
High Performance Graphical Data Trending in a Distributed

System

Cristián Maureiraa, Arturo Hoffstadta, Joao Lópeza, Nicolás Troncosob, Rodrigo Tobarc, Horst
H. von Branda.

aComputer Systems Research Group, Universidad Técnica Federico Santa Maŕıa, Valparáıso,
Chile;

bAssociated Universities, Inc. (AUI), Santiago, Chile; Universidad Técnica Federico Santa
Maŕıa, Valparáıso, Chile

cEuropean Southern Observatory, Garching bei München, Germany

ABSTRACT

Trending near real-time data is a complex task, specially in distributed environments. This problem was typically

tackled in financial and transaction systems, but it now applies to its utmost in other contexts, such as hardware

monitoring in large-scale projects. Data handling requires subscription to specific data feeds that need to be

implemented avoiding replication, and rate of transmission has to be assured. On the side of the graphical client,

rendering needs to be fast enough so it may be perceived as real-time processing and display.

ALMA Common Software (ACS) provides a software infrastructure for distributed projects which may require

trending large volumes of data. For theses requirements ACS offers a Sampling System, which allows sampling

selected data feeds at different frequencies. Along with this, it provides a graphical tool to plot the collected

information, which needs to perform as well as possible.

Currently there are many graphical libraries available for data trending. This imposes a problem when trying

to choose one: It is necessary to know which has the best performance, and which combination of programming

language and library is the best decision. This document analyzes the performance of different graphical libraries

and languages in order to present the optimal environment when writing or re-factoring an application using

trending technologies in distributed systems. To properly address the complexity of the problem, a specific set of

alternative was pre-selected, including libraries in Java and Python, languages which are part of ACS. A stress

benchmark will be developed in a simulated distributed environment using ACS in order to test the trending

libraries.

Keywords: Trending, Plotting, Benchmarking, Distributed Systems, ACS

1. INTRODUCTION

Atacama Large Millimeter/Sub-Millimeter Array (ALMA)1 is a joint project between astronomical organizations

of Europe (ESO), North America (NRAO), and Japan (NAOJ). ALMA is a large radio-astronomical project, it

will consist of at least 50 twelve meter antennas operating in the millimeter and sub-millimeter wavelength range

with baselines up to 10 [km]. It will be located at an altitude above 5000 [m] on the Chajnantor plateau in the

middle of the Chilean Atacama desert. The science commissioning of ALMA will start in 2012 when the array

will be fully operational for astronomical observations.

ALMA Common Software (ACS)2–5 is an Object Oriented CORBA middleware framework (for science facil-

ities) that handles communication between distributed objects. ACS was built to support the complex control

requirements of ALMA radio telescopes, but can be used to support control and data flow for any system with

similar performance requirements.6 Particularly, it features a Sampling System,7 which is used to continuously

collect the values of an indicated set of properties around the system. This data can then be displayed by a

Contact information: (Send correspondence to Cristián Maureira) E-mail: cmaureir@csrg.inf.utfsm.cl, Telephone:
+56 32 2654562, Web: http://alma.inf.utfsm.cl.

graphical client (the Sampling System GUI), in form of a dynamical plot. This client is written in Java, using

the JChart2D library, and is currently being used at the ALMA observatory. Nevertheless, a question remains

open: Which is the best library/language combination for such a task? One point to note is that ACS is open

source (it is distributed under LGPL), so any base software used in it (like graphics libraries) must be compatible

with this.

The work presented in this paper aims at evaluating different alternatives for high performance graphical

data trending in distributed systems.It is important to distinguish trending (contructing graphs of data flowing

in real-time) from plotting (where graphs, possibly very complex, are constructed from statically available data).

Trending is inherently real-time, and is mostly concerned with showing trends for data that evolves in time.

First the most common data trending solutions were identified, and a list of alternatives is described. Per-

formance tests are applied to the tool developed for the ALMA project in order to asses the performance of

different graphical libraries. The problem of selecting a programming language and trending tool are described,

then we discuss the state of the art in trending tools and graphical trending libraries. A methodology to test

performance is then proposed, and the resulting benchmarks are discussed. Some real-case scenario tests were

performed.

2. PROBLEM

When a development team is given the task of creating a software project, one of the first questions is the

selection of the programming language. This is a very important decision, as performance is greatly affected

by the paradigm and implementation of the available compilers for that programming language. The usual

manner to solve this is to prototype, use previous experience and test the different wanted characteristics, such

as modularity, performance, and scalability.

There are comparisons between different programming languages, such as,8 in which the author gives a walk

through the origin of each language, and puts emphasis in the validation of a programming language comparison,

because that depends on different characteristics, such as programmer capabilities, the different task and work

conditions, the handling of misunderstood requirements, the paradigms employed (object oriented, imperative,

generic programming). As is to be expected, such comparisons tend to concentrate only on one area.

Aside the selection of programming language, the team has to consider the selection of a graphical library.

This is a nested decision, as very few libraries are available for several languages. Then, the question arises: “Of

all the graphical libraries available, which is the best one for my project?” Strictly speaking, one should analyse

a couple of libraries and then make a decision. In practice this is almost never done, as schedules are usually

tight so there is no time available to evaluate every choice.

In our case, the main problem is to find the best choice in the data trending area, where performance of the

graphical representation are critical. There are several ways to measure the performance and quality of graphical

libraries, some examples are:

• Number of chart types handled.

• Trace options.

• Plot functionality.

• Frames Per Second (FPS).

• Data volume vs. performance

In the present work the most important metrics are FPS and the data volume vs. performance. Large amounts

of data need to be quickly processed and displayed, together with additional information.

The development team has still two decisions open, both of them pending from a proper comparison. But

there is yet another problem. Many systems in real world applications are not single-node systems, so that

performance tested on a single computer may give a different result than when deployed on a distributed system.

This is the case of ALMA and ALMA Common Software (ACS) distributed applications. Distributed systems

are complex, and communications is an important part of the data pre-processing.

Given this, a third question remains open: “How does a distributed system affect my trending application’s

performance?”

3. STATE OF ART

Currently, a huge range of plotting solutions exists in the market. As time passes, more and more libraries are

developed, or existing ones are improved, extended or updated. This makes it difficult both choosing one of

such libraries, and to compare them in a distributed environment. In this section we aim to present some of the

most used plotting and data trending solutions. This list is constrained to the set of languages that are used in

ALMA Common Software (i.e., Java, C++ and Python). They are of help in understanding which variables are

important to measure when considering the election of one solution.

3.1 Graphical Libraries

The most significant part of the work when plotting data collected over a distributed system is the plotting

itself. In the following section we present some of the most used plotting libraries, giving an overview of their

implementations.

3.1.1 Java

JFreeChart9 is a very popular chart library, since it allows to create complex charts easily. One of the most im-

portant characteristics, from the programmer’s point of view, is its well-documented API. Currently, JFreeChart
supports different chart types, such as X-Y charts (line, spline, and scatter), pie charts, Gantt charts, bar charts

(either horizontal, vertical and stacked and independent), and finally a single value graph (like for the case of

a thermometer, compass, or speedometer). The flexible design of this library allows to extend the application

in both the server and client sides. It also supports many output formats, including Swing components, image

files, and vector graphics. Finally, JFreeChart is open-source software, distributed under the terms of the GNU

Lesser General Public Licence (LGPL), which allows to use it both in open-source and proprietary applications.

JChart2D10 is a charting library designed for displaying multiple traces, which in turn consist of trace-points,
Its main advantage is that it provides the programmer a minimalistic way to work with charts. It is important

to note that JChart2D is centered around a Swing widget (Chart2D), so knowledge of Java AWT and Swing

technologies is very useful. Some of its features are the renderization of the traces via lines, discs, dots, or filled

polygons, multiple axes on top, bottom, left and right side, zoomable charts, multiples traces with different

behavior in a simple chart, a toolbox of UI controls for charts via pop-up menus, automatic choice of units,

optional display of grids, labels, and more. JChart2D is intended for engineering tasks, since its speciality is

the dynamic precise display of the data in a minimalistic way, without much configuration. JChart2D is also

published under LGPL.

The JCCKit11 is a very small chart library, which features a very flexible framework for creating scientific

charts and plots with the necessary elements. JCCKit is suitable for scientific applets, because it is written

for the JDK 1.1.8 platform. The purpose of this library is to provide a flexible kit for programming applets

and application for the visualization of some data. Some important features of JCCKit are that it is highly

configurable, its extensibility and customizability, the automatic update of changed data, dynamic charts and

plots, automatic rescaling, good support for logarithmic axes, line styles, symbols, fonts, error bars, and the

compatibility with AWT graphic, SVG, and more.

QN Plot12 is a chart implementation that provides a way to program graphs (of one or more functions) as

Swing components. Its design makes it possible to render large amounts of real-time data, which is an advantage

when it comes to its usage in distributed systems. Some features of QN Plot are the coordination of different

kinds of big decimals having arbitrary precision, its high performance with large amounts of data, all the classes

in its implementation are thread-safe, the schemes of the axes have been specially written to choose step sizes

for the index automatically. Finally, QN Plot is free software, released under the 2-clause BSD license.

3.1.2 Python

The PyQwt13 module is a set of Python bindings for the Qwt C++ class library which extends some features of

the Qt framework to be able to build widgets for scientific and engineering applications. This library provides

widgets to plot 2-dimensional data and work with the control of bounded or unbounded floating point values,

and very large integer values, with various widgets displaying them. The main idea of PyQwt is to merge some

Python modules, so as to have a complete framework to work with data. It mixes the GUI library PyQt, the

plotting library Qwt, and NumPy and SciPy to cover the mathematical data manipulation because those libraries

have a lot of computational methods that help manipulating the data easily, because the combination of NumPy

and SciPy offers an environment very similar to Matlab.

Matplotlib14 is a very powerful plotting library developed for the Python programming language, which

produces high quality figures in different formats. One of the main goals of this library is to make it easy to plot

and manipulate data, because in a few lines one can generate histograms, bar charts, scatter-plots, simple plots,

etc. Besides the Python language, Matplotlib uses NumPy, a numerical mathematics extension for Python, to do

all the heavy mathematical processing. Matplotlib is very similar to MatLab, because it offers the PyLab interface

to simplify learning, principally to the MatLab user. This makes it a good choice for numerical mathematics

and signal processing tasks. Finally, Matplotlib is distributed under a BSD-style license.

Looking at other Python libraries, we found Biggles,15 which provides a lot of useful tools to create and

manipulate scientific plots, having too as main idea the complete customization of the plots, so for Biggles the

plots are a set of very simple objects. The idea of the Biggles objects is a good classification, taking two categories

of objects, the containers and the components; so when we have a container we may use a lot of components

for that container. Finally, we have the concept of Container for all the plots, tables, etc and the idea of the

Components that need a Container to work, and can’t be visualized on their own. Biggles is a new graphical

library, so it has far to go. This library is distributed under the terms of the GNU General Public License.

PyQtGraph16 is a very good library, because it uses two very popular Python modules and combines them

in a nice way, we are talking of PyQt and NumPy, so the idea of PyQtGraph is to combine all the features

of NumPy with the widgets provided by the PyQt wrapper. The objectives of this library are to be a good

library to work with mathematics, scientific, and engineering applications. PyQtGraph is a very fast library,

because it is written purely in Python and uses all the numerical capacities of NumPy and the fast display of

Qt applications. Beside all the widgets that PyQtGraph provides, there are two important features, the highly

feature-rich plotting systems and an image display system with region-of-interest widgets.

3.1.3 C++

Previously, we mentioned the PyQwt library, and we said that it is a wrapper for Qwt ,17 while Qwt is an

extension to the Qt library that contains useful GUI Components and utilities. Its main feature is the 2D plot

widget, but Qwt provides several widgets/components that facilitate programming. Some of these components

are scales, sliders, dials, compasses, thermometers, wheels and knobs to control or display values, arrays, or

ranges of type double. Qwt is distributed under the terms of the Qwt License, a variation of the GNU LESSER

GENERAL PUBLIC LICENSE (LGPL) with some exceptions.

Koolplot18 is a very simple-to-use library that allows to create and manipulate 2D graphs. It is very small and

basic, so it is not recommended for use in complex graph situations. A feature of Koolplot is the compatibility

with the MinGW compiler, so it can be used on Linux and Microsoft Windows platforms. Finally, Koolplot is in

the public domain.

wxMathPlot19 is a properly built library to add 2D plot scientific functionality into wxWidget, a cross-

platform C++ library to create applications for Microsoft Windows, OS X and Linux. As it can be inserted into

wxWidgets, it allows to embed inside every wxWidget application a window for plotting different types of data.

Some of the most important features of wxMathPlot are the completely mouse-driven view control (pan, zoom,

scroll, etc), the different output formats of the screenshots (BMP, PNG and JPEG), the flexible axis positioning,

the several layers to plot data from vectors, movable objects, bitmaps, etc. Finally, wxMathPlot is distributed

under the therms of the wxWindows Licence, that is essentially LGPL with some exceptions.

Carnac20 Chart Library is an extension to the Qt library that adds powerful visualization. The main idea is

to allow programming complex charts with minimum effort. Some features of Carnac are the large number of

different chart types supported, and its flexibility in setting up axes and labels.

GNUplot++21 is a wrapper of GNUplot through C++. GNUplot is a very old and properly build command-

line program that can generate different types of plots, frequently used for publication quality graphics, and

is multi-platform (Linux, Microsoft Windows, Mac OS X, etc) GNUplot++ mixes the powerful GNUplot tools

with many features of standard C++, for example templates class. It uses many features of standard C++, like

integration to the standard template library (STL) and its iterators. GNUplot++ is distributed under GPL.

4. METHODOLOGY PROPOSAL

The graphical library benchmark was performed in the same conditions for each library, the idea was to test the

Frames Per Second (FPS) to compare their performance. Each program has a similar code structure, with the

following conditions:

• One thread in charge of feeding the plot with random data.

• A main thread to execute the program.

• A program widget without details, only the dynamic plotted data (axis, labels, etc)

The next step is a comparison between graphical libraries and study the behavior with different latency times

(data actualization rate), and finally extract a conclusion about the best performing graphical library. Finally,

with the graphical library chosen, the task is to compare language performance.

On the other hand, the real benchmark was performed on an existing application, the Sampling System GUI.

The ACS Sampling System is a collection of objects designed to easily sample an ACS Components Property

value over time.7 The Sampling System GUI (SSG) is a client to the Sampling System written in Java, using

the JChart2D library. SSG communicates with several Sampling Managers to create Sampling Objects and

group them as needed, in order to sample properties, and finally plot the values in user-time (i.e., as they arrive

through the ACS Notification Channel22). SSG allows easy, quick visualization of system behavior during a

period of time, or under certain circumstances, and gives the possibility of visually correlating the values of

different properties of the system.

5. GRAPHICAL LIBRARY BENCHMARK

This section presents the results of the different performance tests applied to a selection of graphical libraries.

The technical characteristics of the computer are:

• Intel(R) Core(TM)2 Duo CPU 2.66 [GHz]

• 4 Gigabyte RAM

• Operating System Fedora 12 for i686

Each benchmark consisted in taking two simple examples of dynamic data plotting for each library, in which

the data was a random value to simulate a real environment. The tests were repeated for periods between data

updates of 100 [ms], 10 [ms] and 1 [ms] in each case, comparing frames per second (FPS) and their variances. The

100 [ms] test is slow updates, 10 [ms] is rather fast and 1 [ms] is a real stress test. The scripts running the tests

measure the FPS each 200 data objects, each measurement is one data point in the graphs given below. Note

that raw FPS can be misleading, for smooth trending graphs 20 FPS is adequate, while 50 FPS is absolutely

perfect. Perhaps a better measure would be to see how many data points can be updated at a given rate while

still reaching 20 FPS (or 50, as the case may be). Other considerations are the impact on performance if there

is a clear trend (new data are just added near the end of the graph) or appear scattered. The Data from each

plot, come from a method that generates random values, and the plot refresh is performed using each library’s

own methods. The difference between the FPS and the arrived data is that the FPS is the amount of refresh in

the plot, considering the data that have been sent.

The data coming in from a method that

0 2 4 6 8 10
Set of data

9.6

9.7

9.8

9.9

10.0

10.1

F
P
S

JChart2D vs JFreeChart (100msec)

JChart2D

JFreeChart

(a) 100 [ms] period

0 2 4 6 8 10
Set of data

65

70

75

80

85

90

95

100

F
P
S

JChart2D vs JFreeChart (10msec)

JChart2D

JFreeChart

(b) 10 [ms] period

0 2 4 6 8 10
Set of data

200

300

400

500

600

700

800

900

F
P
S

JChart2D vs JFreeChart (1msec)

JChart2D

JFreeChart

(c) 1 [ms] period

Figure 1. JChart2D and JFreeChart comparison plots

5.1 Java

Here we compare two Java libraries, JFreeChart and JChart2D. The resulting FPS of each library for 100 [ms]

are shown in figure 1(a). At first look, JFreeChart shows a inconspicuous lower performance graphing data with

100 [ms] of latency time. There is little difference between the averages of each library, of the order of 0.024.

JChart2D has a standard deviation of 0.055 and a average of 9.975, which means that the difference between the

FPS are very similar, and has a minimal variation. JFreeChart has a standard deviation of 0.111 and a average

of 9.952, which means that the difference between the FPS at each point has a minimal variation, but is higher

compared to JChart2D. An important fact is that this latency is slow, so taking it as reference the scientific data

visualization topic we need receiving the data with a higher frequency.

The second test was performed with an interval of 10 [ms], giving the results in figure 1(b) Decreasing the

interval ten times we see that the difference between the averages of the libraries increases a little more, we are

talking about 2.22 frames more for JChart2D. JChart2D has a standard deviation of 6.861 and a average of

96.974, which means that the difference between the FPS are now higher than in the previous test, ant it is a

large for this same task. JFreeChart has a standard deviation of 10.717 and a average of 94.754, which means

that the difference between the FPS at each point has a noticeable variation, and is higher than the one exhibited

by JChart2D. Also, JChart2D has a regular performance varying a little at each point, but JFreeChart does not

have a regular performance, the three and four points showed a substantial fall. This fact makes this library

unsuitable, because visualizing scientific data requires a regular expected behavior.

The third test was performed with a latency time of 1 [ms]. The resulting FPS of each library are shown in

figure 1(c). Finally, the difference between FPS for each library is more noticeable, we are talking about 225.98

FPS, and JChart2D outperforms JFreeChart. JChart2D has a standard deviation of 207.715 and a average of

858.307, which means that the difference between the FPS are now higher related to the two previous tests,

we also note that as the FPS at each point are large values in comparison, so that implies the big difference

between the values. JFreeChart has a standard deviation of 171.445 and a average of 632.322, which means

that this library has a lower standard deviation related to the JChart2D, but the value still being a large value

for a standard deviation; in another hand, the average has a lower value related the JChart2D average. Like

the previous test, we can look the irregularities of the JFreeChart performance, at points 3,6, 8 and 10, so this

reaffirms the previous fact that the performance of JChart2D is most recommendable.

5.2 Python

We also compared two Python libraries, PyQwt and Matplotlib. First, the programs start with an interval of

data actualization of 100 [ms], and the resulting FPS of each library are shown in figure 2(a). In this test, as

we know in the case of Java, is a kind of non realistic test, because the data was actualized slowly. PyQwt has

a more stable performance, showing a standard deviation of 0.0004 that is very close to zero, keeping the FPS

near to 10, but the average of 9.999 is lower in relation to Matplotlib. In the side of Matplotlib, the performance

has higher and lower points, but at point number 4 it stabilizes, having an average close to 10.029. At first look,

0 2 4 6 8 10
Set of data

9.90

9.95

10.00

10.05

10.10

F
P
S

PyQwt vs Matplotlib (100msec)

PyQwt

Matplotlib

(a) 100 [ms] period

0 2 4 6 8 10
Set of data

30

40

50

60

70

80

90

100

F
P
S

PyQwt vs Matplotlib (10msec)

PyQwt

Matplotlib

(b) 10 [ms] period

0 2 4 6 8 10
Set of data

200

400

600

800

1000

F
P
S

PyQwt vs Matplotlib (1msec)

PyQwt

Matplotlib

(c) 1 [ms] period

Figure 2. PyQwt and Matplotlib comparison plots

0 2 4 6 8 10

Set of data

10000

20000

30000

40000

50000

60000

70000

80000

F
P
S

Qwt vs wxMathPlot (100msec)

Qwt

wxMathPlot

(a) 100 [ms] period

0 2 4 6 8 10

Set of data

20000

30000

40000

50000

60000

F
P
S

Qwt vs wxMathPlot (10msec)

Qwt

wxMathPlot

(b) 10 [ms] period

0 2 4 6 8 10

Set of data

15000

20000

25000

30000

35000

40000

45000

50000

F
P
S

Qwt vs wxMathPlot (1msec)

Qwt

wxMathPlot

(c) 1 [ms] period

Figure 3. Qwt and wxMathPlot comparison plots

Matplotlib is a better choice because it has a better average, but a higher standard variation, 0.010; but if the

programmer is looking for a library with stable performance, choosing Matplotlib means taking some risks.

Second, the programs start with an interval of data actualization of 10 [ms], and the resulting FPS of each

library are shown in figure 2(b) In this test, a notorious difference comes out, because the difference between the

averages is around 55.90 FPS, so PyQwt library is the best choice with a average of 98.500. Anyway, Matplotlib

tries to gain performance from point 5 on forward, but still having a lower average of 42.598. The standard

variation of these libraries are very similar, being 3.932 and 3.887 relatively. On the other hand, the PyQwt has

a more constant performance, which tell us the stability of the library.

Third, the programs start with an interval of data actualization of 1 [ms], and the resulting FPS of each library

are as given in figure 2(c). In this stressed situation the notorious difference between the performance of PyQwt

and Matplotlib is finally visible, showing averages of 697.050 and 42.463, respectively. Aside of the performance

average, the standard deviation of Matplotlib of 2.809 is much lower compared to the PyQwt standard deviation

of 300.325, but this has direct relation with the obtained values at each point. As final words it is necessary to

say that Matplotlib is not designed purely to create dynamic plots, its main goal is to create a lot of graph types

in a easy way.23 On the other hand, PyQwt has the direct binding from the Qwt library that was designed to

obtain high performance in data trending.

5.3 C++

Finally, on the C++ side we present the results of the comparison between Qwt and wxMathPlot. The thread

handling in C++ is more efficient, as it isn’t hindered by portability layers. As a result, the FPS values obtained

are much larger than the ones in previous tests. FPS in this case are almost equivalent to the data generation

rate.

First, the programs start with an interval of data actualization of 100 [ms] (latency time), and the resulting

Frames Per Second (FPS) of each library are shown in figure 3(a) The Qwt library shows better performance

than wxMathPlot, which is reflected in the average of each, 51916.5 and 14589.5, respectively. On the other

hand, the standard deviation tells us about the stability of each library, in this case wxMathPlot has a decreasing

stability, with a standard deviation of 3605.235, which is acceptable because the quantity of data is large enough.

Also the Qwt library, has a more unstable behavior with higher and lower points, which is defined by their

standard deviation of 51916.5 that is greater that the previous by one order of magnitude.

Continuing with the test, now with a latency rate of 10 [ms], the results in FPS are in figure 3(b). In this

case the Qwt performance increases a little, but at point 2 for example, it is surpassed by wxMathPlot. But in

general, Qwt has better performance with a average of 47830.2 in comparison to the 26988.1 of wxMathPlot.

Respect to the standard deviation wxMathPlot remains the decreasing stability showing a value of 16242.412,

that is very high in relation with the standard deviation of Qwt, 5949.169. Also Qwt still shows an irregularity

in its performance, due to thread behavior.

Finally we have the last test, that consist in stressing out C++ data trending, with a latency time of 1 [ms].

The results are in the figure 3(c). In this test, both libraries show very strange behavior, due to the data Thread

actualization with a very low value as is 1 [ms]. Qwt still wins the match with wxMathPlot, but the irregularity

is still present, because the standard deviation raises to 6271.181, but in the case of wxMathPlot that value

decreases to 8805.198, which means that in stability wxMathPlot has the first place, but related to performance,

Qwt wins with a average of 43771.6 over the wxMathPlot average of 21316.9.

5.4 General comments

The reasons of the lower performance of Python and Java wit respect to C++ are very simple to explain. The

execution of every Java program depends on the Java Virtual Machine. With respect to Python, PyQwt has

simple bindings to the Qwt/C++ library, so they have a longer path to walk to interact with the final plot.

Another important issue is the threads implementation of each language. The C++ Standard Library has less

features (functionality) and a limited scope related to the Java Standard Library, but includes native threads

libraries. On the other hand, Python provides low-level primitives for working with multiple threads, but in

difference to C++, Python has POSIX threads and non-POSIX threads.

Software developed in Python is generally slower than Java, but development time is less with Python, since

Python has dynamic typing and offers built-in high-level data types. Comparing Java with C++ brings us to

similar conclusions.

6. REAL BENCHMARK

This section presents the result of testing the Sampling System GUI in a real case scenario at the ALMA Observa-

tory. The Sampling System GUI is used in the same deployment as the operations software (ALMASW). Figure 4

roughly shows the distributed environment where ALMASW and the Sampling System GUI are deployed.

ACS and the sampling system run on the ACS server (figure 4). The sampling system GUI is run from the

operations console. This setup was selected to monitor the behavior of the FrontEnd receiver during its locking

routine. The monitoring setup considered two charts, each with:

• Five properties being sampled.

• Sampling frequency of 20 [Hz].

• Store a window of 15 minutes of plots.

• Storing all of the data to disk.

20 [Hz] is the maximum monitoring frequency available in ALMA since it is limited by its 48 [ms] period.

The test that was run on the FrontEnd receiver consisted in locking the band in 0.5 [GHz] steps over the

range of the four available bands. The test took approximately 4 hours, time during which the sampling system

GUI was continuously plotting and saving data to disk. At the time of the test only two antennas were available,

Figure 4. Distributed Deployment

this test should be run again when there are six available antennas for such purpose. This would demonstrate

how the overall system behaves when increasing the number of distributed nodes.

The overall result of the Sampling System is positive, since it met all the engineering requirements for

monitoring during the specified test. It could cope with the amount of properties and the sampling rates

specified by the engineering division. Data was properly stored to disk, and the plots provided a quick look for

the data before it was more thoroughly analyzed.

7. CONCLUSIONS

Better ways of measuring performance, like the number of data streams that can be displayed at a given FPS or

the impact of smoothly evolving data or scattered points, should be considered.

Looking backwards, the evolution of the different libraries give the programmers a lot of “path to follow”

when starting a new project. The performance of the actual data trending libraries in different languages is

very important because all of them try to offer “simple programming” in this application area. Comparing

the features of the libraries is not so important, because most of them are rather robust, and those with more

features just allow creating more elaborate plots. Without going further, there are other characteristics to

consider, like “perdurability,” “modularity,” and “scalability” of software. For a long-lived project like ALMA

(and its supporting software ACS) these characteristics are crucial. How to estimate the stability and longer

range development and maintenance of open source software on which something like ACS is based is still very

much an open question.

In section 5 we saw benchmarks of a couple of graphic libraries in the three languages that ACS uses, C++,

Java, and Python. The benchmark shows the behavior of these libraries in three levels of stressed environments,

giving us data to discriminate among them. Anyway, this is not a final decision, because one benchmark is

not enough to test the real performance of a graphical library, but it is a good start to help discriminating

them with the previous basic functionality (plotting random data). Also, other important characteristics haven’t

been considered in detail. For a long-lived protect like ALMA (and its supporting ACS package) using stable,

well-maintained base software is crucial.

Finally, in section 6 we can see the performance of the existing scientific data visualization tool, developed

by the Computer Systems Research Group (CSRG), and giving us the chance to analyze a real application in a

real distributed system such as the ALMA project.

ACKNOWLEDGMENTS

This work and the associated research has been conducted with funds granted by CONICYT, specifically ALMA-

CONICYT grant #31060008. Horst H. von Brand’s work was also supported in part by Centro Cient́ıfico-

Tecnológico de Valparáıso (CCTVal) grant FB0821. Without their help, this work would have been impossible.

REFERENCES

[1] Hibbard, J. E., Corder, S., and ALMA Project Team, “Status of the Atacama Large Millime-

ter/Submillimeter Array,” in [Bulletin of the American Astronomical Society], Bulletin of the American
Astronomical Society 41, 567–+ (Jan. 2010).

[2] Chiozzi, G. et al., “CORBA-based common software for the ALMA project,” in [Proceedings of SPIE 2002],

(2002).

[3] Chiozzi, G. et al., “The ALMA Common Software: A developer friendly CORBA-based framework,” in

[Proceedings of SPIE 2004], (2004).

[4] Raffi, G., Chiozzi, G., and Glendenning, B., “ALMA Common Software (ACS) as a basis for a distributed

software development,” in [Proceedings of the 11th Astronomical Data Analysis Software & Systems Con-
ference], (2001).

[5] Chiozzi, G., Sekoranja, M., Caproni, A., Jeram, B., Sommer, H., Schwarz, J., Cirami, R., Yatagai, H.,

Avarias, J. A., Hoffstadt, A. A., López, J. S., Grimstrup, A., and Troncoso, N., “ALMA Common Software

(ACS), status and development,” in [Proceedings of ICALEPS], (Oct. 2009).

[6] Chiozzi, G., Gustafsson, B., Jeram, B., Sivera, P., Pleško, M., Šekoranja, M., Tkačik, G., Žagar, K., and

Fugate, D., “ACS, a CORBA-based Common Software for ALMA and other projects.” http://www.esrf.

eu/conferences/Corba_Controls/PAPERS/chiozzi2.pdf (2002).

[7] Marcantonio, P. D., Cirami, R., and Chiozzi, G., “ACS sampling system: Design, implementation and

performance evaluation,” in [Proceedings of SPIE], (2004).

[8] Prechelt, L., “An empirical comparison of seven programming languages,” Computer 33(10), 23–29 (2000).

[9] Gilbert, D., “JFreeChart.” http://www.jfree.org/jfreechart.

[10] Westermann, A., “JChart2D.” http://jchart2d.sourceforge.net/index.shtml.

[11] Elmer, F.-J., “JCCKit: A chart construction kit for the Java platform.” http://jcckit.sourceforge.net.

[12] Kloe, P. S. d., “QN Plot: Charts with Swing.” http://quies.net/java/math/plot.

[13] Vermeulen, G., “PyQwt: A set of Python bindings for Qwt.” http://pyqwt.sourceforge.net.

[14] Hunter, J., Dale, D., and Droettboom, M., “matplotlib: A Python 2D plotting library.” http://

matplotlib.sourceforge.net.

[15] Nolta, M., “biggles: Simple, elegant Python plotting.” http://biggles.sourceforge.net.

[16] Campagnola, L., “PyQtGraph scientific graphics library.” https://launchpad.net/pyqtgraph.

[17] Rathmann, U. and Wilgen, J., “Qwt - Qt widgets for technical applications.” http://qwt.sourceforge.

net.

[18] jlk, “Koolplot: Basic 2D graph plotting.”

[19] Schalig, D. and Rondini, D., “wxMathPlot: Scientific plotting for wxWidgets.” http://wxmathplot.

sourceforge.net.

[20] Interactive Network Technologies, Inc., “Carmac chart toolkit.” http://www.int.com/products/2d/

carnac/chart_component.htm.

[21] Asanuma, J., “gnuplot++: Gnuplot API using C++.” http://www.suiri.tsukuba.ac.jp/~asanuma/

gnuplot++.

[22] Pisano, J., Fugate, D., and Lucero, S., ACS Notification Channels (Design and Tutorial). ALMA, 5.0.3 ed.

(2008).

[23] Hunter, J. D., “Matplotlib: A 2D graphics environment,” Computing in Science & Engineering 9(3), 90–95

(2007).

