TRANSMITTING HUGE AMOUNTS OF DATA: DESIGN,
“ IMPLEMENTATION AND PERFORMANCE OF THE BULK DATA

A»‘I\';I: TRANSFER MECHANISM IN ALMA ACS

P. Di Marcantonio’, R. Cirami', B. Jeram?, G. Chiozz/?

"INAF- Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34131 Trieste, Italy
2European Southern Observatory, Karl-Schwarzschildstr. 2, D-85748 Garching, Germany

ALMA will be the largest millimetre wavelength astronomical interferometer in the world consisting of 64 Basic terminology
12-meters antennas, and the need for transferring efficiently huge amounts of data arises consequently.
For example, a typical output data rate expected from the correlator (the device responsible for the i
processing of raw digitized data from the antennas) will be of the order of 64 MB per second. Since all Stream Connection
subsystems in ALMA rely on a communication infrastructure (ACS), which is CORBA-based, this poses
some problems to meet the stringent QoS (quality-of-service) requirements. It is well known in fact that
DOC (Distributed Object Computing) middleware, such as CORBA, increases the packet latency due to
marshalling/de-marshalling, to usage of the IIOP protocol, etc. To cope with ALMA requirements and to

The OMG CORBA A/ Streaming
Services specification (on which the
TAO A/V Streaming Service is based)
defines a stream as a set of flows of
data between objects, where a flow is
a continuous sequence of frames in

Flow Endpoint Stream Endpoint

overcome the CORBA potential bottleneck, we developed a transfer mechanism based on the ACE/TAO a clearly identified direction. A stream

CORBA Audio/Video (A/V) Streaming service. This architecture uses CORBA for hand-shaking, but allows is terminated by a stream endpoint, and can have multiple flow endpoints,

an efficient data transfer by creating out-of-bound stream(s) of data (i.e. bypassing the CORBA protocol), acting as a source or a sink of data.

thus enabling ALMA applications to keep leveraging the inherent portability and flexibility benefits of the

ACS middleware. Our infrastructure, which was put on the top of the ACE/TAO A/V Streaming service The ACS Bulk Data Transfer provides C++ classes and ACS Characteristic

implementation, allows creating one or more out-of-bound flowsin a simple way; each flow can be configured Components, which implement the features described. It allows to connect a

using different communication protocols (e.g. TCP, UDP) with a measured efficiency comparable to that Sender component (the producer of data) with a Receiver component (the

of a raw socket connection. consumer), creating dynamically as many flows as required, and provides
also the necessary mechanism to mimic a multicast behaviour (a Distributer

The ACS Sender Component which connects multiple Receivers to one Sender).

CharacteristicComponentimpl POA_bulkdata::BulkDataSender
.

+cennect(BulkDataReceiver) e

The’ACSiReceiver Component

' paramete allback v '
=)
can be Sed or.s ding asynchronous data. : CharacteristicComponentimpl |POAbulkdata::BulkDataReceiver, | 3
callback provides methods for sending data at ocer | Componer {
X + : -
predetermined user-configurable time intervals. T +2,‘:,i';£22’,‘§,;% to the Receive .
To allow sending data in a synchronous way, a implemented also as
SenderCallback i i i i 7
‘ SenderCaiback | default callback is proylded, which disables the ReceiverCalback . a template class. Th.e
BulkDataSenderimpl _ asynchronous mechanism. ReceiverCallback | template parameter in
e — BulkDataSender i] _ - :
+connect(BulkDataReceiver) As shown in the figure on the left, the BulkDataReceiverimpl BulkDataReceiver this case is a callback,
+disconnect() +createMuIt|pIeFIows() | BulkDataSenderlmpl<T> template class realizes +openRece.ver which has to be
ponent providing the implementation for MECEEREE el rovi y the user

+startSend() +initialize()
+paceData() +ConnectToPeer() . i e o i o '
+stopSend()) 1€ B ulkDat: ’ 1der 1DL In 2 . and mus ﬂall r ' e and manage therece pai st@'emp
i e e e R—f : "ﬁ-"; 2 : data strea shows‘the lass dlagram for a Receive Component L
b, '1. ::BulkDataSender skeleton CIaSS) BUlk providaes a s N Two methods are |mp emented in this case:)0) H
for the -/, @@@ﬁ@‘ and Uit) methods . e.g. from the Configuration Database all tf
connect method is responsible for the conn 5 C ;
a parameter.
lhandzshakelmechamiSm) - .
n the TAO A/V Streaming Service, the Sender/Receiver architecture is implemented by using the ACE Reacfor Patfern, and uses a callback mechanism to actually Eﬂ'a'n of:
'data 'stream. The provided TAO AN Uallback class offers methods to fulfil this purpose, but has the following limitations: >
1. there is no possibility to send short parameters dit rectly when a start is issued (for example an UID to characterize the forthcommg'frame a string containing a ﬁlename to be opened,
eic.); " . T . —
2. a synchronization problem occurs. - e -
Point 2 is quite subtle. Data sent by the Sender are first received in the TCP-receive memory buffer of the involved host (whose typical default size for Linux Red Hat 9.0 is around 85 KB).
Being the ACE_reactor event-driven, as soon as data are available, the pre-registered callback method is called and data are consumed. The limitation is that internally the TAO A/V reads
data only in chunks of 8192 bytes. It could happen therefore that the Sender receives the acknowledgement of the last frame received even if the data are still not fully consumed onthe
Receiver side (they are actually stored in the host TCP receive buffer, but are not read yet). In this case a stop could be issued to early spoiling the last part of the received stream.
In order to overcome this problem, we implemented a handkshalke profoecol on top of this architecture. Before sending the raw data, a control frame is sent and analyzed. The control
frame contains the information (an ID) on whether the forthcoming stream is a parameter or the bulk of data, and the number of expected bytes length. The ID allows to distinguish between
parameters and data, whereas the bytes length information permits to manage and overcome the synchronization problem !

.
Achieved Performance
In order to evaluate the performance of the ACS Bulk Data Transfer we developed and implemented two ACS Components. To obtain meaningful results we deployed the

two components on two Compaq PCs (P4, 3.0 GHz) equipped with 1GB RAM and 80 GB HD connected via a 1Gbit Ethernet network. Both PCs were isolated from the
Institute LAN to avoid external network loads. Linux Red Hat 9.0 operating system and ACS 4.1.2 were installed on both machines.

@
=
=)

Total time (sec)

Throughput (Mbits/sec)
2 2
= =
Throughput (Mbits/sec)

~
o
=]

® Handshake

3
=

4 No handshake

-
(-
=]

150 200 250 300 350 400 ' 7250 300 350 400 100 150 200 250 300 350 400
Amount of data (MB) Amount of data (MB) Amount of data (MB)

The figures above represent the results of our performance tests. The throughput, i.e., the number of bits per second, vs different amounts of transmitted data is shown on
the left and middle pictures. It clearly appears that the ACS Bulk Data mechanism is always better than using simple CORBA call (the estimated gain is around
30%) and that the hand-shake mechanism does not introduce relevant performance penalties respect to the no hand-shake case.
' The right picture shows and compares the linearity in the three cases. The hand-shake and no hand-shake samples are overlapped proving that also in the case of the hand- 1‘
! " shake protocol thelmeanty is preserved.

Wn. (2 'I‘ B r) - 2 Y . - . - ‘t-"._'l v

My . i B

