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1 Introduction

The Atacama Large Millimeter Array (ALMA) is a space observatory system
that is currently being developed by astronomical organizations in Europe,
North-America and Japan. It will consist of at least 50 antennas that oper-
ate in the millimeter and submillimeter wavelength range, and will be built in
the Chilean Atacama desert at an altitude of approximately 5000 meters.

The ALMA Common Software (ACS) is a software infrastructure for ALMA
that is based on CORBA. It is an essential framework within the ALMA software
system, providing a collection of common software components and services that
other parts of the system rely upon. Therefore, it is important for the ACS
platform to be stable and reliable.

The purpose of our study is to analyse a part of the ACS framework using
formal modelling techniques. In that approach, a model of a software system
is constructed, which is subsequently analysed for errors by an exhaustive ex-
ploration of all possible states and execution sequences. The aim is to cover a
wider range of cases and scenarios than are typically covered by a collection of
test cases. We introduce this approach and the modelling framework mCRL2
in more detail in Section 2. The model that we created for ACS is described in
Section 3 and the results of the analysis are described in Section 4. The report
is concluded in Section 5.

Acknowledgements. We are grateful to the ALMA staff at Garching, Ger-
many, in particular to Heiko Sommer, Joe Schwarz, Gianni Raffi and Matej
Sekoranja for their kind support and fruitful collaboration.

2 Modelling Concurrent Systems in mCRL2

A concurrent system is a system in which a number of processes run in parallel.
A process can be fully sequential (meaning it performs actions in sequence only)
or consist, again, of a number of concurrent processes. The processes interact
or communicate with each other and their environment to accomplish complex
tasks. Interaction between processes is accomplished by passing messages. This
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can be done synchronously, i.e. messages are sent and received at the same time,
or asynchronously, i.e. messages are received later than they are sent (and are
temporarily stored in a buffer in the mean time). Many large software systems
today are designed as concurrent systems, including the software in the ALMA
system.

For describing the behaviour of concurrent systems various languages have
been proposed, including statecharts [7], Petri nets [10, 11] and process alge-
bras [1, 8, 9]. These languages are specification languages: they allow to specify
the behaviour of a system at a higher, more conceptual level than programming
languages. This facilitates studying systems at an abstract level without wor-
rying about implementation details. In this way, it can be checked whether a
system contains conceptual flaws or design errors, even before it has been fully
implemented. The specification of a system’s behaviour on this higher level is
usually called a model, as it typically abstracts away from certain details.

For the ACS analysis we use the specification language mCRL2 [4, 5], which
is based on the process algebra ACP (Algebra of Communicating Processes) [2,
3]. It is accompanied by a toolset that supports the analysis of mCRL2 models.
More information about mCRL2 can be found at http://www.mcrl2.org.

We identified a subset of ACS functionality of which we constructed a model
based on discussions with ALMA engineers, documentation and source code.
This model is analysed using the mCRL2 tools, where we focus on checking for
deadlocks. Any error found in the model is discussed with the engineers, as it
may not indicate an error in the real system. Modelling errors are not uncom-
mon, especially in the first couple of draft versions of a model. By improving a
model iteratively, a deeper understanding of the system is gained step by step
until the model adequately captures the essence of the real system’s behaviour.

3 ACS Model

We focus on the Manager and the startup sequence of components and con-
tainers. More specifically, we investigate whether the simultaneous handling of
getComponent calls by different Manager threads can lead to problems, due to
synchronization between the threads. We briefly describe the model at a high
level here. The complete model is included in Appendix A. That model con-
tains two Manager threads (which corresponds with a thread pool of size 2),
one container and two components. Note that more instances of these processes
can be added easily.

3.1 Manager

The Manager stores data that are shared among its threads, like the set of
components that are currently active. The synchronization of accesses to these
resources (by locking and freeing) is important and should be modelled correctly.
We model every resource as a separate process in mCRL2. In particular, the
following processes exist:

• ManagerActSync: The activation synchronization lock.

• ManagerComponents: The set of components.

• ManagerContainers: The set of containers.
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Each of these processes allows its resource to be locked and freed by Manager
threads and grants access to the resource by the locking thread. The behaviour
of a Manager thread is modelled by the following processes:

• ManagerThread: A thread that responds to getComponent and container
login requests.

• MT ActivateComponent: The procedure for activating a component (called
by ManagerThread).

Every instance of ManagerThread has a unique identifier, which allows to dis-
tinguish actions performed by one instance from those performed by an other
instance, e.g. when simulating the model.

3.2 Container

The Container process models a container. For the purpose of our model, this
is a relatively simple process. A container can be in any of three states: dead,
loggingin and running. In the latter state it can activate a component when
requested by the Manager.

3.3 Component

Components are modelled by the Component process. They can be in any of two
states: dead and running. The Component process is simple for our purposes.

3.4 Monitors

In Java, any object can be used for synchronization via its wait and notifyAll
methods. The model includes a Monitor process that provides precisely this
behaviour. It maintains a list of processes that are currently waiting for a
notification, and can notify them when this notification has arrived. The latter
is done via a call to the Monitor NotifyAll process.

4 Results

The model of Appendix A is deadlock-free. Its state space consists of 3.484
states and 9.832 transitions and is visualized in Figure 1.

The deadlock-freedom depends strongly on the possibility to timeout on
certain locks: if any of the timeout actions in the ManagerThread process are
omitted, deadlocks are possible. These timeouts apply when acquiring an Acti-
vation Synchronization (ActSync) lock, which happens in two places:

1. When activating a component (right after a getComponent call).

2. When starting up a container (right after it has been determined that the
container does not yet exist).

We now describe the deadlock situations that can occur when either of these
timeouts would be omitted from the system, and discuss these situations after-
wards.
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Figure 1: Visualization of the state space of the ACS model of Appendix A. The
behaviour starts at the top and proceeds downwards in phases. At some points
it may branch off into a separate part of the behaviour. Though not visualized
here, it is possible to escape from these branches or move back up into an earlier
phase. More information on the visualization technique can be found in [6, 12].
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Omitting timeout 1. If the first timeout would be omitted, the following
scenario is possible. Both Manager threads receive a getComponent request for
the same component, say Comp1. The container on which this component is
configured to run, Cont1, has not yet been started and has to be autostarted by
the ACS framework. One of the threads acquires the ActSync lock for Comp1,
determines that Cont1 has to be started, acquires the ActSync lock for Cont1 as
well, sends a startup message to Cont1 and finally waits until Cont1 reports that
it has been logged in. Meanwhile, the other thread blocks as it cannot acquire
the ActSync lock for Comp1. Now, both Manager threads are waiting and no
more threads are available to handle the login procedure of Cont1. Hence, the
system has reached a deadlock.

Omitting timeout 2. If the second timeout would be omitted, the following
scenario is possible. The Manager threads receive a getComponent request for
components Comp1 and Comp2, respectively. Both components belong to the
same container, Cont1. The scenario is then almost identical to the one de-
scribed above, except that the second thread blocks on obtaining the ActSync
lock for Cont1, instead of Comp1.

Discussion. As mentioned before, the deadlocks are not present in the current
system because the timeouts ensure that a thread is freed after a certain amount
of time. This amount of time is deliberately chosen to be not too tight in order to
allow the system to proceed normally. The disadvantage is that the performance
or responsiveness of the system may deteriorate if timeouts occur too frequently.
Therefore, timeouts are used as a “last resort” in the current system, and they
are generally not intended to be relied upon heavily.

As a possible other way to prevent the deadlocks described above, one might
consider increasing the size of the thread pool. In the real system, the thread
pool size is on the order of 100 threads. Theoretically, however, this does not
solve the problem: given a thread pool of any finite size N , the deadlocks can
be reached if N requests for the same component (or for components on the
same container) arrive at the Manager. In case of an unlimited thread pool, the
deadlocks cannot be reached under the assumption that only finitely many such
requests will ever be handled by the Manager at any given time.

Another possible approach would be to make the getComponent requests
asynchronous, so that a pending request for a certain component no longer
occupies a thread in the Manager unnecessarily. This may adequately resolve
the issue, even in the theoretical case. As it constitutes a rather fundamental
change in the system, care must be taken when implementing this approach.
Ideally the existing model is adapted first to verify that deadlocks are prevented
indeed.

5 Conclusions

We have analysed a part of the ACS system by applying formal modelling tech-
niques. We focused on the ACS Manager and the startup of components, along
with their associated containers. The model was constructed based on dis-
cussions with engineers, the documentation and source code, and subsequently
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analysed for deadlocks. No deadlocks were found. We found timeouts to be
essential for deadlock-freedom of the system and have reflected on this issue.

As a model is an abstraction from reality, a caveat is in place: correctness of
the model does not necessarily imply correctness of the real system. Apart from
this, it is the responsibility of the analyst to ensure that the model faithfully
describes the system’s behaviour. Once this is taken care of adequately, formal
modelling and verification techniques provide a powerful means to analyse a
system by considering all possible states and execution sequences, including the
ones that are not typically covered by test cases. As such, it is an important
addition to the collection of software analysis techniques.

ALMA engineers noted that the process of constructing the model was al-
ready valuable by itself. Because the model has to be as accurate as possible, a
thorough understanding of the system is necessary. For this, detailed questions
about the system were asked to the engineers, which triggered them to reflect on
certain design decisions or aspects of the implementation. This type of feedback
was greatly appreciated.

Continuing on this, we found that the best way to gain deeper understanding
of the system was to study the source code and ask questions to engineers. The
documents were useful for gaining a high-level overview of the system, but were
found to be not detailed or accurate enough for our purposes. Ideally, the
documentation contains more precise descriptions or specifications of important
parts of the system. By including models in the documentation (in whatever
formalism or language) the system’s behaviour can be described more precisely
and unambiguously, which eases the communication between current engineers
and towards novices.

Due to a limited amount of time, we have only modelled a small part of
the Manager’s behaviour. Therefore, extension of the model to include more
aspects of its behaviour is an interesting direction. A natural extension would
be to include the release of components and shutdown of containers. Also, more
involved properties than deadlock-freedom can be considered for checking on
the model. Examples of such properties are that the Manager never attempts
to activate an activated component, and that a component is never released
before it has been activated. Though it may seem trivial for such properties to
hold, it is the author’s personal experience that checking a number of them on
a model can lead to suprising insights and results.
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A mCRL2 Model

% Specification of the ACS Manager along with Containers and Components.

% Author: Bas Ploeger

% Data sort for the state of a container or component

sort State = struct dead | loggingin | running;

% Data sort for identifying the various processes in the system

% (Manager threads, components, etc.)

sort ID = struct none | Comp1 | Comp2 | Cont1 | MT1 | MT2 | ContLogin;

% Functions for checking if an ID indicates a component/container

map is_component: ID -> Bool;

is_container: ID -> Bool;

var x: ID;

eqn is_component(x) = (x in {Comp1,Comp2});

is_container(x) = (x in {Cont1});

% Function returning the container of a component

map getCont: ID -> ID;

eqn getCont(Comp1) = Cont1;
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getCont(Comp2) = Cont1;

% Function for adding elements to a list of IDs. It is ensured that the

% list contains no duplicates and remains sorted.

map add_sorted: ID # List(ID) -> List(ID);

var c,d:ID;

L:List(ID);

eqn add_sorted(c,[]) = [c];

add_sorted(c,d |> L) = if( c < d , c |> d |> L ,

d |> if(c==d , L , add_sorted(c,L)) );

%%% Action declarations %%%

act

% For container life cycle

rcv_startup_container, snd_startup_container, startup_container,

rcv_login, snd_login, login, rcv_authenticate, snd_authenticate,

authenticate, rcv_auth_ok, snd_auth_ok, auth_ok, rcv_auth_not_ok,

snd_auth_not_ok, auth_not_ok: ID # ID;

% For component life cycle

rcv_activate_component, snd_activate_component, activate_component: ID #

ID # ID;

rcv_create, snd_create, create, rcv_initialize, snd_initialize,

initialize, rcv_execute, snd_execute, execute: ID # ID;

% For accessing/manipulating data stored in the Manager

rcv_has_component_man, snd_has_component_man, has_component_man,

rcv_no_component_man, snd_no_component_man, no_component_man,

rcv_add_component_man, snd_add_component_man, add_component_man,

rcv_has_container_man, snd_has_container_man, has_container_man,

rcv_no_container_man, snd_no_container_man, no_container_man,

rcv_add_container_man, snd_add_container_man, add_container_man,

rcv_acquire_actsync_lock, snd_acquire_actsync_lock,

acquire_actsync_lock, rcv_release_actsync_lock,

snd_release_actsync_lock, release_actsync_lock: ID # ID;

% For synchronization of access to data stored in the Manager

rcv_free_container, snd_free_container, free_container,

rcv_lock_container, snd_lock_container, lock_container,

rcv_free_component, snd_free_component, free_component,

rcv_lock_component, snd_lock_component, lock_component: ID;

% For synchronization on monitor objects

rcv_wake_up, snd_wake_up, wake_up, rcv_notify_all, snd_notify_all,

notify_all, rcv_wait, snd_wait, wait: ID # ID;

timeout: ID;

% External triggers

get_component: ID # ID;

%%% Process definitions %%%
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% A monitor object

proc Monitor(m:ID,waitlist:List(ID)) =

sum n:ID .

( rcv_wait(n,m) . Monitor(m,add_sorted(n,waitlist))

+

rcv_notify_all(n,m) .

( (waitlist == []) -> Monitor(m,waitlist)

<> Monitor_NotifyAll(m,waitlist) ) );

proc Monitor_NotifyAll(m:ID,waitlist:List(ID)) =

snd_wake_up(head(waitlist),m) .

( (tail(waitlist) != []) -> Monitor_NotifyAll(m,tail(waitlist))

<> Monitor(m,[]) );

% Manager

% The activation synchronization locks

proc ManagerActSync(actsync:Set(ID)) =

sum m,n:ID .

(n in actsync) -> rcv_release_actsync_lock(m,n)

. ManagerActSync(actsync - {n})

<> rcv_acquire_actsync_lock(m,n)

. ManagerActSync(actsync + {n});

% The component store

proc ManagerComponents(comps:Set(ID),lock:ID) =

(lock == none) ->

sum m:ID . snd_lock_component(m) . ManagerComponents(comps,m)

+

rcv_free_component(lock) . ManagerComponents(comps,none)

+

sum c:ID . is_component(c) ->

((c in comps) -> snd_has_component_man(lock,c)

. ManagerComponents(comps,lock)

<> snd_no_component_man(lock,c)

. ManagerComponents(comps,lock)

+

rcv_add_component_man(lock,c)

. ManagerComponents(comps + {c},lock) );

% The container store

proc ManagerContainers(conts:Set(ID),lock:ID) =

(lock == none) ->

sum m:ID . snd_lock_container(m) . ManagerContainers(conts,m)

+

rcv_free_container(lock) . ManagerContainers(conts,none)

+

sum c:ID . is_container(c) ->

( (c in conts) -> snd_has_container_man(lock,c)

. ManagerContainers(conts,lock)

<> snd_no_container_man(lock,c)

. ManagerContainers(conts,lock)

+
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rcv_add_container_man(lock,c)

. ManagerContainers(conts + {c},lock) );

% Manager thread

proc ManagerThread(m:ID) =

sum c:ID . is_component(c) ->

( get_component(m,c)

.(timeout(m)

+

snd_acquire_actsync_lock(m,c)

. rcv_lock_component(m)

.(rcv_has_component_man(m,c)

. snd_free_component(m)

+

rcv_no_component_man(m,c)

. snd_free_component(m)

. rcv_lock_container(m)

.(rcv_has_container_man(m,getCont(c))

. snd_free_container(m)

. MT_ActivateComponent(m,c)

+

rcv_no_container_man(m,getCont(c))

. snd_free_container(m)

.(timeout(m)

+

snd_acquire_actsync_lock(m,getCont(c))

. snd_startup_container(m,getCont(c))

. snd_wait(m,ContLogin)

. rcv_wake_up(m,ContLogin)

. snd_release_actsync_lock(m,getCont(c))

. MT_ActivateComponent(m,c)

)

)

)

. snd_release_actsync_lock(m,c)

)

. ManagerThread(m)

)

+

sum c:ID . is_container(c) ->

( rcv_login(m,c)

. snd_authenticate(m,c)

.(snd_auth_not_ok(m,c)

+

snd_auth_ok(m,c)

. rcv_lock_container(m)

.(rcv_has_container_man(m,c)

+

rcv_no_container_man(m,c)

. snd_add_container_man(m,c)

)

. snd_free_container(m)

. snd_notify_all(m,ContLogin)

)
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. ManagerThread(m)

);

% Activate a component

proc MT_ActivateComponent(m:ID,c:ID) =

snd_activate_component(m,getCont(c),c)

. rcv_lock_component(m)

. snd_add_component_man(m,c)

. snd_free_component(m);

% Container

proc Container(c:ID, s:State, comps:Set(ID)) =

sum m:ID . (

(s == dead) -> rcv_startup_container(m,c)

. Container(c,loggingin,comps)

+

(s == loggingin) ->

snd_login(m,c)

. rcv_authenticate(m,c)

.( rcv_auth_ok(m,c) . Container(c,running,comps)

+

rcv_auth_not_ok(m,c) . Container(c,dead,comps) )

+

(s == running) ->

sum d:ID . is_component(d) ->

rcv_activate_component(m,c,d)

. snd_create(c,d)

. snd_initialize(c,d)

. snd_execute(c,d)

. Container(c,s,comps + {d}) );

% Component

proc Component(c:ID,s:State) =

(s == dead) ->

sum d:ID .

rcv_create(d,c)

. rcv_initialize(d,c)

. rcv_execute(d,c)

. Component(c,running);

%%% Initial process specification %%%

init

% Allow only these actions, block all others

allow(

{ login, authenticate, auth_ok, auth_not_ok, startup_container,

activate_component, create, initialize, execute, get_component,

has_component_man, no_component_man, add_component_man,

has_container_man, no_container_man, add_container_man,

acquire_actsync_lock, release_actsync_lock, free_container,

lock_container, free_component, lock_component, notify_all, wake_up,
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wait, timeout },

% Synchronously communicating actions

comm(

{ rcv_login|snd_login -> login,

rcv_authenticate|snd_authenticate -> authenticate,

rcv_auth_ok|snd_auth_ok -> auth_ok,

rcv_auth_not_ok|snd_auth_not_ok -> auth_not_ok,

rcv_startup_container|snd_startup_container -> startup_container,

rcv_activate_component|snd_activate_component -> activate_component,

rcv_create|snd_create -> create,

rcv_initialize|snd_initialize -> initialize,

rcv_execute|snd_execute -> execute,

rcv_has_component_man|snd_has_component_man -> has_component_man,

rcv_no_component_man|snd_no_component_man -> no_component_man,

rcv_add_component_man|snd_add_component_man -> add_component_man,

rcv_has_container_man|snd_has_container_man -> has_container_man,

rcv_no_container_man|snd_no_container_man -> no_container_man,

rcv_add_container_man|snd_add_container_man -> add_container_man,

rcv_acquire_actsync_lock|snd_acquire_actsync_lock -> acquire_actsync_lock,

rcv_release_actsync_lock|snd_release_actsync_lock -> release_actsync_lock,

rcv_free_container|snd_free_container -> free_container,

rcv_lock_container|snd_lock_container -> lock_container,

rcv_free_component|snd_free_component -> free_component,

rcv_lock_component|snd_lock_component -> lock_component,

rcv_wake_up|snd_wake_up -> wake_up,

rcv_notify_all|snd_notify_all -> notify_all,

rcv_wait|snd_wait -> wait },

% The parallel processes that constitute the system, along with their

% initial states

ManagerActSync({}) || ManagerComponents({},none)

|| ManagerContainers({},none)

|| ManagerThread(MT1) || ManagerThread(MT2)

|| Container(Cont1,dead,{})

|| Component(Comp1,dead)

|| Component(Comp2,dead)

|| Monitor(ContLogin,[])

));
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