
2) High-level architecture of an ACS based Control System

Generic abstraction of hardware control based on
the ALMA Common Software

B.Jeram, G. Chiozzi, J.Ibsen (ESO), R.Cirami (AOT),
M. Pokorny (NRAO), D. Muders(MPIfR), D. Wischolek (RUB)

ADASS XIII
Atacama
Large
Millimeter
Array

1) What is ACS ?
The ALMA Common Software (ACS) is a set of application frameworks built on top of CORBA to provide a common software infrastructure to
all partners in the ALMA collaboration. The main purpose of ACS is to simplify the development of distributed applications by hiding the
complexity of the CORBA middleware and guiding the developers to use a documented collection of proven design patterns. It aims at
providing an answer to the following needs:

� common application framework and programming model, not just libraries
� standardization offering environment with design patterns and their implementation (rather than pure rules)
� well tested software that avoids duplications
� make upgrades and maintenance reasonable
� incremental development via releases
� common configuration control/installation procedures

4) DevIO - generic abstraction of hardware
As a framework, one goal for ACS is to enable an easy way of integrating new hardware into the application.
This is done letting the high level applications to use the abstraction of Properties, while the Property itself interfaces to the hardware using a
DevIO, hardware specific implementation.
Properties - high-level abstraction of control/monitor points - provide the application with facilities to monitor and retrieve values from monitor
points (get_sync, get_async), and to set the value of control points (set_sync, set_async). Or to handle periodic telemetry logging and alarms.
Internally, Properties use a DevIO implementation to access the actual hardware.
DevIO is a simple and generic abstraction of hardware monitor and control point, based on the Bridge design pattern. The hardware access
points are abstracted with the DevIO parameterized (template) interface, which defines two methods:
� read
� write

These are the only abstract methods used by the Property to access the hardware.
The implementations of DevIO interface expose these two methods and hide:
� communication with hardware (e.g. reading from and writing to hardware)
� conversion from raw values to engineer units and vice verse.

For example, the ACS high level code controlling a Power Supply is only aware of the SetPointCurrent control point and ReadbackCurrent
monitor point.
If the actual Power Supply is controlled via an Analog I/O board, the properties are configured with a DevIO capable of reading and setting
control registries of the board.
If this power supply is replaced by a new one controlled via a serial interface, only the DevIO implementation needs to be replaced.

The middle tier (also called business logic tier) is where the devices and
their interactions with the rest of the system are modelled using
Component/Property/Characteristics design pattern (see box 3).

A device is represented as a Component.

The underlying infrastructure of this tier consists of C++, Java or/and
Python Containers where Coomponents/devices are deployed. One
Manager manages the system with the help of the Containers.

The data-access tier is used for working with the information in the
configuration database and other databases (e.g., the ALMA Archive
wh ich i s where a l l mon i to r va lues a re even tua l l y s t o red) .

The hardware-access tier is used for retrieving data from monitor
points implemented in hardware, as well as sending commands to
control points.

The presentation tier provides a GUI and an API interface for an
application written using the ACS software to the end user, through the
easy embedding of languages like Java and Python.

OVERVIEW
The ALMA Common Software (ACS) is a CORBA-based framework that provides a common
and homogeneous infrastructure for the whole ALMA software, from high-level data flow
applications down to instrument control. Different application domains inside the ALMA
system are supported by specialized packages.
A high level description of ACS will be presented at this conference by J.Schwarz [1].
Aspects of ACS for high level applications will be presented by H.Sommer [2].
This paper focuses on ACS support for the development of Control System applications.
In this domain, ACS provides a generic abstraction of hardware control and monitor points
that is independent of the hardware underneath. This abstraction layer is coupled to the
hardware using the DevIO (Device Input/Output) interface, based on the bridge design
pattern. Application developers have to implement DevIO classes that handle the details of
the communication with the hardware.

ACS itself provides a default DevIO implementation, which simply writes to and reads from a
memory location. Currently there are two other major DevIO implementations available: a CAN
bus communication, used by ALMA, and a socket based implementation used by the Atacama
Pathfinder EXperiment (APEX) project.
Despite using different hardware and control electronics, the DevIO abstraction allows the
ALMA and APEX projects to have the same device architecture down to the level of the DevIO
implementation.
A demo will illustrate this and other basic concepts of ACS.

[1] J. Schwarz et. al., "The ALMA Software System", ADASS 2003
[2] H Sommer et. al., "Transparent XML Binding using the ALMA Common Software (ACS) Container/

Component Framework", ADASS 2003

3) Component/Property/Characteristic design pattern

Implementations of DevIO ACS Collaboration
ACS is developed for the ALMA Project and made available under the GNU LGPL Licence.
The development is distributed among the sites of various ALMA partners and external institutes collaborating to the project.
A number of external projects are already using ACS or are evaluating the possibility of using it.
This map shows the major sites involved in ACS Development, the ACS installations and some external projects using ACS.
The availability of ACS can trigger other collaboration projects, like eACS (embedded ACS)

HPT

APEX

DRAO
Penticton

ALMA
ATF

ESO La
Silla

Florence
Observatory

ANKA

AOT
Trieste

Jodrell Bank

Brera
ObservatoryIRAM

Grenoble

ATC Edinburgh

NAOJ

IJS Ljubljana

ESO

MPI Bonn

Uni.
Bochum

NRAO

Observatoire
Paris

Univ.
Calgary

c

c

ACS Development

ALMA development

NON-ALMA site

Component is a base class for any physical/logical Device, e.g. temperature sensor,
motor.
Each Component has Properties, which represent monitor and control points,e.g.
status value, position. They provide asynchronous (using callback mechanism) and
synchronous retrieval and setting of values, monitors and alarms. Properties’ interaction
with the hardware is done using an abstract interface: DevIO. There are only a few
different Property types - for each primitive data type one and for each sequence of
primitive data types.
Components and Properties are described by Characteristics, e.g. name, unit, and
minimum/maximum.

memory
It is default the implementation
installed with ACS/BACI. It
simply writes into and reads
from memory locations. The
aim of memory DevIO is to
represent values that are
calculated by the software and
not directly associated to
hardware.

socket (TCP and UDP)
The APEX project uses on one
side the TICS software. On the
other side it interfaces the
system to pre-existing
hardware. The way chosen to
interface to the pre-existing
hardware has been to develop
a DevIO based on a pure
socket connection,
implementing the original
communication protocol of the
devices.

CAN (Controller Area
Network) bus
All devices in ATF (i.e., ALMA
prototype antennas), with
computer interface, are
attached to a CAN bus,
through which they are
controlled and monitored.
The TICS (Test Interferometer
Control Software) implements
several DevIOs for the different
devices used .

Shack-Hartmann sensor unit
Heidenhains encoder board
Also HPT project reuses parts
of TICS control software.

abstract DevIO

ALMA ATF APEX HPTACS

ContainerContainer
Container

Manager

Hardware access
Configuration

Database

CORBA communication

ACS framework

 BACI

 DevIO

Monitor/control call path

Compo-
nent

Compo-
nent

Compo-
nent

Compo-
nent

Compo-
nent

Compo-
nent

...

(G)UI application
(G)UI application(G)UI application

m_devIO

RO<T>
<baci>

...

RW<T>
<baci>

...
set_sync()
set_async()

...

Property<T>
<baci>

...
getDevIO()
get_sync()
get_async()

...

DevIO<T>
<baci>

intializeValue()
read()
write()

DevIOMem<T>

intializeValue()
read()
write()

DevIOCAN<T>

intializeValue()
read()
write()

. . .

http://www.eso.org/projects/alma/develop/acs

CharacteristicModel
0..n

Characteristic

0..n Component
0..n

Property

