query operation returns an array of DeviceInfo structures. All of its fields
are printed to the console by the for loop.

o The method name queryAllDevicesSynchronous reveals that asynchronous
version of the same query exists: queryAllDevices () will return the same
result, but the call will not block. The query will be made in a separate thread and
the provided callback argument will be invoked to deliver the results. See the
reference manual for details.

o The fields of DeviceInfo structure are the following: name, connType,
deviceType, implementationType. Name is a string under which the device
can be accessed on the communication layer. Parameter connType indicates the
name of the connector used to access the device, e.g. “CORBA”, “Simulator”
etc. Parameter deviceType is by definition equal to the type passed as a first
argument to queryAllDevicesSynchronous. Parameter
implementationType is the actual (run-time) type of the remote object, which

could be either deviceType or a name of its subclass.

o The second parameter to the queryAllDevicesSynchronous () is a string

€y 6

mask. Mask can be either: a string expression, containing and wild chars,
or a domain name. The ServiceBean will only return those devices that match

the mask. For more information on domains see the reference manual.

Device types are queried by a similar call: queryAllDeviceTypes (). The semantics is
the same as in queryAllDevices ().

Revision: 2.1 Page 38 of 38

	1 PART I: Introduction
	1.1 Purpose of the Document
	1.2 The Power Supply Example
	1.2.1 Definition of a Power Supply
	1.2.2 The Model of a Power Supply

	1.3 Overview of Abeans
	1.3.1 Java beans, visual builders
	1.3.2 Compile time, design time, run time
	1.3.3 Abeans
	1.3.3.1 Abeans representing devices and properties
	1.3.3.2 What do abeans do?
	1.3.3.3 What Abeans do not do?

	1.3.4 Steps in developing an abean application

	2 PART II: Creating Device Proxies, Implementations and Beans
	2.1 Creating device proxies
	2.1.1 Example

	2.2 Creating abeans for controlled devices
	2.2.1 Example
	2.2.2 Class header and data fields
	2.2.3 Constructors
	2.2.4 Property accessor methods
	2.2.5 Remote methods
	2.2.6 Run method

	2.3 Summary

	3 Part III: Building an application
	3.1 Deciding on how to use abeans: visual mode vs. manual mode
	3.1.1 Finding out the mode of the abean
	3.1.2 Differences between modes

	3.2 SynchronizationLock object
	3.3 Completion objects
	3.4 The connection process
	3.4.1 Manual mode
	3.4.2 Visual mode

	3.5 Our First Abean Application
	3.6 Using Abeans in an Application
	3.6.1 Action command
	3.6.2 Static data item accessors and property accessors
	3.6.3 Accessors, mutators and monitors of the property’s value

	3.7 Common events and properties of the abeans library
	3.8 ServiceBean
	3.8.1 Device queries

