
a Research School of Astronomy and Astrophysics
Mt Stromlo Observatory

Instrument Control Software Requirement
Specification for Extremely Large Telescopes

P.J. Younga, M.J. Kiekebuschb and G. Chiozzib

Engineers in several observatories are now designing the next generation of optical telescopes, the Extremely Large Telescopes (ELT). These are very complex machines that will
host sophisticated astronomical instruments to be used for a wide range of scientific studies.

In order to carry out scientific observations, a software infrastructure is required to orchestrate the control of the multiple subsystems and functions. This paper will focus on
describing the considerations, strategies and main issues related to the definition and analysis of the software requirements for the ELT’s Instrument Control System using
modern development processes and modelling tools like SysML..

Introduction
This poster describes work underway at ESO on the development of a software
infrastructure for the planned European ELT (E-ELT). There has been much discussion in
the telescope software domain (both inside ESO and at other institutions) about the
usefulness of software infrastructures developed for the 8m-telescope era. Many of these
discussions have focused on technologies used, processes adopted, software
development and maintenance costs and strategies followed. In other words, there has
been much introspection.

Some of the issues identified with current software systems include high development and
maintenance costs, with the amount of in-house development often blamed as a
significant contributing factor; and inflexibility, with attempts at extending functionality or
integrating new generation capability proving to be costly and difficult. Hence, much focus
has been directed toward determining how to reduce in-house development and build in
flexibility.

With these considerations in mind ESO have started work on the control software for the
E-ELT. The E-ELT is planned to have up to ten complex scientific instruments (including
two post-focal adaptive optics systems) that will be built by external consortia (usually
made up of institutions located in ESO member countries). The E-ELT TCS is planned to
have many of its subsystems built externally under sub-contract. For all of these
endeavours it is considered that there is much advantage to be gained by ensuring a level
of commonality in operation software is enforced by design. ESO will need to develop the
infrastructure that achieves this. To achieve an unbiased view, ESO have decided to
involve external collaborators and contractors in the process undertaken for analysing and
building this infrastructure and described in this paper.

Software Frameworks
A software framework as discussed in this paper refers specifically to both the E-ELT
Instrument Software Framework (INS-FW) and the E-ELT TCS Core Infrastructure
Framework (CIF). More generally, a software framework is “a re-usable design for a
software system (or subsystem). A software framework may include support programs,
code libraries, a scripting language, or other software to help develop and glue together
the different components of a software project. Various parts of the framework may be
exposed through an API”

Examples of software frameworks used previously in the telescope software domain
include the VLT Software (VLT SW), the Gemini Core Instrument Control System (Gemini
CICS) and the ALMA Common Software (ACS).

Measuring Effectiveness of Software Frameworks
In order to evaluate the potential usefulness of an INS-FW, ESO considered it important to
determine the positive impact (if any) of the current VLT CCS on the development of first
and second-generation instruments for the VLT. This would provide a basis for determining
the scope of any common software framework for the E-ELT project.

Comparing development costs of different instruments is not easy. Development effort,
developer skill and instrument complexity all need to be taken into account. Subsequent
maintenance effort also needs considering. ESO have started to work on such an analysis,
but until now no conclusive estimates have been produced, due to the inherent difficulties
mentioned and because neither complexity nor developer skill can easily be measured.

For the time being, ESO have, instead, relied on their experience of instruments operating
on the VLT both with and without infrastructure software to be confident that the
development of a suitable infrastructure for the E-ELT is important, noting the following:

• Frameworks offer the potential for maximising software reuse. They also afford the
opportunity for applying a well-understood design pattern to common software in a
consistent fashion. Not using a framework could mean that common problems for
different instruments or sub-systems are solved with different efficiencies, have
potentially costly errors (e.g., leading to a system crash) and require different
developers to ‘reinvent the wheel’.

• On the other hand – using a framework could mean: that a developer has to learn
about services that are not needed; innovation can be stifled; code bloat can occur
(support for specific systems provided in a generic way can be expensive)

Frameworks for the ELT Era - Requirements Analysis
The E-ELT Instrument Control Software Framework (INS-FW), combined with specific
extensions to support each instrument, includes all the software components and
communication infrastructure required for Observatory level control of each instrument’s
configuration, control and data acquisition. The INS-FW will provide the mechanism for
the coordination of scientific observations under different instrument operating modes.

All E-ELT instruments currently being studied are unique, though all have some common
functional attributes involving configuration, coordination and operation that provide for
the possibility of a level of standardisation. From the E-ELT observatory point of view, a
software framework should address these commonalities in a general way so that
instruments are handled in a consistent, efficient and also flexible manner.

The INS-FW will provide a facility that both ESO development, maintenance and
operations staff and external instrument developers can use to maximise the efficient
development and operation of E-ELT instruments. It will provide the operational interface
between the Observatory and the instrument but will not prevent the instrument from
operating in stand-alone mode when necessary.

Also recognising the complexity and individuality of each of the E-ELT instruments, the
INS-FW will not attempt to provide a complete generic facility for operating each
instrument, as this will mean a resulting system that will be overly complex and inflexible.
Instead, the INS-FW will provide the minimal set of functionality that assists developers in
integrating their instrument for operation in the E-ELT environment (a strategy also
recently adopted by Gemini)

It is assumed that ultimate responsibility for maintaining software for instrumentation and
TCS sub-systems will reside with ESO after the development of this software by
instrument consortia and sub-contractors, hence guidelines and tools for building this
software to required standards will be provided as part of the supplied frameworks.

Developing the vision and scope for the framework
The first step in any requirements analysis phase is to define the scope of the software to
be built. This is developed from the basic understanding of what is to be provided and is
informed by previous experience.

The highest level goal is to:

• Provide a software infrastructure that can be used to configure, control and acquire
data from E-ELT instruments

It is envisioned that this will be done by:

• A set of generic reusable building blocks (components) for controlling the individual
instrument elements

• A graphical tool for developers to piece together these components to form a system
in an arbitrary but controlled structure and that can be distributed on a network

• An interface and communication infrastructure necessary for binding components of
the system together

• A mechanism for the configuration of components
• A facility for extending a configuration for the integration of ‘specialist’ components

built to support unique instrument characteristics
• A mechanism for the independent command and control of individual components
• A mechanism for the interoperation of components and sequencing of operations

between different components in the system
• A mechanism for the setting, inspection, monitoring and recording of individual and

collective data items (attributes) belonging to components of the system
• A mechanism for the display of images from scientific and wave front sensor detectors
• A mechanism for the storage of both scientific and wave front sensor image data

using the ESO E-ELT Data Products Specification which incorporates the FITS
standard

• A mechanism for the logging of data item values and system events for eventual
storage in a data base management system

• A mechanism to handle exceptional system events including the notification,
acknowledgment, logging and clearing of alarms

• A mechanism for handling system errors and exceptions
• A set of tools for real-time monitoring of telemetry data
• A mechanism to interface with the Telescope Control System
• A mechanism to interface with the Observatory Astronomical Site Monitor to allow

instruments access to prevailing astronomical and meteorological conditions

High level requirements - business rules and system context
It is normal software-engineering practice for any business rules applying to a system be
identified and stated at the outset. It is also important that all requirements stem from the
product vision and scope and are constrained by these business rules. Business rules are
derived from the specifics of the business task that the system (the INS-FW) is supposed
to address. These rules have been sourced from the E-ELT top-level requirements
documents.

Determining the product breakdown
Table 1 shows the proposed preliminary product breakdown for the INS-FW. These
separate software products combine together to form the INS-FW and have been specified
as sub-systems that meet the high-level functional goals of the framework as specified in
the previous section.

A context diagram (Figure 1) shows how the INS-FW fits within the E-ELT environment.
External sub-systems identified include the Telescope Control System (TCS), Adaptive
Optics System (AOSystem), Time Reference System (TRS), Observatory Data Archive
(ODA), Observatory Control System (OCS), Interlock System (ILS) and Astronomical Site
Monitor (ASM). Interfaces (both internal and external) will have to be developed for each
of the systems identified.

Use-Case Analysis - extracting the functional requirements
High-level system scenarios envisioned for the INS-FW have been developed. These
scenarios describe how the system interacts with the identified users and the external E-
ELT systems. They provide the basis for specifying system behavioural requirements. A
complete set of scenarios, corresponding to each primary and alternative path for each
use case, are needed to completely specify the requirements.

The use cases described here have been derived keeping in mind the following:
“Important use-cases are those in which the user derives the most benefit. To build a
software architecture one needs the smallest set of use cases necessary to cover the
important aspects of the system” (Armour & Miller 2001).

Primary scenarios identified for the INS-FW include:

Infrastructure (engineering) use cases:
• Constructing a component and adding it to the INS-FW Component Library
• Building an instrument configuration from INS-FW components
• Building/generating instrument operation and engineering GUIs
• Starting the INS-FW to support an instrument configuration
• Shutting down the INS-FW
• Directly access/control an instrument component

Observation use cases:
• Set the instrument operating mode
• Selecting an available observation block
• Readying (setting up) an instrument for an observation
• Acquire the scientific object of interest
• Taking an observation
• Interrupting an observation (aborting, ending or pausing)

Some of these primary scenarios can be further specialised, for example the 'Taking an
Observation' scenario can be further detailed into particular observation categories –
modelled using the UML generalisation relationship:

• Taking a simple CCD observation
• Taking an infra-red observation

In addition, to illustrate the requirement to support more complex scenarios, the 'Simple
CCD Observation' can be extended to include more complex observation types likely to
need supporting. We cannot hope to detail all possible extensions here, but the two
examples presented should indicate the basic extensibility requirement of the framework
when dealing with observations, modelled using the UML extension relationship:

• Taking nod & shuffle exposure (typically used to minimise sky background noise for
faint objects)

• Taking a compound observation (e.g., an un-equal length exposure for an instrument
with more than one camera)

Each of these scenarios has been described in more detail using UML use-case diagrams
and descriptions. We include example use case diagrams (Figures 2 & 3).

Elaborating the functional requirements for sub-systems
The high-level system scenarios identified in the previous section are next described in
more detail and are referred to as the base use case descriptions. The base use case
description identifies the specific behaviours and interactions that take place between
actor and system within the scope of the use case’s flow of events. The flow of events is a
description of these activities and order in which they happen when the event that triggers
the use case occurs.

The objectives in developing the base use cases are:

• Understand the primary interactions between the system and user and the system
behaviours that occur as part of the use case

• Document the scope of the use case
• Start to determine non-functional requirements and use-case assumptions
• Document the priority of the use case

An example use-case elaboration is shown in Table 2.

Enumerating the functional requirements for sub-systems
Functional requirements specify the operation or behaviour that the INS-FW, or part of it,
must perform. These requirements have been derived from the set of use-cases and from
the set of associated (higher-level) documents. The detailed functional requirements
associated with each feature of the INS-FW have been itemised. These are the capabilities
of the INS-FW that must be present in order for the user to carry out the services
provided by the feature. Included is how the INS-FW should respond to anticipated error
conditions or invalid inputs. It is important to ensure that these requirements are concise,
complete, unambiguous, verifiable, and necessary.

As an example of this process, the functional requirements associated with monitoring and
control of an instrument are listed in Table 3.

At time of writing, we have identified 178 functional and non-functional requirements for
the INS-FW (this excludes common CIF requirements – see below).

It has to be noted that CIF requirements are, for the most part, a subset of the INS-FW
requirements (covering Messaging, Error Handling, Alarms, Logging and Configuration).
The goal is to use the corresponding CIF subsystems below the INS-FW. The analysis of
specific INS-FW requirements will influence CIF development in order to satisfy
requirements that are not part of the set already identified for the E-ELT TCS

For a more complete understanding of each of the instruments proposed for the E-ELT
from a software framework development point of view, ESO have undertaken to model
each of the instruments using the System Modelling Language (SysML). These models will
ultimately form part of the overall E-ELT model being developed at ESO and well advanced
for the TCS.

This modelling has included developing structure diagrams for the instruments, internal
block diagrams detailing the information flows, activity diagrams that model component
behaviour, parametric diagrams that detail operating constraints and allocation of
requirements to model objects for requirements traceability. An important goal of this
process has been to extract common elements out of the models for each of the
instruments and then to implement these common parts by constructing a catalogue
containing reusable elements. The top-level structure diagram for the E-ELT instrument
SysML model is shown in Figure 4.

It has to be emphasised that the process of requirements elicitation, use-case analysis
and system modelling is an iterative one and refinements will need to be made over a
large part of the development life cycle.

Modelling Instruments - Verifying and Tracing Requirements

Contact Details: Peter Young Email: pjy@mso.anu.edu.au Web: http://www.mso.anu.edu.au The Australian National University, Research School of Astronomy and Astrophysics, Cotter Road, Weston, Canberra ACT 2611 Australia

The next step in developing the infrastructure software for the E-ELT is deriving the overall
architectural design – i.e., (quoting from Bass et al, 2003) "something that distils away
details of implementation, algorithm, and data representation and concentrates on the
behaviour, and interaction of black-box elements". Though, from one set of requirements a
bunch of different architectures can emerge given different environments - we have to be
careful of current influences that may dictate a particular architectural pattern, which may
not be optimal. Bass et al suggest that the following principles should be followed when
proceeding with this step

• Choosing an architectural pattern is one of the architects first design choices
• Is there a reference model for our domain?
• And is there a reference architecture, (i.e., a reference model mapped onto software

elements) for our domain that we would like to use?
This is where our experience of current software frameworks will be of advantage.

Prototyping is also an important part of the process of developing a software architecture
and ultimately a design for the INS-FW. To that end ESO have been looking at promising
technologies and developing prototype solutions. This has been well described in their E-
ELT Technology demonstrator work (TDem). ESO have also sub-contracted to external
groups for initial designs of the CIF hoping ideas will emerge that can be carried through
for subsequent work.

In conclusion, we expect that by following the processes described here and drawing on
our previous experience, the next generation of software frameworks for the E-ELT will
prove to be cost-effective, flexible and successful.

Next Steps - Architecture and Prototyping

b European
 Southern

 Observatory

Figure 4. Example SysML model element - E-ELT Instrument Stations block diagram

Figure 1. INS-FW Product Tree and referenced E-ELT Sub-Systems.

Figure 3. INS-FW Observation Use Cases

Figure 2. INS-FW Infrastructure Use Cases

Table 1. INS-FW Product Breakdown

Table 3. Example list of requirements elaborated for a functional category - in this case "Monitoring and Control"

Table 2. Use-case elaboration for "Ready Instrument for an Observation"

