
The ALMA Common Software (ACS):
Status and Developments

G.Chiozzi, B.Jeram, H.Sommer, R.Georgieva (ESO)
M.Plesko, M.Sekoranja, I.Verstovsek, D.Vitas, K.Zagar (JSI and Cosylab)

D.Fugate (NRAO) R.Cirami, P.DiMarcantonio (AOT)

ICALEPCS
2003

Atacama
Large
Millimeter
Array

4) C++ versus Java
While C++ remains the language of choice for high performance and real time applications in
the Control System domain, Java is considered the most suitable general purpose development
language for higher level and coordination applications, also in the Control System domain.
ACS 2.0 has introduced Java Containers.

7) Pure Java ACS
Requirements from the Observing Tool development team have pushed us in providing
High Level multi-platform ACS support, to deploy ACS-aware applications with little
configuration requirements and support directly on the PCs of astronomers.
With ACS 3.0, a "pure Java" sub-set of the ACS framework is available for easy
deployment with the WebStart technology. This allows to have most high level ACS
features available in a pure Java environment., where specific functionality available
only in C++ of Python is not required.
This includes Abeans 3.0 and allows to deploy from the web ACS applications, GUIs
and tools on any platform supporting a Java Virtual Machine.

Observation

Preparation

Scheduling

A

r

c

h

i

v

e

2. Store observing
project

3. Get project
definition

9. Get project
data

1. Create observing project

4. Scheduling block id

5.1. Get SB
10 Kb/30 min

5.3. Raw data
4-40 Mbyte/s

5.4. Meta-data
100 Kbyte/s

5.6. Calibration
results

8. Notify PI

Data Reduction

Pipeline

6. Start data reduction

7.1. Raw data & meta-data
~ 4 Mbyte/s

7.2. Science results
2 Mbyte/s

QL Results

PI

Operator

Real Time Domain

Correlator Calibration Pipeline
and

Quick Look Pipelines

VME/VxWorks or
CAN bus devices

ALMA ALCATEL/EIE prototype
antenna at the ATF.

Monitor data
25-500 Kbyte/s

A view of ALMA

(J.Schwarz, ALMA HLA)

HPT

APEX

DRAO
Penticton

ALMA
ATF

6) General services
Containers written in C++ (ACS 0.0), Java (ACS 2.0) and Python (ACS 3.0) manage the lifecycle
of components implemented in these languages and provide them a very simple way to access
common centralized services like logging, alarms, error handling, configuration database,
archive, object location and, at the same time, hide most of CORBA. Clients written in any
CORBA-aware language can access these Containers and Components while the
implementation of the servant side in any other of these languages would be easy.

8) XML Serialization
Since ACS 2.0, the Java Container supports transparent XML serialization of complex
data entities (like a complete Observing Proposal or an Observing Script) through
CORBA. Binding classes are automatically generated so that data entities are
accessed through native language classes and (de)-serialized transparently on the
wire. The archive is capable of handling directly XML serialized data entities.
This capability (XML Serialisation) is very important to allow a smooth data flow from
high level software down to the Control System.3) Decoupled Publisher/Subscriber design pattern

Since ACS 1.1, a layer on top of the CORBA Notification Channel provides support for
Publisher/Subscriber programming model. This is extensively used to notify ALMA subsystems
of events occurring in other subsystems and to drive the flow of data. ACS 2.0 and 3.0 have
provided extensions to this framework.

2) Abstract Hardware interface
Since ACS 1.1, the Component/Property/Characteristic model provides an abstract interface to
the hardware with the implementation of DevIO classes.
The actual interface to the hardware (for example access for IO boards, CAN bus, serial ports) is
implemented as a subclass of the abstract DevIO interface.
Properties use only the abstract interface to provide read and/or write access to values in the
hardware as well as monitoring and alarm capabilities.

ACS Collaboration
ACS is developed for the ALMA Project and made available under the GNU LGPL Licence.
The development is distributed among the sites of various ALMA partners and external
institutes collaborating in the development.
A number of external projects are already using ACS or are evaluating the possibility of using it.
This map shows the major sites involved in ACS Development, the ACS installations and some
external projects using or evaluating ACS.
The availability of ACS can trigger other collaboration projects, like eACS (embedded ACS)

1 2

3

8

5

4
7

6

ESO La
Silla

Florence
Observatory

ANKA

AOT
Trieste

Jodrell Bank

Brera
ObservatoryIRAM

Grenoble

ATC Edinburgh

NAOJ

IJS Ljubljana

ESO

MPI Bonn

Uni.
Bochum

NRAO

Observatoire
Paris

Univ.
Calgary

c

c

ACS Development

ALMA development

NON-ALMA site

OVERVIEW
The ALMA Common Software (ACS) is a set of application frameworks
built on top of CORBA to provide a common software infrastructure to all
partners in the ALMA collaboration. The main purpose of ACS is to
simplify the development of distributed applications by hiding the
complexity of the CORBA Middleware and guiding the developers to use
a documented collection of proven design patterns.
ACS was presented at ICALEPCS 2001 and was at that time covering the
basic needs for the development of Control System applications. In these
two years, the core services provided by ACS have been extended and
made stable and reliable, while the coverage of the application framework
has been extended to satisfy the needs of high level and data flow
applications.
At the same time, the focus of development has moved from C++ to Java.

The complete ALMA SW development and in particular the Control
System of the ALMA Test Interferometer, currently used for the evaluation
of the three ALMA prototype antennas, are based on ACS. Also other
projects are collaborating with ACS, already using or evaluating it, since
ACS is publicly available under the LGPL license. In particular, the ANKA
Synchrotron in Karlsruhe is in scientific production, the APEX
radiotelescope in Chile is under commissioning and the 1.5m Hexapod
Telescope in Chile is in an advanced implementation stage.
The status of ACS and the developments of the last two years are
presented using the ALMA system as an example, and showing where
and how ACS is used.
A detailed description of the services provided by ACS and a live demo
can be found in the poster "ACS Services" presented by I.Verstovsek.

ALMA Site - Chajnantor, Atacama Desert, Chile

Web page: http://www.eso.org/projects/alma/develop/acs

1) Real Time and Control System support
ACS was first developed to satisfy the requirements of the Control Software development, to
support:
Ø the ALMA Test Interferometer Control Software, used for the evaluation of the 3 prototype

antennas.
Ø the ANKA Control System
Since ACS 0.0 (that demonstrated ACS capabilities driving the Kitt Pek 12 meter telescope) we
are supporting C++ Linux, Sun and VxWorks. The ANKA accelerator is running ACS on
Microsoft Windows workstations.
Development of Control System devices is supported by the framework with the implementation
of the Component/Property/Characteristic design pattern.
In 2004 ACS support for control system applications should receive a boost from the eACS
(embedded-ACS) project. A consortium from the astronomical and accelerator communities and
industrial partners is studing the implementation of solutions based on ACS and Abeans for
embedded platforms such as PC104 and CEP (Custom Embedded Platform).

• Component : base class for any

physical/logical Device

(e.g. temperature sensor, motor)

• Each Component has

Properties
(e.g. status value, position-
control/monitor points)

• Characteristics

Components and Properties
(Static data in Configuration DB

e.g. units, ranges, default values)

PropertyComponent
0..n

0..n0..n

CharacteristicModel Characteristic
0..n0..n

0..n0..n

0..n0..n

of

Component/Property/Characteristic design pattern

5) Administration
Deployment, system configuration and administration are supported by the ACS Component/
Container model.
The original model in ACS 0.0 and 1.0 was tailored to Control System applications. Only C++
Components and Containers were supported.
ACS 2.0 extends the model based on the requirements of high level subsystems and introduces
Java Conmponents and Containers.
ACS 3.0 introduces fully dynamic Components to support pipeline and AIPS++ requirements. It
also introduces support for Python Components and Containers.
Administration of Components and Containers is transparent to the implementation language.
A set of Tools and GUIs allow an operator to administrate the system.

containercontainercontainer

C
om

p
C

om
p

CORBA
ORBs

Services

lifecycle
interface:
init()
run()
restart()

C
om

p

functional
interface:
observe()

container service
interface

other
ACS

services

Manager
deployment

configurations

My container starts
and stops me

and offers its services,
some of which

I don’t notice

I only care about

my components

Administration and Engineering tools

interface of
the Lifecycle

ACS 3.0
11-2003

ACS 2.1
06-2003

ACS 2.0
 12-2002

ACS 1.1
 04-2002

ACS 1.0
 09-2001

ACS 0.0 Kitt Peak
 05-2001

ACS 0.0
 11-2000

ACS Time Line
ACS is released every 6 months, alternating one major and minor (bug fixing, minor
extensions) release.
Patch releases are made available if necessary.

