Astronomical Data Analysis Software and Systems XV 07.2
ASP Conference Series, Vol. XXX, 2005
C. Gabriel, C. Arviset, D. Ponz and E. Solano, eds.

ACS as the Framework for Offline Data Reduction in
ALMA

Steve Harrington, David DeBonis, Joseph McMullin, Wes Young
National Radio Astronomy Observatory (NRAO), Socorro, NM 87801

Gianluca Chiozzi, Bogdan Jeram

European Southern Observatory (ESO), Garching, Germany, 85748

Abstract. An integral part of the ALMA system is to process astro-
nomical data offline. Such data reductions are often broken up into dis-
crete units of processing called tasks. While the ALMA system will pro-
vide many typical offline tasks out of the box, the ability to easily add
new tasks which perform data reductions currently unforeseen by ALMA
developers is crucial. Tt is therefore important that the ALMA Common
Software (ACS) provide a mechanism for quickly and easily creating of-
fline data analysis tasks. The mechanism which ACS has implemented
includes a set of XML schemas supporting the description of tasks and an
Application Programmer’s Interface (API) which offline task developers
can use to quickly integrate data reduction logic into the ALMA system
with minimal additional programming effort beyond that of coding the
actual data reduction algorithms. This paper presents the status of offline
data processing support in ACS, including mechanisms for defining and
implementing data reduction tasks. Future enhancements and extensions
will also be discussed.

1. Introduction

The Atacama Large Millimeter Array (ALMA) is an exciting new radio tele-
scope under development, to be located in the Atacama Desert in Chile. ALMA
Common Software (ACS) is the framework upon which all ALMA application
software is written. ACS provides a component-container model supporting
distributed object-oriented software development, common services, and imple-
mentations of useful design patterns (Chiozzi et al. 2003). Support for offline
processing of astronomical data is an important feature of the ALMA system.
These data reductions will typically be broken up into discrete units of process-
ing called tasks. While the ALMA system will provide many typical offline tasks
out of the box, the ability to easily add new tasks, which perform data reduc-
tions currently unforeseen by ALMA developers, is crucial. This paper discusses
how the ACS framework will support the development of offline data reduction
tasks.

2 Harrington, Chiozzi, DeBonis, Jeram, McMullin, & Young

2. Tasks, Parameters, Parameter Sets, and Metadata

A task is a concise process which starts up, performs some processing, and shuts
down. A task may or may not require additional services from the ACS frame-
work; it should be able to run, at least in a locally hosted manner, whether or not
ACS services are present. While in most cases the full ACS framework will be
installed and running, its absence should not completely preclude the possibility
of running of a task. However, the absence of ACS services will present vari-
ous limitations. For example, the ACS framework provides the communication
infrastructure for distributed computing and, when missing, a task would not
be able to access other distributed objects in the system. In this case, the task
would need to be capable of functioning entirely independently in order for any
useful results to be computed. Finally, a task requires input data in the form
of a set of parameters. The particular parameters that are required will vary
depending on the task. Values for parameters must be supplied at run time.

A parameter set is a group of individual parameters which collectively are
used as input to a task. Individual parameters may be of various types, e.g.
boolean, string, integer, double, and arrays of these simple types. ! A parameter
may have a default value, constraints (e.g. max and min), a list of (enumerated)
valid values, associated help text, and so forth. This information comprises
metadata about a particular task. This metadata must be defined by the task’s
implementor, i.e. the task author. The actual values of the parameters for a
specific execution of a task must be supplied at run time by the person running
the task, i.e. the task user. The task user may or may not supply values for
parameters that have default values specified in the metadata.

3. Reduce, Reuse, Recycle

The ACS framework should facilitate developing new tasks and reduce the
amount of effort that a developer would invest if writing a task from scratch.
It should facilitate the reuse of existing data reduction packages. In the case of
ALMA, ATPS++ will be leveraged for this purpose. Finally, ACS should facil-
itate the reuse of third-party packages other than ATPS++. While ALMA will
focus on the reuse of AIPS++, the architecture should allow this decision to be
revisited later (e.g. replacing AIPS++ with AIPS) without wreaking havoc.

4. Task Use Cases in ALMA

The primary actors related to ALMA tasks are the task author, the task user,
and the AIPS++ developer (or a code generation framework).

4.1. Task Author Defines Metadata and Implements Task

The task author is responsible for defining the metadata about a task as well
as implementing the core functionality for the task. In many cases, the func-
tionality for a particular task may simply call through to an ACS component

! Currently, user-defined types are not supported, although this is a probable future extension.

A Framework for Offline Data Reduction in ALMA 3

wrapping AIPS++ or other third-party code. The metadata for a task, de-
scribing such things as the names and types of parameters, default values for
parameters, parameter constraints, help text associated with parameters, etc.,
must be defined by the task author in an XML document which adheres to an
XML schema definition (XSD) document provided by ACS.

4.2. AIPS++4 Developer Writes ACS Component

The AIPS++ developer (or potentially a code generation framework) is re-
sponsible for implementing a component capable of running within the ACS
component-container model and which wraps the underlying AIPS++ algo-
rithms needed for the task’s implementation. While reusing AIPS++ logic is
expected to be common, in some cases the desired logic will not exist in ATPS++,
or elsewhere, for reuse. In this case, the task author must write the algorithms
from scratch and wrap them in an ACS component.

4.3. Task User Runs Task

The task user runs a task and provides, at run time, the necessary input data for
the task’s parameters. The task user can specify the values for parameters either
in an XML document adhering to an XML schema definition (XSD) document
provided by ACS or on the command line in the form of name/value pairs. When
parameters are specified on the command line, the ACS infrastructure converts
them to XML; in all cases XML is used.

5. Task Implementation

Figure 1 shows who does what. ACS provides an interface and an abstract
base class. The ACS-provided base class, ParameterTask, implements the run
method, which parses the parameters given on the command line (or in an
XML file), fills in parameters with default values as needed, and validates them
against the metadata provided by the task author. If the validation fails, an
error is generated; otherwise, an in-memory representation of the parameter set
is passed to the go method, which must be implemented by the task author.

6. Future Directions

Figure 2 shows the plan for offline data processing in ALMA. A code generator
takes XML metadata as input and generates various bindings. One binding will
be the ACS task binding described in this paper. Additional bindings are also
possible (McMullin et al. 2005).

References

Chiozzi, G. et. al. 2003, in Proceedings of the 9th International Conference on
Accelerator and Large Experimental Physics Control Systems, ed. J. Choi
& I. Ko (Pohang, PAL), 214

McMullin, J. et. al. 2005, this volume, [P.99]

Harrington, Chiozzi, DeBonis, Jeram, McMullin, & Young

==CCORBA Interface=>
Task

runf)

=<Interface>>
ParameterTask

s o)
% [

implements run() method which:

1. parses command line argurnents (or XML file)

ParameterTasklimpl

2. instantiates an in-mermory ParameterSet object
a. validates parameter set
b. provides defaults for optional parameters

3. calls gof) passing the ParameterSet as input

Calibrater Imager etc.

Written by task developer who
must implement gol) method.

Figure 1. Responsibilities in Implementing a Task

AL

DL

AML Tool &
Task Defaults

Code Generator (CCM
Tools)

L o

CORBA Python Implementation ACE Task
Stubs/Skeletons Wirappers Template Component

*ML Meta-data about
ToolTask

AELT Transform

HELT Transform

Filedin by Mot yet done
developer

Figure 2. Future Direction of Offline Data Processing in ALMA

