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By means of ACS (ALMA Common Software) framework we designed and implemented a sampling system which allows sampling of every Property of a Component with a specific, user-defined, sustained frequency limited only by the hardware. Collected data are sent to various clients {one or more Java plotting widgets, a
dedicated GUl or a COTS application) using the ACS/CORBA Notification Channel. The data transport is optimized: samples are cached locally and sent in packets with a lower and user-defined frequency to keep network load under control. Simultaneous sampling of the Properties of different Components is also possible.

Together with the design and implementation issues we present the performance of the Sampling System evaluated on two different platforms: on a VME based system using VxWorks RTOS (currently adopted by ALMA) and on a PC/104+ embedded platform using Red Hat 9 Linux operating system. The PC/104+ solution
offers, as an alternative, a low cost PC compatible hardware environment with free and open operating system.

ACS Sampling System requirements ACS Sampling System implementation

The basic requirements for the ACS Sampling System can be summarized as follows:
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We designed the Sampling System (using the factory design pattern) as composed by two entities: the sampling manager and the
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which exposes to the client all methods dealing with the sampling (i.e. timestamp) is stored in an internal buffer until a specific time interval has elapsed (the report rate).
start, stop, suspend, resume, set_sampfFrequency, set reportRate When this happens, the flushing thread flushes all the stored data on the Notification Channel, freeing
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+ start allowing the client to fully control the sampling behavior on the specific the buffer and leaving room for new values. The internal buffer is based on the ACE message gueue,
+ initSampObj: SampObj Tatp Property).

+ set sampFrequency which provides all the necessary synchronization mechanisms to avoid race condition between threads,
#oet spFrequcncy The Offshoot interface is used inside ACS to identify CORBA objects, optimizing the enqueue and dequeue of data.

+ set reportRate - :
M e whose lifecycle is limited to the lifecycle of the Component which created Note that the timestamp comes directly from the synchronous read and eventually from the hardware.

+ getChannelName:string them. This guarantees that the coupling between a value and the actual access time is always correct.
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Real-time environment e, L Embedded, non real-time environment

, . Real-time performances were evaluated on a system with the following hardware/software characteristics: L The embedded system is based on a “Digital Logic Microspace PC/104+", a miniaturized modular device __
| : > VIME crate equipped with PowerPC 604 CPU with clock rate of 100 Hz Incorporating the major elements of a PC/AT compatible computer with the following characteristics:

» 128 MB RAM » CPU PlI-MMX, 166 MH

» Ethernet 100 Mbit network adapter » 128 MB RAM

» VxWorks 5.5 RTOS (Tornado 2.0, gcc 2.95) x j_f » Ethernet adapter 10/100 Mbit

. . - » HD 10GB
The crate VME was connected via the Ethernet adapter to a Sun Ultra 60 UltraSparc-ll 250 MHz host with 512 MB : > 256 MB flash card (not used for our purposes)

of RAM running all the required CORBA and ACS services (interface repository, haming service, configuration

database efc.). The PC/104+ platform was connected to a Linux machine (a Pentium IV PC equipped with 1 GB RAM and Ethernet
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Based on the ACS framework and adopting the factory design pattern, we developed a sampling tool, which allows high frequency sampling of one or more Properties of Components. The tool was tested on two different platforms: on a real-time environment and on a non real-time embedded system, vielding similar results. The
analysis of the recorded data shows that we are limited only by the underlying hardware (i.e. by the clock rate of the used system) and that all the basic requirements are fulfilled. Ve experience only a small loss of data, when a bigger amount of data is to be transferred. If required by ALMA, this could be improved by optimizing
the handling of the internal buffer. In future, the sampling tool will be tested using Linux real-time installed on the PC/104+ embedded platform also allowing to carefully estimate the performances of the whole ACS framework on such low-cost platform.



