KGB-PAP-01/01
Revision: 1.1

: Large 2001-09-14

Abeans White

| Millimeter |~

M.Plesko et al.

Abeans White Paper

Building Java Clients

M. Plesko

J. Stefan Institute
G. Tkacik

J. Stefan Institute
L. Verstovsek

J. Stefan Institute

Keywords: Java, CORBA, GUI, Client, AbeansKGB-PAP-01/01

Author Signature: Date:
Approved by: Signature:
Institute: Date:
Released by: Signature:

Institute: Date:

ALMA

Abeans White Paper

Change Record
REVISION DATE | | SECTIONS/PAGES AFFECTED
REMARKS
0 20.3.2001 | M. Plesko | Al
1.0 30.3.2001 | M.Plesko | no significant change

minor editorial corrections, as proposed by Gianluca Chiozzi, added TOC

1.1

2001-09-14 | Gasper Tkacik

| Section 4.3

Minor change, addition of new types apart from double and pattern.

Revision: 1.1

Page 2 of 17

ALMA Abeans White Paper

Table of Content

1 INErOAUCTION. . teeuuirensirnnsirensssrnssssnmsssenssssasssssassssssssssasssssssssanssssassssnnssssnsssssnssssnssssanssssnnsssnnssnnssnnsnnss 4
1] S 0O D e ittt ettt ettt i et eiieiieiiiirieieeiirssieessssieesssssssesesssssierssssseiiisssesiiiirsseesiiissessceseess 4
1.2 EXOCULIVE SUMIMIAIY . i ieeune ittt ei ittt e e et e tesseeeteseeet e tseseesetesreeteeeeseesteesseeseasseesaeesesseneazeens 4
2 Efficiently creating GUI Applications with Abeans...........cieemzzuiiieemnnsieieenenieieenasirieennssseieennsseees 6
3 Analysis of Abeans ApPPliCatiONS.iieuuriemurransirensssrasssrenssseasssrasssssassssssssssnsssssnsssssssssanssansansss 10
I I = 1012 T T T T TP 10
3.2 GrOUD A DDl Cat 0N S . . sttt tietiieiee e teseeee e teseeee s eseesee e esseees e esesses s seeses s teeeesatseeeesantseeensnaeeeeennnnsees 10
3.3 COMP X A DDl Cat ONS. .. ittt iii it e i i ittt e ieei e eiasssssssasssssetasessssteaesesasstaeeestasaseenseastesnsaennsss 10
3.4 General BemarksS. . oottt e e ettt e e sttt eeree e eeeree e eerrre e teeree e terrrr e teerreaaeeeaes 11
4 Framework for Application Development........c..uiireezesiiereemssiereenssseeresnsssssreenssssrrennssssrenssensssans 12
] A O O O U . it ittt iit i i it it ee ettt eeieesseessesessseessssasesee i eeeestee s see e eeeassesanaseaiseeantasenstaensenss 13

4.1.1 Separation of Data and Visual Representation...........o.eeeeiiiieeeeeiiiisiieiiiieeeeiennees 13

4.1.2 Separation of Abeans Implementation and Pluggable Layer..........coeeeveiieeiiennienn..s 14
L [10] o) (Y0 01T 01 v= L 1 o) o VPP OO TP TP OO TP PP PP PO T TP PO TP PP TOTTTT 14

4.2.1 MEINOUS. .. ittt ettt ettt ee st eeetee e eeeeteeteteerrettretartatienaaraaaas 14

e wd (0] 01 A ([TR T T O TP 15

4.2.3 ADECAN SPECI IC SN VIC S, .. ittt ittt ittt seteteteeteesstasessttesssatensteessterensteesstarensteensasens 15
4.3 PlUQQabIE LAY Ol e ittt ettt e ettt tee ettt eeeeteteerteeterteeeeerieeiriiieieetirieiaes 17

Revision: 1.1 Page 3 of 17

ALMA

1.1

1.2

Abeans White Paper

Introduction

Scope:

When developing a control system application one should follow the vision: To produce
a user friendly client, where ““user” stands for a physicist that operates the system
and not a computer expert. Therefore, the main characteristics must be that the client is
easy to maintain and that it allows non-experts to easily build powerful graphical user
interfaces. This document describes our vision how to

o write efficient ACS clients

» create ACS graphical user interfaces in a commercial visual tool with no or
few lines of written code

* use strongly typed object oriented components to reduce developing and
testing time and increase maintainability

and the concepts how we have achieved this vision. Everything described in this
document has been already developed and can be used for ACS 1.0.

Executive summary

When writing a client application the programmer is most often confronted with
numerous problems from the areas of error handling, timeout handling, logging,
communication system details, resource initialization and destruction and the like. In
terms of lines of code it can easily happen that such functionality easily compares with
the core application functionality. The same reasoning applies to GUI programming.

To address these problems in a consistent way, a clean and consistent design of the whole
ACS, as it is provided by BACI, is of paramount importance. But this is not enough.
Programmer should not have to solve the same problems over and over. On the client
level in particular, we need solutions to these problems in a solid framework of
components that can be directly assembled into powerful applications. We have
developed such a framework with the programming language Java and using its
component model, called Java Beans: The ACS distributed objects are wrapped into
specially developed Java Beans called Abeans, which provide also a rich set of tools that
clients always need. This allows applications to be written easily, even by
nonprogrammers.

A Java bean is a reusable component that can be manipulated in a visual builder
environment, similar to GUI-builders or Visual Basic: beans can be graphically arranged
and connections between them established. Such environments, commercially available
at a reasonable price, enable the programmer to build an application without typing a
single line of code. Many GUI beans exist, such as labels, buttons, gauges, charts, etc.
We use commercial and also homemade beans, where the commercial ones don’t provide

Revision: 1.1 Page 4 of 17

ALMA

Abeans White Paper

the necessary functionality. However, beans can be also “invisible”, having pure
functionality without graphical representation. We have written a library of invisible Java
beans, called Abeans for ACS beans, that wrap distributed objects of ALMA - devices.
For each device type there is one corresponding device bean. A code generator
automatically creates beans from the interface definition language (IDL) description of
ALMA devices. A device bean encapsulates all remote calls from the client to a device
server of the ACS, e.g. get/set, on/off etc. Thus the network is invisible to the user of
device beans. Tasks of a device bean include opening the connection and performing the
function calls on remote objects; report and manage all errors/exceptions/timeouts,
providing handles for asynchronous messages and the like.

The Abeans strive to present the final user with a view of ALMA as a collection of
device beans, thereby reducing the problem of writing applications for the control system
to the problem of familiarizing oneself with the ways to use java beans and development
tools. To this end as much complexity as possible is hidden, but still accessible on
demand. All interfaces that Abeans expose are type-safe (with no 'single function taking
control string' methods) and enable one to construct a simple yet powerful graphic
application within minutes.

In this way, the learning curve for a new programmer is not very steep and demanding.

For instance, ALMA control system uses CORBA for communication, but programmers
writing the visual components or "views" are completely unaware of CORBA, since the
invisible Abeans layer hides it. All interactions with the data sources that the view needs
to display its data are performed through simple and well-defined Java Beans interfaces.

Therefore the work done in building a control panel for a device consists mostly of
connecting the appropriate device Bean and visual beans in a visual builder. The
developing time is low, of the order of hours for a panel, or one or two days for a full-
fledged application that instantiates and interconnect many device Beans - even of
different devices.

We have chosen Java because it is a modern object oriented programming language, it
has well defined data types and API (Application Programming Interface), it allows easy
use of graphic widgets, threads and other system tools without having to know the
specifics of a given platform. Java is also an interpreted language, so it is a little slower
than compiled languages like C++, but we found out that by using JIT (Just-In-Time)
compilers it is fast enough for our needs. The design patterns of Abeans are sufficiently
mature so that they can be implemented also in another programming language.
However, the advantage of using visual builders as for Java Beans is lost in that case.

Revision: 1.1 Page 5 of 17

ALMA Abeans White Paper

2 Efficiently creating GUI Applications with Abeans

An example of a commercial visual builder is Visual Age for Java (VAJ), which is a
complete integrated development environment. (figure 1)

C PSPanelTutorial(6/28/00 11:04:41 AM) in siijs.anka

File Bean Edit Tools Workspace Window Help
HDHY DY W B

Al Members | £ Hierarchy |30 Editions |5 isual Composition | je Bearlnfo

G Composition Editor
Swing - |
|§ E2) &zl PSPanelTutorial - Properties
== JBulton] -
Mask {domain): Device name:
@ L
— cursor DEFAULT CURSOR =]
[EESRc S| ‘ [~ | dsabledicon
- disabled5electedicon
WaAREERE: B ; doubleBulfered False
iz | = <title> diopT aiget
= w w enabled True
J 0 0 30 4 50 & W 80 90 100 incts A oled iy
Fort Dislog, bold, 12
RS Rl EEEEENE RN RE RN Foregronnd
= horzontalblignment___|CENTER
JEEd 0.00 horizontalT extPosition|RIGHT
JoDLd icon
" lncale en_|
1s] £ <title> G margin TZL4B2RIA
=47 < [= | - |fooo s« [=][=] masimumbEs 51, 27
. 2k | RS e 5127
:I' d' :I' mnemonic I
- 0 10 22 33 40 s 80 70 80 80 100 mertFocusablatompond]
; opaque True
; pretenedSizs 51,27
(2 «This space wag intentionally [eft blank= pressedican
requestfocusEnabled_|True
rolloveiE nabled False
t on | Jputon2 || muttons rolloverlcon
rollover5slectedicon
4| selected False
Selectedican
toolTipText fra
werticalblignment |CENTER
e P |
Text displayed on the button =
Feset
¥ Show expert features e
4 |_’|J

[JBuitonT [jsva swing JButton] selested

il start| PLocatiorgenice | B windows NT Tes...| (3 PSpancESOE/T...| @ wokbench | {3 PSPanel 2i2.7.51..| B Document! - Micr..| [PSPanelTutori... [Log = 11264

Figure 1: A screenshot of Visual Age for Java. To the right is the property list, where
each property of the selected bean can be edited. The pane on the left contains icons for
Java Swing Beans. The panel between the property list and the icon pane is a control
panel under development.

Our goal was to make the applications be built with ease, without a detailed knowledge
of the ACS design. To achieve platform independence, the clients were all written in
Java. In order to hide the network from the client programmer, the so-called Abeans were
developed. They are a complete framework for the development of applications and also
for handling device errors and communication problems that occur. Basically they are
Java Bean objects that map to CORBA distributed objects (encapsulate all remote calls
from the client to a device server of the ACS layer), following the same rules as defined
in BACI. Besides this, they provide the following functionality:

* open the connection and perform the function calls on remote objects

* report and manage all errors / exceptions / timeouts arising from network
communication

Revision: 1.1 Page 6 of 17

ALMA Abeans White Paper

» provide handles for asynchronous messages, queue / demultiplex responses

To represent the values of the control variables (pointing vector, status of the Mount,
etc.), several GUI components were developed: gauger, slider, trend and ledder. They
were specifically designed to represent the properties defined in BACI and are therefore
tailored to be used with Abeans. It is even possible to create simple applications in a
visual builder environment without typing a single line of code: all that needs to be done
is to connect a property (e.g. current) from an Abean that represents a certain device (e.g.
a power supply) to a corresponding GUI component (e.g. gauger). Another component is
the selector, which enables the user to search for all available devices of a given type
dynamically at run time and chose one or a group of them. When the choice is made, the
Abeans automatically take care of the initialization process and the gauger is immediately
showing the correct value. An example of such an application is shown in figure 2.

Mask (domain): Device name:
' |~ | | 4 PBEND_M.02 | d
PBEND_M.D2:readback !

L PBEMD_M.0Z:current c
==l = 1] - Jjo.oo LY |
3 . C
0 01 02 03 04 05 06 OF 0& 08 1
i@ On) Bum Failure
) External Interlock) Owertemp d
3 Mot Ready i) State Inconsistent

‘ on | | off | ‘ Reset |

Querying existing dewvices of type
'Poweriupply' with mask '*'. [3B] (0l:02)
Found 65 devices matching search criteria.
[SE] (0l:02)

Connection completed. [FPEEND_M.02] (01:02) |4

Figure2: Power Supply Panel. This panel was created from Abeans and GUI components
in Java visual builder environment without typing a single line of code. The following
“ACS standard” GUI components can be seen: a) selector, b) gauger, c) slider, d) ledder,
e) ATextPane - a pane with messages for the user.

Great care has been taken in the design of the GUI components. They don’t just display a
single value, but provide visualization for all characteristics of a property. Each gauge or

Revision: 1.1 Page 7 of 17

ALMA

Abeans White Paper

slider can spawn a trend chart. Limits and display precision is read from the property by
default but can be set by the user at run-time. Among others, keyboard shortcuts,
logarithmic scale, different modes of value get/set, different refresh rates, tool-tip text
and alarms are all supported. The trend chart has variable history length, supports zoom
and pan, saves data in TAB-delimited format and can convert to a histogram chart.

By using Visual Age for Java, it is possible to create the whole application completely
visually, without writing a single line of code, similar to as shown in figure 3. Figure 3
actually also demonstrates the ease of adding event-handling code: the box above the
panel refers to a small method containing 3 lines of code. This metod is invoked
whenever the “bind completed” event is triggered by the power supply Bean, which is
nicely shown graphically. The skeleton of the method is generated by the visual
environment from a menu selection.

This example really proves the claim in section 1. But there are more complex examples
that can be written with Abeans. Even the most complex applications can be built without
any knowledge of the design below the level of Abeans. All that is necessary is the
knowledge of Java and the organization of Abeans.

| powerSupplyBieand_BindCompleted|])
-0 =T

Device name:

..
- _//_/S_;r:iceBean'l

Figure 3: The complete visual composition of the panel shown in figure 2.

Revision: 1.1 Page 8 of 17

ALMA

Revision: 1.1

Abeans White Paper

Another type of Abeans applications are applications that manage whole sets of devices
at the same time, like generic device tables, alarm table, snapshot, etc. We have written
several generic applications that can accept any device Bean, even if its type was not
known at the time the applications have been written:

* AlarmTable: registers as alarm-listener to all properties. Displays actual
alarms; filters and mask alarms; (de)selects device/properties, etc.

* ObjectTable: displays all devices of a given class (type) in a table, one device
per row. The columns are values of properties. RWDouble properties have
three rows, for display and setting the values. ObjectTable also features
trend-chart (values as function of time) and profile-chart (values as functions
of position) of any combination of properties, multiple-device commands,
save/load snapshot files, etc.

* Snapshot: displays all active devices in an Windows Explorer like tree, takes
the actual set-values of properties for selected devices (by domain, type, etc.)
and writes to a text file or into an SQL database. The text file is in TAB-
delimited format for easy import into spreadsheets. Existing snapshot files
can be examined and selectively (by device type and domain) loaded.

Page 9 of 17

ALMA

3.1

3.2

3.3

Abeans White Paper

Analysis of Abeans Applications

Applications used in control systems can be roughly divided into three classes, namely
panels, group applications and complex applications.

Panels

Panels use a set of widgets (gauges, sliders, charts) to present the state of a device and
allow the operator to modify the state. Development of panels is rapid — for a
complicated panel it may take some days — and is facilitated by a GUI builder in a RAD
(Rapid Application Development) environment. No code is written by hand. The
application programmer delegates the task of connection, device query, error reporting
etc. to the Abeans libraries.

Group Applications

Group applications are applications that control a large amount of devices of the same
type. Examples used in ALMA are device tables, snapshot and alarm table. Because these
applications include a certain amount of logic so specific to the application that it cannot
be a part of the Abeans framework, their development cycle is radically different. Only
the GUI is designed in the visual builder, while the access to the Abeans and the
connection of the invisible beans to the GUI is programmed by hand. Performance often
takes priority over the ease of programming and in current Abeans release the application
programmer must take care of some performance issues. Nevertheless, a lot of tasks are
still done by the Abeans framework, since group applications rely on the operator to
respond to control system conditions (the response is not automatic). In other words, the
main function of a group application is to aggregate the data and display it, while
allowing only a simple and manual way to change the state of the machine.

Complex Applications

As we do not know the applications necessary for ALMA, we discuss an application we
have written for the ANKA particle accelerator, called the Databush. It is a perfect
example of an application that qualifies as complex in the ANKA control system: it is a
library of machine physics algorithms, for instance orbit correction. Databush connects to
both power supplies and beam position monitors. This application requires special access
to the Abeans libraries: it is not enough that errors are reported to the user automatically
by the Abeans framework, they must also be processed by Databush. Databush also
needs fine-grained control of the new value delivery (packed monitor delivers data for all
power supplies in one batch), which must be thread-safe. There are also special
requirements for synchronization (asynchronous commands must complete with OK
status before new commands are sent) and management of a large number of device
beans.

Revision: 1.1 Page 10 of 17

ALMA

3.4

Abeans White Paper

General Remarks

Comparing the requirements of panels and complex applications that use the same
Abeans framework, the framework designer is faced with the dilemma of building either
a thin, streamlined, “lean-and-mean” version of Abeans or a “has-it-all”, full-featured but
heavy library, which offers the access to the devices in any imaginable way. As explained
in the following sections, the Abeans library attempts to solve this problem without
sacrificing the simplicity of RAD development.

Further analysis has shown that application code that calls the Abeans libraries is small in
quantity and easy to write. Most of the time spent while developing a group application
goes to tasks such as programming GUI responses and programming data flow (this
involves creating Swing models and programming data structures that hold the data
obtained from the Abeans framework). A new release of Abeans is being designed to
reduce the amount of data copying between different models by providing data to the
application in the form that is acceptable without further interfacing. Because data
copying is one of the most performance degrading functions in Java, this should result in
notable performance increase.

Revision: 1.1 Page 11 of 17

ALMA Abeans White Paper

4 Framework for Application Development

A divide-and-conquer solution that ACS client software embraces is the use of the
following approaches:

* Control system is comprised of server layers and client layers; the latter
consist of framework (invisible) Abeans layer (which in turn consists of
server-dependent or pluggable layer and independent layer), and application
(visible) layer

e There can be many types of controlled devices and therefore many different
interfaces (one device - one class approach), however, each device is
constructed of fundamental building blocks - Properties, and there is only a
small number of these (RWDoubleProperty represents a physical quantity of
double type that can be either changed or retrieved, for instance a current in a
power supply; ROPatternProperty, represents a retrievable read-only bit-
pattern)

* The core visual components (such as gauges, status displays, trend charts)
should be completely independent of the actual control system, so that they
can be used by others

» Special adapters have intimate knowledge about the Property and about the
visual component, allowing a generic visual component to be "adapted" to
the Property. This means that the Property will be an invisible framework
class and the generic visual component will, with the help of an adapter,
become its view (to use the Model-Controller-View terminology).

All those concepts are implemented in Java with components that adhere to the Java
Bean specification. A Java Bean is a component that can be manipulated in a visual
builder environment: Beans can be graphically arranged and connections between them
established. The latter include, for example, event-to-method connections, where the
event in one Bean triggers the method in the other; property-to-method connections,
where a change in property triggers the method, property-to-property connections and so
on. Such environments enable the programmer to build an application without typing a
single line of code.

Any ALMA client application is composed of two types of Beans:

* visual Beans (GUI objects, like windows, buttons, gauges, charts and the
like) either commercial products or in-house products of equivalent quality;

* device Beans developed in-house for control systems:
A device Bean encapsulates all remote calls from the client to a device
server. Thus the network is invisible to the user of device Beans. Each device
(which is presented in the ACS as a distributed object - see BACI) has a

Revision: 1.1 Page 12 of 17

ALMA

41

411

Abeans White Paper

corresponding device Bean. Tasks of a device Bean include opening the
connection and performing the function calls on remote objects; report and
manage all errors/exceptions/timeouts arising from network communication,
provide handles for asynchronous messages, etc.

Architecture
Abeans were developed to fulfill the following requirements:

* To enable final users - application developers to develop applications for
control easily (advanced programming skills are not required), safely (by
delegating as much work as possible to automatic code generators, which are
thoroughly tested off-the-shelf products) and quickly (by using complex
commercially available components)

» To present a clean, object oriented view of the controlled devices to the final
user

* To hide implementation details of the lower level subsystem (e.g. network
communication)

* To be platform independent (with Java) and pluggable (Abeans can be used
with different communication systems, like CORBA, RPC, sockets)

The Abeans were influenced mostly by the following major design decisions as discussed
in the following subsections.

Separation of Data and Visual Representation

Abeans are beans used to access remote devices. They have no visual representation.
They do, however, expose a number of properties and fire certain events. Visual beans
(called awidgets) interact with invisible Abeans to display their data. Visual beans are,
for example, standard swing or awt components, commercially available chart and table
beans and our own collection of gauges, setters and led panels. In this way we retain the
freedom to change the visualization without changing the Abeans, we are able to present
more views of the same data item (like displaying the value of the current in a textfield,
chart or on a gauge), and our own awidgets are independent of the control system. The
cost of such freedom is the added overhead of the communication between Abeans and
awidgets through Java events.

We were faced with the problem of how to efficiently connect awidgets and Abeans in a
visual builder environment. While simple in theory, in practice the approach would
include making many visual connections. Imagine connecting a gauge bean with Abean
representing current in a power supply: first you must make a connection that
synchronizes current value with displayed value on gauge, then you need to set units,
name "current”, minimum and maximum value etc. on a gauge, obtaining the values from
current; this would involve making many connections. The preferred approach is to
implement adapters - an adapter extends the awidget and 'adapts' it, so that it knows how

Revision: 1.1 Page 13 of 17

ALMA

41.2

4.2

4.21

Abeans White Paper

to handle an entity like current directly. Then, visual building involves creating a single
connection from current of the power supply to the new, adapted gauge. The latter knows
how to handle current internally. In this way the visual programming remains simple
without sacrificing the generic nature of the awidgets.

Separation of Abeans Implementation and Pluggable Layer

The pluggable layer offers the possibility of accessing different remote systems and by its
nature of adapting the lower-level remote system interface to the Abean interface
enforces uniform and consistent behaviour across a range of possible remote systems.

Regardless of whether the Abeans are used to access devices through CORBA subsystem
or, for instance, EPICS’ subsystem, their interfaces and implementation does not change.
For each subsystem, the so-called proxy interfaces have been implemented along with
some specific classes providing information about that subsystem. These classes all
reside in a separate java package, called pluggable package. Then, when an application is
completely built, the user can decide for each Abean which subsystem it will use to
connect to the remote device. At runtime, the whole pluggable package is loaded for the
appropriate subsystem allowing Abeans to utilize it. Adding a new subsystem thus
requires writing the pluggable package, but does not involve any change at all to other
parts of the Abeans code.

Implementation

Abean architecture closely matches the Basic Control Interface BACI presented in
another document. For each physical device in the system there is one Abean. As far as
the communication with the remote device (the server side) is concerned, an Abean is a
collection of methods and properties.

Methods

A method called on the Abean is called on the remote device. This pass through is useful,
because it brings all methods to the common denominator - they all look like normal java
function calls. In reality, the following steps are performed:

* Regardless of whether remote method is asynchronous (meaning that it
returns immediately and reports its remote completion later through a special
callback object - examples are methods which take a long time to complete,
like telling the telescope to move to a given direction) or synchronous
(blocks until the remote request is completely carried out) they all appear the
same to the user. If it is asynchronous, the Abeans take care of creating
callback objects, passing them to the server and receiving network
notifications. User can specify whether the Abean should wait for each call
to execute completely and to have the fact confirmed by callback before
proceeding to the next remote call.

* Abeans check for network errors / timeouts, handle them and report them

" Experimental Physics and Industrial Control System, a commonly used package at accelerators

Revision: 1.1 Page 14 of 17

ALMA

422

4.2.3

Abeans White Paper

* Abeans check for device errors and report them

* Abeans can log remote method calls (a replay function is under
development)

Properties

A property is a bean itself, therefore it is a bean contained in the bean for a device. There
is a small fixed number of property types which represent different physical quantities or
states of a physical device. For example, we can have DoubleProperty (representing
double value, i.e. the current of the power supply) or PatternProperty (representing bits,
describes e.g. the state of a power supply), in read-only or read-write flavor (current on
power supply can be set / read, but readback on the power supply can only be read).
Apart from the primitive value they contain, these beans provide a wealth of additional
information about this value, putting it into a physical context. An RWDoubleProperty
can thus be queried for minimum and maximum value, units, name, description,
resolution and the like. There is also a number of ways of setting or getting this value
(synchronous, asynchronous etc.) Why is it useful to have property beans inside beans
representing devices:

* They conceal the data source: physical data comes from the actual device
(value of the current), while accompanying information (minimums,
maximums, units, names) come from the database. This distinction is
completely invisible to the user.

* They manage monitors: a current in a power supply can be monitored,
meaning that the control system periodically sends new values to the client
(say every second). The management of the monitor is hidden from the user
by the property bean representing the current. Whenever any other bean is
interested in receiving current value updates (for example a trend chart that
plots current against time) it registers as standard Java beans listener to the
bean that represents the current. That in turn automatically creates the
monitor and sends monitor callbacks as events to all listeners (the chart).
Such dynamical construction and destruction of monitors conserves network
bandwidth and server CPU time. The process is further optimized by the
events being dispatched to graphical components - awidgets - only when the
value changes (because they need to refresh their display) and not
periodically, when the control system sends updates.

e They handle alarms and monitoring timeouts through special events

Abean specific services

In addition to the set of remote device methods and properties, which also communicate
with the remote device server, Abeans provide a number of other services to the user
which are local to the Abean system. These include:

Revision: 1.1 Page 15 of 17

ALMA Abeans White Paper

* Configuration management, which takes care of configuration loading
(implemented as java resources which are accessible from applets or
applications), configuration front end and an infrastructure allowing the
custom pluggable subsystems to extend the default list of settings that must
be specified with their own. For instance a CORBA pluggable package needs
completely different types of settings than the simulation package; when user
selects one or both for his/her application, pluggables request their own
specific settings to be queried from the user. By default all Abeans in an
application are initialized with settings from the configuration for that
application. Thus the user does not need to specify the complete initial state
of the Abean programmatically, but just overrides the defaults; furthermore,
this approach significantly decreases the amount of information hard coded
into the application.

* Timing management: since virtually no assumptions can be made about
automatically generated code in a visual builder environment, a way has to
be found that uniquely determines the execution sequence of the client
process. For instance, some code builders might create all Abeans at the
application initialization phase, while the others wait until they the Abeans
are needed. The potential problems such differences could cause would be
hard to detect, impacting mostly the Abean connection process. By means of
grouping Abeans into the so-called families the user can determine time
frames during which the Abeans can connect to the remote servers. The
default behavior remains simple (connect-when-ready); but should the need
arise the possibility for finer control over connection exists.

* Differentiation between manual use and use in visual builders: while Abeans
can be used visually they are naturally also normal java classes that can be
used in hand-written code. However the requirements that the user places on
the Abeans in both modes of usage differ slightly. In manual mode, for
example, handling asynchronous method calls is difficult. Imagine sending
asynchronously an 'on' command and a 'set' command to a power supply: the
first has to complete before the second is sent. Validating this sequence at
every step manually requires a lot of programming. Therefore Abeans
internally synchronize the calls. In visual mode, on the other hand,
asynchronous nature is desired, because it does not block the user interface;
special cases, where the order of actions is important, can be handled by
careful construction of the user interface (disabling the button for action 2
until action 1 has completed). There are also some other minor differences in
this regard.

It is important to note that the large majority of these features are implemented once in a
superclass of all device Abeans. Moreover, the number of properties that comprise the
Abeans for devices is small and they are already coded. Consequently writing an Abean
for a new device involves very little additional work - a full code generator from IDL to
Abeans has actually been written.

Revision: 1.1 Page 16 of 17

ALMA Abeans White Paper

4.3 Pluggable Layer
A short conceptual overview of the pluggable system has been given already above. Here
we will discuss some of the issues more in depth. The whole Abeans system can be
imagined as a two-layered architecture: the upper layer, which the user and the visual
builder see that is independent of the communication protocol and passes requests on to
the second, pluggable layer. The latter actually executes all communication-system-
dependent function calls. Since the upper level is fixed for a given device regardless of
the communication protocol and the device model, which exist on remote server, it is
clear that some 'translation' must occur on this pluggable layer. More specifically, since
the Abeans represent the whole control system as a collection of devices each with its
methods and properties, this object oriented view must be constructed on the pluggable
level if it does not yet exist on the remote server (for example, some control systems have
servers that expose the control system as a connection of channels, each representing a
physical quantity or the device state; there is no concept of device that groups together a
number of channels. In such a case, a device would be constructed out of these channels
on the pluggable level). If Abeans run on two systems and a device that exists on both
does not have the same interface, this poses no problem, since Abeans for new devices
are created easily. A more pressing problem presents itself if there is no corresponding
data type in the Abeans level that exists on the control system for which the pluggable
layer should be created. Up to now the types requested consist of double properties,
pattern properties, int properties and string properties.

Another use of the pluggable layer is the implementation of a simulator. Instead of
connecting to a real and existing remote system, Abeans connect to pluggable layer,
which simulates remote devices. Every panel or application written for the simulator can
be used for the real control system simply by telling the Abeans to load, for instance,
CORBA pluggable package instead of simulator package.

Revision: 1.1 Page 17 of 17

	1 Introduction
	1.1 Scope:
	1.2 Executive summary

	2 Efficiently creating GUI Applications with Abeans
	3 Analysis of Abeans Applications
	3.1 Panels
	3.2 Group Applications
	3.3 Complex Applications
	3.4 General Remarks

	4 Framework for Application Development
	4.1 Architecture
	4.1.1 Separation of Data and Visual Representation
	4.1.2 Separation of Abeans Implementation and Pluggable Layer

	4.2 Implementation
	4.2.1 Methods
	4.2.2 Properties
	4.2.3 Abean specific services

	4.3 Pluggable Layer

