
THE ALMA COMMON SOFTWARE (ACS): STATUS AND
DEVELOPMENTS

G.Chiozzi, B.Jeram, H.Sommer, R.Georgieva, ESO, Garching bei Muenchen, DE
M.Sekoranja, I.Verstovsek, D.Vitas, K.Zagar, JSI and Cosylab, Ljubljana, SI

D.Fugate, NRAO, Socorro, NM, USA
R.Cirami, P.DiMarcantonio INAF-AOT, Trieste, IT

Abstract
The ALMA Common Software (ACS) is a set of

application frameworks built on top of CORBA to
provide a common software infrastructure to all partners
in the ALMA collaboration[1][3].

The main purpose of ACS is to simplify the
development of distributed applications by hiding the
complexity of the CORBA Middleware and guiding
developers to use a documented collection of proven
design patterns.

ACS was presented at ICALEPCS 2001[4] and at that
time covered the basic needs for the development of
Control System applications. In these two years, the core
services provided by ACS have been extended and
become more stable and reliable, while the coverage of
the application framework has been extended to satisfy
the need of high level and data flow applications.

This paper presents the status of ACS and
developments over the last two years, but we will not go
into technical details.

An overview of ACS technical features can be found
on the paper [5] from K.Zagar at this years conference.
Details on ACS architecture and design can be found in
the ACS Web Page[2].

1 INTRODUCTION
ACS has a release cycle of 6 months, with alternating

major and minor releases. At each release we add new
features according to the ACS Development Plan which is
based on requests from the other subsystems of the
ALMA project.

The major releases also provide an occasion to cleanup
and harmonize interfaces. Actually, ACS 3.0 (the release
currently in its final integration) includes a major re-
factoring of all ACS interfaces.

The contents of each ACS release is decided upon in a
meeting at the beginning of each release cycle. All other
ALMA subsystems leaders attend, allowing us to set
priorities in an agile way.

A strong cooperation with the ALMA High Level
Analysis group makes sure that we have a consistent
architecture for ACS and the whole ALMA.

This process is very efficient and is allowing us to
respond promptly to requests, converging at the same
time toward a coherent and stable ACS design.

2 SUPPORT FOR MULTIPLE
PROGRAMMING LANGUAGES

ACS 1.0, back in 2001, was concentrating mainly on
Control System development, because our main
“customer” was the Control System for the ALMA Test
Interferometer. C++ was the chosen language for the
development of control devices.

The focus of development has moved now from C++ to
Java, with Python’s role growing. While C++ remains the
language of choice for high performance and real time
applications in the Control System domain, Java is
considered the most suitable general purpose
development language for higher level and coordination
applications, also in the Control System domain. At the
same time Python is very good for writing prototypes and
scripts.

Now ACS provides mostly the same features in all
three languages. An exception is the
Component/Property/Characteristic design pattern that is
specifically designed for Control System development
and is currently available only as a C++ framework.

3 COMPONENT CONTAINER
MODEL

Using standard CORBA services, ACS implements a
Component/Container model that is language and
platform independent. The original MACI model
described in [4] was implemented in C++ and adequate
for the static structure of a control system.

ACS 3.0 contain a major re-factoring of this model,
mapping the terminology and concepts of other
mainstream Component/Container models from the world
of business applications.

Containers can now be in C++, Java, and Python. They
manage the lifecycle of Components implemented in all
these languages and provide them with a very simple way
to access common centralized services such as logging,
alarms, error handling, configuration database, archive,
object location, and at the same time, hiding most
CORBA.

The Manager that administers the whole system has
been re-implemented in Java for portability and
maintenance reasons.

The Manager available with the previous versions was
only capable of handling Components fully specified in
the configuration database. This followed the (quasi-
)static model of a control system, where for example, the
number of Power Supplies is fixed and they are statically
configured. The new Manager is also capable of handling
fully dynamic components to satisfy the requirement of
higher level sub-systems for software components whose
number and configuration varies according to the usage of
the system. An example is a component performing FFT
transforms in n image pipeline: if we have many users
performing pipelines, we may need more instances of this
component.

Future versions of ACS will address security and
scalability issues for the implementation of systems that
are distributed across multiple sites and continents.

4 XML SERIALISATION
For the Java programming language, the Container

integrates transparently the use of type-safe Java binding
classes (like a complete Observing Proposal or an
Observing Script) to let applications conveniently work
with XML transfer objects without having to parse or
serialize them[6]. This capability is very important to
allow a smooth data flow from high level software down
to the Control System.

5 “PURE JAVA” ACS
To allow "pure Java" development and deployment on

any platform where a Java virtual Machine is available, a
Java-ACS package provides the possibility of installing
only the Java components anywhere a JVM is available.
Otherwise, the complete ACS package provides Java,
C++ and Python support on Linux and limited support on
other selected platforms.

This capability is important to provide a light run-time
and development environment for high level applications.

With ALMA, ACS will reach the desk of astronomers
working with the observing preparation tools. Also, all
Java GUIs for the control and administration of the
system will be able to run on any machine without any
specific requirements. At the same time, Java-only ACS
is integrated with the entire system (an example is the
capability of accessing the central logging system) so you
don't really lose any functionality.

To make deployment easy, we use Java WebStart[7]
technology which allows installing and updating the
whole Java ACS simply by accessing a web site.

6 INTERFACE TO HARDWARE
As far as interfacing to hardware is concerned, we have

introduced a generic abstraction layer between the

Property and the hardware monitor and control points in
the Component/PropertyCharacteristic model (BACI in
[4]).

The DevIO abstraction[8] keeps a fully generic
definition of Properties, provides to the application
synchronous and asynchronous access to the value of
monitor and control points, and contains features like
telemetry logging and alarms.

For example, ACS high level code controlling a Power
Supply is only aware of the SetPointCurrent control point
and ReadbackCurrent monitor point. If the actual Power
Supply is controlled via an analog I/O board, the
properties are configured with a DevIO capable of
reading and setting the channels of the board. If the Power
Supply is replaced by a new one controlled via serial
interface, only the DevIO implementation needs to be
replaced.

7 ACS USER’S BASE
ACS is used as the common middleware for the whole

ALMA software development.
The Control System of the ALMA Test Interferometer

is based on ACS and is being used for the evaluation of
the three American, European, and Japanese ALMA
prototype antennas. The three antennas are being
evaluated at the VLA site in New Mexico.

All other ALMA subsystems, from Observation
Preparation to Pipeline and Calibration, are under
development and their requirements are driving the
development of new ACS features.

This accounts for many ACS installations at the sites of
all ALMA partners in Europe, USA and Japan.

Also other projects are collaborating with ACS, already
using or evaluating it, since ACS is publicly available
under the LGPL license.

To be specific, the ANKA Synchrotron in Karlsruhe is
in scientific production, the APEX radio-telescope in
Chile is under commissioning and the 1.5m Hexapod
Telescope in Chile is in an advanced implementation
stage.

ESO and NRAO are evaluating ACS for the upgrade of
already existing systems and for new development, as
well as other external institutions.

A consortium of research institutes from the
astronomical and accelerator communities along with
industrial partners are evaluating the possibility of
developing an ACS for embedded systems (eACS) to
complement ACS with specific support for low-priced,
mass-produced embedded controllers.

8 CONCLUSION
The development of ACS since ICALEPCS 2001 has

been very fast. ALMA requirements have driven the
development in the direction of Java and Python to
support high level software beyond the traditional domain

of Control Software. This allows developing the whole
software for a scientific facility in a harmonic way.

While this high level software is being developed, we
have real Control Systems running based on ACS so that
its performance and reliability can be verified and
improved where necessary.

The fact that ACS is publicly available and other
projects have shown interest or are already using it is a
big advantage. This is because we get independent,
unbiased feedback, and the framework becomes naturally
more general.
At the same time, we pay attention to focus as much as
possible to ACS development on our “core business” (i.e.,
satisfying the requirements of the ALMA Project). This
avoids the mistake of developing a framework that is too
general and trying to satisfy everybody does not make
anyone really happy.

9 ACKNOWLEDGEMENTS
The ACS project is managed by ESO in collaboration

with JSI INAF-AOT. This work is the result of many
hours of discussions, test and development inside our
groups and in the various ALMA centers at NRAO,
IRAM and Bochum. We thank all our colleagues in
ALMA and in other projects using ACS for the important

contributions to the definition and implementation of
ACS.

10 REFERENCES
[1] ALMA Web page, http://www.mma.nrao.edu/
[2] ACS Web Page,

http://www.eso.org/projects/alma/develop/acs
[3] G.Raffi B.Glendenning, “ALMA Software

Development Approach”, ICALEPCS 2003,
Gyeongju, Korea, October 2003

[4] G.Chiozzi et al. “Common Software for the ALMA
project”, ICALEPCS 2001, San Jose, California,
November 2001

[5] K.Zagar et al., “ACS – Overview of Technical
Features” , ICALEPCS 2003, Gyeongju, Korea,
October 2003

[6] H.Sommer et al., “Transparent XML Binding using
the ACS Container/Component Framework”, ADASS
2003, Strasbourg, France, October 2003

[7] Java Web Start home page
http://java.sun.com/products/javawebstart/

[8] B.Jeram et al., “Generic Abstraction of Hardware
Control Based on the ALMA Common Software”,
ADASS 2003, Strasbourg, France, October 2003

