ACS Sampling System: design, implementation and
e performance evaluation

P. Di Marcantonio?, R. Cirami2, G. Chiozzi®

a INAF-Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 1-34131 Trieste, Italy
b ESQ, European Southern Observatory, Karl-Schwarzshild-Str.2, D-85748, Garching bei Munchen, Germany

By means of ACS (ALMA Common Software) framework we designed and implemented a sampling system which allows sampling of every Property of a Component with a specific, user-defined, sustained frequency limited only by the hardware. Collected data are sent to various clients {one or more Java plotting widgets, a
dedicated GUl or a COTS application) using the ACS/CORBA Notification Channel. The data transport is optimized: samples are cached locally and sent in packets with a lower and user-defined frequency to keep network load under control. Simultaneous sampling of the Properties of different Components is also possible.

Together with the design and implementation issues we present the performance of the Sampling System evaluated on two different platforms: on a VME based system using VxWorks RTOS (currently adopted by ALMA) and on a PC/104+ embedded platform using Red Hat 9 Linux operating system. The PC/104+ solution
offers, as an alternative, a low cost PC compatible hardware environment with free and open operating system.

ACS Sampling System requirements ACS Sampling System implementation

The basic requirements for the ACS Sampling System can be summarized as follows:

o : . o Sampli : : : - : The programming language
every ACS Property can be sampled at a specified sustained frequency limited only by the hardware (up to 1 kHz for a limited nhumber of == nfa"ﬂgé'é? SS'E?,-E'L’I” S?ﬁ:ﬁ;';g FT'ﬁf-Q;'Lg c’ﬁ‘;L“:L’;, used for implementation is

Properties) | N C++ to be sure to meet all
the data channel transports sampling data | the performance require-

|_[LM-;'1F',
dgta transport Is optl_mlzed; .data are c:ac:hepl and sent in packets (e.g. 1 Hz frequenc:y) to keep network load under control bfﬁggﬁfﬁ& ments. Of course, a client
simultaneous sampling of different Properties of Components must be possible. Activate could be written using

Ol Yalidatel

< check different languages like
Actiated

Get reference Java or Python, iL.e. in all
1—

A CS Sampling SyStem deSign . » Created [sieep]] those SUppOFtEd b‘y’ ACS
—_—>

raae Two independent threads

We designed the Sampling System (using the factory design pattern) as composed by two entities: the sampling manager and the

Ii bject(s) control the sampling and
sampling object(s). flush :

i) Responsibilty of the sampling manager (represented by the interface ety =t ﬁUShf”?’_ ‘;’f g?'-:';[h Stimp"js
. o Samp) is to accept requests coming from outside (i.e. clients willing to > EportRate= | FERpECIEEL. T Feads
ACS::Sub t ffsh p—

. i Sl sample a specific Property with a specific frequency). After validating the .- Destrayed are started as soon as the
+ suspend / sampling request, the sampling manager creates a new “sampling object’ AR start method Is invoked by

if;:;; (represented by the interface SampObj) and returns to the client the the user.

_ enerated CORBA reference.
/{STZmplng\ /Samplmg ° The sampling thread, which is activated at every sampling period, retrieves a value from the given
1.n

i object The sampling object i1s a CORBA object linked to the specific Property Property in a synchronous way. The retrieved sample (the Property value and the associated

which exposes to the client all methods dealing with the sampling (i.e. timestamp) is stored in an internal buffer until a specific time interval has elapsed (the report rate).
start, stop, suspend, resume, set_sampfFrequency, set reportRate When this happens, the flushing thread flushes all the stored data on the Notification Channel, freeing

Samp SampObj

+ start allowing the client to fully control the sampling behavior on the specific the buffer and leaving room for new values. The internal buffer is based on the ACE message gueue,
+ initSampObj: SampObj Tatp Property).

+ set sampFrequency which provides all the necessary synchronization mechanisms to avoid race condition between threads,
#oet spFrequcncy The Offshoot interface is used inside ACS to identify CORBA objects, optimizing the enqueue and dequeue of data.

+ set reportRate - :
M e whose lifecycle is limited to the lifecycle of the Component which created Note that the timestamp comes directly from the synchronous read and eventually from the hardware.

+ getChannelName:string them. This guarantees that the coupling between a value and the actual access time is always correct.

8 & & & & b 8 BB E @ @

ACS Sampling System peﬂormance_sﬁ -

Real-time environment e, L Embedded, non real-time environment

, . Real-time performances were evaluated on a system with the following hardware/software characteristics: L The embedded system is based on a “Digital Logic Microspace PC/104+", a miniaturized modular device __
| : > VIME crate equipped with PowerPC 604 CPU with clock rate of 100 Hz Incorporating the major elements of a PC/AT compatible computer with the following characteristics:

» 128 MB RAM » CPU PlI-MMX, 166 MH

» Ethernet 100 Mbit network adapter » 128 MB RAM

» VxWorks 5.5 RTOS (Tornado 2.0, gcc 2.95) x j_f » Ethernet adapter 10/100 Mbit

. . - » HD 10GB
The crate VME was connected via the Ethernet adapter to a Sun Ultra 60 UltraSparc-ll 250 MHz host with 512 MB : > 256 MB flash card (not used for our purposes)

of RAM running all the required CORBA and ACS services (interface repository, haming service, configuration

database efc.). The PC/104+ platform was connected to a Linux machine (a Pentium IV PC equipped with 1 GB RAM and Ethernet

As afirst step we included in our analysis only the buitered data between two . at 100 Mbit) were all the required CORBA and ACS services were deployed.
ok successive deliveries. During this period, the flushing thread is in the sleeping . To test the ACS sampling tool on our prototype we used the same test suite we adopted on the Vx\Works host.
- A state, allowing the evaluation of overheads of the higher frequency (sampling) ° . Moreover, two preliminary steps were required:
f;m_ ﬁ,,f”ﬁ thread. o) - _ _ . 1. tailoring of the Red Hat 9 Linux operating system to fit the PC/104+ characteristics (essentially the small amount of
= 7 The result of this “pure” sampling is shown in the figure on the left where a | . memory and lower CPU clock)
£ [e graph of the “selected frequency’ vs “measured frequency” is shown. Every . 2. installing the required ACS services
£ 400/ 2 : - : . N ' r _ _ . 2
EM: - p0|_nt in the graph IS an average of se}f.eral thousand samples, ac_:qw_red also ,, Again we disentangle the “pure” sampling from the overhead due to °
Two- while stressing the CPU with additional work such as activating and 5 r delivery on the Notification Channel (see figure on the left were a graph of *
B e (;I_iactlvatlng_ S;evera}, COTE;nents, by calling various methods on them etc. : mm:;T A the “selected frequency” vs “measured frequency” is shown). Note that :
T ettt € r.m.s. is less then & | | | ;; W - 1. the highest sampling frequency is limited to 100 Hz, which reflects the *
Next we included in our analysis all the s | S maximum achievable clock rate of our platform (we could not change the °
o1, | 15 gathered samples and therefore also the g *r o clock rate as opposite to the ViiWorks case);
000} i 2 i3 overhead due to the delivery of data on o o 2. the r.m.s on the sampling period is greater than in the real-time case *
3 1l o1 ot e the network. From the collected data we § 0 o (of the order of 0.01 s). Our investigation shows that this depends on the °
oo e2g| — =y have seen that for higher frequencies at o limited resolution of the Linux sleeping function family, which is used
Poreee e ThH BeE 1 3 higher report rates a small jiter 1s . o N o T R ey internally by the sampling thread.
3 1,.° 002}] @ introduced, whenever the flushing thread . : ’ SR e S B 10
06" os Ofie—e” = is activated. The figures show the . "
S S 3 BE average |itter, clearly indicating that we . . Next, as for VxWorks case, we
S e e e e o T TR T e T | data for 100 H i P . - , _ - analyzed the global overhead
e | Ropon rta v el o = SRIRNG e . 3 -2 ok i including also the delivering of
Jitter vs report rate for 10 Hz sampling. Jitter vs report rate for 100 Hz sampling. A small report rates greater then 10 s. . . 008 s o1 4] sampled values on the Notification
The r.ms. is of the order of 0.002 s. jitter is noticeable for report rate » 10 s. - :E: : - 0.08] | § . Channel. The two fiqures on the left
' ?”E‘.‘“"__"__"h_' ”"% ?;:_ Lt _+_'___TI _E %. d th . It - | to th
The origin of this jitter is still under investigation, but this is partly expected. We are using as internal buffer the : : o R iR ?;al-tin‘?e recs;S: aarrfd an?oc:rgeoutia’? ch
. ACE message gueue, which uses water marks to indicate when the queue has too much data on it. When the : » 008 oe M:_" 8 behaviour between thep o blatforms
‘ queue becomes full, it cannot enqueue new data; the sampling thread will be blocked until sufficient room is . el - AT T e & T thiz R e
L 5 available again. In our case this is what happens for longer report rates. Of course, we can increase the size of ; DR Reettmew P T e 0" : o o .
L 5 . . . : - x ; _ _ slightly bigger, but this takes well in
\ - the internal buffer, but we have to find a trade-off to avoid too much memory consumption. The jitter amount » Jitter vs report rate for 10 Hz sampling. jitter vs report rate for 100 Hz sampling. aceount the limited time resolution for
could also be reduced by carefully tuning the threads priority (not implemented for this test). The number of lost ~ « « The rms.is ofthe order of 0.002 s. A small jitter is noticeable for i olSwsmer gbearss gibniood
N ° samples is anyway limited (of the order of 5 — 10) thus giving a total efficiency of the order of 99.7%. _° report rate > 10 s. . pIng
N . Moreover, for shorter report rates or lower frequencies we experienced no data /0ss. o . HERYE:

B & B &8 & B B W

Based on the ACS framework and adopting the factory design pattern, we developed a sampling tool, which allows high frequency sampling of one or more Properties of Components. The tool was tested on two different platforms: on a real-time environment and on a non real-time embedded system, vielding similar results. The
analysis of the recorded data shows that we are limited only by the underlying hardware (i.e. by the clock rate of the used system) and that all the basic requirements are fulfilled. Ve experience only a small loss of data, when a bigger amount of data is to be transferred. If required by ALMA, this could be improved by optimizing
the handling of the internal buffer. In future, the sampling tool will be tested using Linux real-time installed on the PC/104+ embedded platform also allowing to carefully estimate the performances of the whole ACS framework on such low-cost platform.

