
1

NRAO/ESO videocon, Feb.12, 2004

ACSACS
ALMA Common softwareALMA Common software

G.Chiozzi and the ACS team

The Atacama Large Millimeter Array (ALMA) is a joint project between
astronomical organizations in Europe and North America. ALMA will consist of at
least 64 12-meter antennas operating in the millimeter and sub-millimeter range,
with baselines up to 14 km. It will be located at an altitude above 5000m in the
Chilean Atacama desert.
The ALMA Common Software (ACS) is a set of application frameworks built on
top of CORBA to provide a common software infrastructure to all partners in the
ALMA collaboration. The main purpose of ACS is to simplify the development of
distributed applications by hiding the complexity of the CORBA Middleware and
guiding the developers to use a documented collection of proven design patterns.
ACS is used in ALMA to cover from Control System development up to high level
coordination and data flow applications. C++ is the the language of choice for high
performance and real time applications in the Control System domain, while Java is
considered the most suitable general purpose development language for higher level
and coordination applications, also in the Control System domain. Python is used a
scripting language and glue.
Using standard CORBA services, ACS implements a Component/Container model
that is language and platform independent. Containers written in C++, Java and
Python manage the lifecycle of components implemented in these languages and
provide them a very simple way to access common centralized services like logging,
alarming, error handling, configuration database, archive, object location and, at the
same time, hiding most of CORBA. Clients written in any CORBA-aware language
can access these Containers and Components while the implementation of the
servant side in any other of these languages would be easy.

2

2

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Contents

• ACS Purpose and Scope
• ACS Packages
• Main ACS concepts and patterns
• Overview of some important ACS Services
• Conclusions
• Questions & Answers

The heart of ACS is an Component/Container model, Components implemented as CORBA objects. For
example, the teams responsible for the control system development use Components as the basis for devices,
like and antenna mount control. A code generator creates a Java Bean for each Component. Programmers can
write Java client applications by connecting those Beans with data-manipulation and visualization Beans.
ACS is based on the experience accumulated in the astronomical and particle accelerator contexts, reusing and
extending concepts and components. Although designed for ALMA, ACS has the potential for being used in
other new control systems, since it implements proven design patterns using state of the art, stable and reliable
technology.
The ACS package provides Java, C++ and Python support on Linux and few other selected platforms. The
complete ALMA SW development and in particular for the Control System of the ALMA Test Interferometer,
currently used for the evaluation of the three ALMA prototype antennas, are based on ACS. Also other
projects are collaborating with ACS, already using or evaluating it, since ACS is publicly available under the
LGPL license. In particular the ANKA Synchrotron in Karlsruhe is in scientific production, the APEX
radiotelescope in Chile is under commissioning and the 1.5m Hexapod Telescope in Chile is in an advanced
implementation stage.
This presentation describes the architecture of ACS and its status, detailing the object model and some
services.

3

3

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Purpose and scope of ACS

ACS aims at providing an answer to the following
needs:

• common application framework and
programming model, not just libraries

• well tested software that avoids duplication
• make upgrades and maintenance reasonable
• incremental development via Releases
• common development environment and tools

The ALMA project is characterized by the fact of being an highly distributed effort, with many sites
and many “development cultures” involved. The Computing Group is scattered across 3 continents
and many more institutes.
Early in the ALMA project it was decided that an ALMA Common Software (ACS) would be
developed as a way to provide to all partners involved in the development a common software
platform. The original assumption was that some key middleware like communication via CORBA
and the use of XML and JAVA would be part of the project. It was intended from the beginning to
develop this software in an incremental way based on releases, so that it would then evolve into an
essential embedded part of all ALMA software applications. In this way we would build a basic unity
and coherence into a system that will have been developed in a distributed fashion.
The ALMA Common Software (ACS) is a comprehensive framework on top of the operating system,
offering a complete environment and structures at the base of application software developments.
ACS is ment to be a general system, based on available middleware (CORBA) and the easy
embedding of languages like Java and Python.
We believe that the use of a common software layer in a very geographically distributed
development situation will be the best way to enforce the use of common constructs. ACS shall
provide a well tested platform that embeds standard design patterns (much better than a set of written
rules) and avoids duplication of effort. At the same time this will provide a platform where upgrades
can be incorporated and brought to all developers. It will also standardize the underlying architecture
of software modules, making maintenance affordable.
ACS is also the mean used to distribute support tools and make uniform the development
environment among the various sites.

4

4

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

ACS Packages

Applications

CORBA Middleware ACEDevelopm
ent tools1 - Base tools

Astro libraries
(from Commercial/Shared packages)

FITS libraries
(from Commercial/Shared packages)

Device Drivers

5 - Integrated
APIs and tools

Error
System

Logging
System

Time
System

Data
channel

2 - Core
components

ACS Component Configuration
Database

Command
System

Alarm
System

SamplingArchiving
System

3 - Services ACS Container Serializati
on Plugs

UIF
libraries

Scripting4 - Hi-level
APIs and tools

...more to
come...

ACS InstallerACS Application
Framework

This package diagram summarizes the status of ACS with the respect to the foreseen final architecture.
It is a simplified version of the complete ACS Package Diagram from the Architecture document
Here I would discuss mainly the layers saying what characterizes each layer.
An important aspect is that the “base tools” layer is made up of “off the shelf” publicly available tools and
software packages.
This includes or defines as pre-requisite for ACS installation:

• A standardized set of development tools (like compilers, Makefile extensions, installation procedures
and tools, JUnit and other test support tools, emacs configuration and so on)
• CORBA implementation and services for the different languages
• ACE and other public domain libraries used by ACS and available for application developers.

I will describe the purpose of the layers one by one from bottom up and quickly list the most important
packages.
Most of the packages in this diagram will be described with more details in the presentation and we will give
also information about the development status.
In this layered architecture, each package is allowed to use only packages in the lower layers or in the same
layer. This allows us to keep under control the dependencies between packages.
The ACS distribution will be used also to package and distribute other APIs and tools that are not part of ACS
and that are not used by ACS, but are used by a number of ALMA subsystems and that is therefore convenient to
distribute as one single entity together with ACS. This can include for example FITS libraries, Astronomical
Calculation libraries or device drivers.

Most of the packages in this diagram are in a stable state and mainly need extensions that are foreseen in the
ACS development plan according to the need of the various ALMA subsystems.
The next ACS release, ACS 3.1, will concentrate on providing as new developments:
•A first usable prototype of the ALMA Alarm System (a prototype is available already now, but is very limited
and does not implement the desired architecture).
•A first implementation of the bulk data transfer
•ACS support for HTTP and email communication for higher level subsystems
•IDL Generic Simulator

5

5

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

CORBA +
Container/Component

lifecycle
interface:
init()
run()
restart()

functional
interface:
observe()

container service
interface:
getComponent(other)
Logger getLogger()

container

C
om

p

C
om

p
CORBA

ORBs
Services

other
ACS

services

Manager
deployment

configurations

The ACS Architecture is founded on the Component-Container model.

A Component-Container based architecture emphasizes Separation of Concerns.
The Container hides as much as possible CORBA and the underlying architecture to the developers
of Components, that can concentrate on the functional aspects of their specific Component.

The Container manages Component’s
•Lifecycle interface (init, start, stop, update)
•Functions interface (what component offers)
•Optional: security, persistency, transactions…

A client (which would typically be itself be a Component residing in another Container) accesses the
services of Components via their published service interfaces, defined in IDL.

Containers provide an environment for Components to run in, with support for basic services like
logging system, configuration database, persistency and security. Developers of Components can
focus their work on the domain-specific “functional” concerns without having to worry about the
“technical” concerns that arise from the computing environment in which their components run.

The division of responsibilities between components and containers enables decisions about where
and when individual components are deployed to be deferred until runtime, at which point
configuration information is read by the container. If the container manages component security as
well, authorization policies can be configured at run time in the same way.

6

6

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Component/Container: buy vs.
build

• Same idea as .NET, EJB, CCM
– .NET binds to Microsoft platform
– EJB binds to Java programming language
– CCM is still immature and there are no reliable free

implementations
• Off-the-shelf Component Container implementations are

complex and require a wholesale commitment from
developers to use the languages and tools supplied.

• Focus for these Component/Container implementations are
big enterprise business systems

• We aim at staying as much a possible compatible with
CMM concepts to allow adopting an implementation,
when available.

Commercial implementations of the Component-Container model are quite popular (EJB, .NET).
A vendor-independent specification, the CORBA Component Model (CCM), is under development, but it is
not complete, and production implementations do not yet exist.
These are rather comprehensive systems, and require a wholesale commitment from developers to use the
languages and tools supplied.
The learning curve for the ACS Component/Container model should be much smoother that for any of these
systems, that are thought for complex enterprise distributed commercial systems

7

7

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Component’s client view

C
om

p

IDL
functional
interface:
observe()

Client
(a component)

ACS
Manager

1 -Ask for reference
to component

IDL stub
2a – invoke c.observe()

Interface repository

2b.1 - Retrieve interface

2b.2 - Dynamic invocation

A component exposes its IDL interface to clients.
A client (possibly itself a component) that wants to access the component, needs to ask the Manager for a
reference.
The client is completely unaware of any deployment and lifecycle issues for the component it wants to talk to.
Once the client has a reference, can call directly the interface via the IDL stubs.
Alternatively a generic client can retrieve the interface from the Interface Repository and use Dynamic
Invocation (CORBA Introspection).
The Object Explorer is such a generic client.
The Executive could also probably be also such a generic client.

8

8

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Object Explorer

The Object Explorer (OE):
• Is a generic tool used for low-level inspection of objects in ACS. It can be used as a debugging or testing tool
by the developers and maintainers of a system.
• Allows to interact with any CORBA Object known to the system (I.e. whose reference can be retrieved from
the Manager - see following slides - and whose IDL interface can be retrieved from the Interface Repository).
• Is aware of the design patterns implemented by the Component-Property-Characteristic paradigm - see
following slides - and can for example monitor the values of properties and draw trend plots, as will be shown
in the demo.
• Is a standalone Java program designed using a “plug-in” concept and has been adapted to different systems
than ACS.

9

9

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Component’s Administrator
View

• An administrator defines
deployment by customizing the
Configuration Database for the
Manager

• Manager is responsible for
managing and checking the
lifecycle of Components

• Containers are directly
responsible for the Components
that are assigned to them

CDB

Manager
(domain A)

Cont 1 Cont 2 Cont 3

Manager
(domain B)

federation

Administrator
Client

Abeans
GUI for
Control

DO 1
DO 2

DO 3
DO 2

DO 4
DO 5

Device

Deployment and lifecycle of Components is implemented as a separate and independent logical layer based on
two major elements:

• Containers. They are deployed locally on all hosts involved in the system, ranging from real-time local
control units to high-performance workstations. Their primary task is preparing the local environment in which
Components are created, giving them all the resources they need to perform their tasks, such as CORBA
connectivity, connection establishment with other Components and Configuration Database access. Containers
provide the process space where Components are running.

• Manager, which is set up at one central location that is widely known across the entire system (Manager
federation will be implemented at a second stage). The Manager is acquainted with all the Components and
Containers in the system, as well as other resources, such as configuration database and CORBA services. In
particular, the Manager closely cooperates with the CORBA Naming Service, in which it publishes all of its
acquaintances, making them accessible to non-MACI-aware CORBA software.

The contract between Manager and Containers is defined in the Management and Access Control IDL
Interface (MACI), that defines how they interact. Containers implemented in any programming language have
to implement this interfaces to be administered by the Manager.

10

10

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Administrator Client

Administrator Client (AC) uses a specific Administrator interface part of MACI to allow ACS System
Administrators to inspect and configure the deployment view of a running ACS system.
The Administrator Client:

• Displays the information about CORBA objects on the local network. This includes MACI defined
objects, such as Containers and Managers as well as Components (or, more in general, Controlled
Objects (COBs), since the Manager is able to provide information and partially manage not only
Components but also other CORBA servants that do not implement the full MACI interface , like the
standard CORBA Services). Both currently active COBs and potentially active COBs (i.e. COBs that
the Manager is able to bring online on request) are displayed.
• Interact with the MACI Manager through IDL Administrator interface, by receiving notifications
about other clients and activators in the system from the Manager.
• Is a standalone Java program.

11

11

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

ACS Command Center

The ACS Command Center is a new administrative application used to start and
stop ACS services, managers and container.
I allows to manage the system distributed on several hosts, start tools and inspect
the deployment of the system.

Its functionalities partially overlap the Administrator Client and the two applications
are being merged.

12

12

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Component-Property-
Characteristics

• (Characteristic) Component:
base class for any
physical/logical Device
(e.g. temperature sensor, motor)

• Each Component has
Properties (e.g. status value,
position - control/monitor points)

• Characteristics of Components
and Properties
(Static data in Configuration DB,
e.g. units, ranges, default values)

• ABeans

CharacteristicModel Characteristic0..n0..n

CharacteristicComponent

0..n0..n

type

Property
0..n0..n

ACS::Component

The heart of BACI is a distributed object model.

All common telescope components such as antenna mount, antenna control unit, correlator, etc. are Components defined by
means of Characteristic Components. Characteristic Components are implemented as CORBA objects that are remotely
accessible from any computer through the client-server paradigm.

Each Characteristic Component is further composed of Properties. A Characteristic Component can also contain references to
other Characteristic Component s to build hierarchical structures of components.

Both Characteristic Components and Properties have specific Characteristics, e.g. a Property has a minimum, a maximum,
units…. The common behavior of Characteristic Component and Property has been factorized in the Characteristic Model
common base class. Notice that programmatically characteristics are read-only. For example, all constants related to a Property
such as min/max, and description are obtained by clients directly from the Property by means of remote methods - no direct
access to the configuration database is necessary.

Values of the Properties are updated asynchronously by means of monitor objects. While there are in principle an infinite
number of Characteristic Component types, for example one for each physical controlled device, there are very few different
Property types

ACS provides a basic Component implementation (called BACI, standing for Basic Access Control Interface) based on the
Component - Property - Characteristic

paradigm, well established in the world of accelerator control systems.

All common telescope components such as antenna mount, antenna control unit, correlator, etc. are CharacteristicComponents.

Design patterns for synchronous and asynchronous value retrieval/setting, monitoring and archiving or alarms are part of the
Property definition

13

13

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Component-Property-Characteristics
full model

CharacteristicModel

name()
description()
version()
URI()
get_interface()
get_characteristic_by_name()
find_characteristic()

Characteristic0..n0..n

type

ACS::RW<type>

set_sync()
set_async()
increment()
decrement()

type

ACS::RO<type>

Device
(from Examples)

type

MonitorPoint
(from Examples)

type

ControlPoint
(from Examples)

Control system Devices are
(Character istic) omponents

Thermostat
(from Examples)

An example of
Device

Examples of user defined classes:

CharacteristicComponent

0..n0..n

type

Property

DO_name()
get_sync()
get_async()
create_monitor()

0..n0..n

ACS::Component

14

14

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Property Servant implementation

The DevIO bridge pattern decouples
Properties from HW.

DevIO implementations available:

• Memory location (ACS defaults
implementation)

• CAN bus access (ALMA)
• Socket generic interface (APEX)
• RS232 (OAN)
• PC Joystick (HPT)
• Webcam (HPT)
• CCD cameras (FBIG, Finger Lake)

(HPT)
• Heidenan Encoder board IK220 (HPT)
• Motor Control Board (HPT)
• CCS Real time database (VLT)

type
DevIO

RW<type>Impl

type

DevIO

read()
write()

type
DevIO

RO<type>Impl

DevIOMem DevIOCan DevIOSocket

CAN

<<bind>>
Socket

<<bind>>

pointer

<<bind>>

IDL interfaces

Servant concrete implementation

Physical IO eccess

type

Property

DO_name()
get_sync()
get_async()
create_monitor()

type

ACS::RO<type>

type

ACS::RW<type>

set_sync()
set_async()
increment()
decrement()

This slide show the decoupling between the high level concept of Property and the
access to the actual hardware.
While the implementation of Properties is completely general, access to hardware is
delegated to a simple DevIO class according to the Bridge design pattern.
The DevIO class needs to implement read and write functions to access the
hardware.
When a property is instantiated, it receives a proper DevIO implentation that enable
it to retrieve and store (if writable) values in the hardware.

There are already many DevIO implementation available, some developed for
ALMA and some developed from other projects:

•Memory location (ACS defaults implementation)
•CAN bus access (ALMA)
•Socket generic interface (APEX)
•RS232 (OAN)
•PC Joystick (HPT)
•Webcam (HPT)
•CCD cameras (FBIG, Finger Lake) (HPT)
•Heidenan Encoder board IK220 (HPT)
•Motor Control Board (HPT)
•CCS Real time database (VLT)

15

15

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Configuration Database

• Defining accessing and
maintaining the
configuration of a system

• Three-tier database-access
architecture:
– Database engine
– Database Access Layer

(DAL).
– Database clients

• CORBA access interface
• XML/Schemas for object

data definition and access.

Database

DAL/CDB
Server

Data
client

CDB
Administrati
on

3 – Database
clients

2 – Database Access
Layer (DAL)

1 – Database engine

Read-write
admin.
interface

Read-
only
Data
interface

The ACS Configuration Database addresses the problems related to defining, accessing and maintaining the
configuration of a system based on ACS.

There are 4 different issues related to this problem:

1. input of data by the user
System configurators define the structure of the system and enter the configuration data.
2. storage of the data
The configuration data is kept in a database.
3. maintenance and management of the data (e.g. versioning)
Configuration data changes because the system structure and/or the implementation of the system’s components
changes with time and has to be maintained under configuration control.
4. loading data into the ACS Components
At run-time, the data has to be retrieved and used to initialize and configure the Characteristic Components.
The architecture of the ACS configuration database is based on three layers:

1. The Database Itself
2. The Database Access Layer (DAL)
3. The Database Clients access data from the database using only the interfaces provided by the DAL.

There are two separate interfaces to the CDB:
•Read-Only Data interface, used by all clients that need to retrieve their own configuration. Is very simple and
can be very easily implemented using minimal resources.
•Read/Write administrator interface, used to modify and administer the Configuration Database. Few high level
applications need to access this interface.

16

16

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Configuration Database:
DO Schemas

The choice of XML for the definition of the Configuration Database allows to use off-the-shelf tools
to administer the Configuration Database itself.
Per each Component type in the system, an XML Schema defines its configuration structure.
Per each Component instance in the system, an XML file defines the actual configuration, based on
the XML Schema.
This allows to define default configuration values in the Schema, “inheriting” from other schemas
and override them in the instance XML files.
In this slide we use XMlSpy to edit the XML Schema

17

17

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Abeans and visual editing

Abeans are Java Beans that are aware of the MACI and BACI paradigms.
In this way it is possible to use any Java Visual Builder (like Sun Java Netbeans, or upcoming
Eclipse extensions) to visually build use interfaces for ACS Components.
A set of graphical Java Beans implements the most useful widgets for the development of Control
System applications, aware of the concepts of Compoents, Properties and Characteristics.
At the same time a code generator produces Java Beans based on the IDL interface of ACS
Components. These Beans are therefore automatically integrated in any Visual Builder.
For example, a Gauge widget can be associated to an ACS Property to display the value, draw trend
plots and configure automatically itself based on the Characteristics stored in the Configuration
Database.

The suggested Java IDE is Eclipse, because it provides extremely good functionality
and performance, but unfortunately there is not yet a usable GUI builder available.
Therefore we currently suggest to use Sun Java Netbeans for GUI layout
development. But although the features provided by Netbeans are also extremely
good, performance is rather poor.
There are no problems in using at the same time Eclipse for code development and
Netbeans ofr GUI layout.

18

18

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Configuration

Logging

Exception
handling

…

A
beans A

pplication Abeans Model
(e.g. BACI)

Antenna
• RA
• DEC

Power Supply
• Current
• Readback
• Status
on(), reset(), …

Abeans Plug
(e.g. ACS CORBA)

ABeans widgets

Abeans Engine

ABeans architecture

This picture shows the architecture of Abeans.
ABeans “plug-in” architecture allows to use them on top of different Control System architectures
(ACS, EPICS, TINE, JADE) and they are therefore used in many different projects independently
from ACS.
ABeans have been developed by JSI/Cosylab independently from ACS and are used on different
projects.

19

19

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

ACS sample Mount Control Panel

This picture shows a Mount Control Panel that we are currently developing as a test
bed application for TICS.
It is more than 90% built simply by drag and drop from Java NetBeans.
Only a very little amount of Java code needs actually to be “written by hand”.

The Java Beans used for the composition work based on the Component-Property-
Characteristic pattern and therefore they configure themselves automatically.

20

20

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Data Channel

• Implementation of Observer
Design Pattern

• Asynchronously pass
information between data
suppliers and data consumers in
a many-to-many relationship

• Based on CORBA Notification
Channel

• An ACS API provides
simplified client and server API

Data Publisher

Data
subscriber

DataChannel

0..n0..n

push data

subscribe

pull data
push data

federateCORBA Notification
Service

(f ro m CORBA Mi ddl eware) 0..n0..n

21

21

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Logging System

Centralized Logging Host

HTTP Server

Relational Database

Event
Channels Clientpush

Centralized Logging

XML
Parser

Database
Logger Client

push

push

Filtering logic

Web Client

XSLTHTTP request/reply

Clientquery

SELECT UPDATE

SELECT

Out of scope of this document

Logs Publisherwrite_records
Implements Log interface

• To publish any kind of status
and diagnostic information for
interested clients and archival.

• Based on CORBA Telecom
Logging Service.

XML logs follow
pre-defined schema

C++ API ⇒ ACE Logging

Java API -> java.util.logging

ACS Log Service -> IDL

To publish any kind of status and diagnostic information for interested clients and archival.
Based on CORBA Telecom Logging Service.
Logs are published as XML messages.
Logging for C++, Java and Python is based on standard native APIs.
An ACS Logging IDL interface provides convenient logging capabilities from any CORBA aware application.

22

22

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Monitor Archiving system

The monitor archiving system provides archiving of monitor point values. ACS provides only the data
collection mechanism, but not storing of data (this task is left at the Archive Subsystem). Data are made
available from the archiving event channel to clients.

The value of each property in the control system can be archived. Archiving is enabled/disabled and
configured on per-property basis. ACS Properties publish their value on a specific ArchivingChannel
notification channel as structured events, by using the ACS Logging System.

The parameters for data publishing are defined in the following Property's Characteristics:

•archive_priority

•archive_max_int

•archive_min_int

•archive_delta

Whenever the Characteristics of a Property are such that archive values have to be submitted, a BACI Monitor
is created to periodically submit the values to the Logging System.

23

23

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

ACS Documentation:
http://www.eso.org/projects/alma/develop/acs

A major effort has been spent in providing good an comprehensive documentation
for ACS.
ACS Overview, Installation and Release Notes
These are the first documents to be read when receiving the package.

• The Overview provides a general overview of the distribution and in particular of the
processes and executables available.
• The Installation Manuals guides step by step in the installation and verification of ACS.
• The Release Notes describe the current status of ACS and the backward incompatibilities
with. It is an essential reading before porting applications from a previous version of ACS.

• Specification Documents
The main document in this section is the ACS Architecture, that describes the final architecture ACS
aims to. The other documents detail the most important packages defined/implemented with ACS
• User Manuals and Tutorials
The BACI Device Server Tutorial is an introduction to writing C++ code based on ACS and is a
must to read. Then there are a few User Manuals for ACS Logging Service and the tools GUIs
(Object Explorer, Jlog, Administrator Client).
• Abeans (Java ACS Beans) Documents
Tutorials and manuals on writing user interface applications with Abeans. Visual Bean Composition
Tutorial is the most useful.
• ACS IDL Online Documentation and UML Model
HTML Online reference for the ACS IDL interfaces

24

24

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

ACS Documentation:
http://www.eso.org/projects/alma/develop/acs

25

25

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Supported Platforms

• Operating system: Linux, SUN OS, (MS-
Windows)

• Real-time: VME,VxWorks, RTAI, CAN bus
• Languages: C++, JAVA, Python
• CORBA middleware: TAO (& ACE) (C++),

JacORB (Java), Omniorb (Python), CORBA
services.

The platforms and development environments supported by ACS are decided for
each release, based on the requests coming from the user’s base.
Our main development platform is Linux, while real time systems run under RTAI
and VxWorks.
For example ACS 3.1 will provide complete support for:
• Linux (RH 9) development and run time
• RTAI support inside RH 9
• Cross development for VxWorks (Tornado 2.5) from SUN workstations (Solaris
2.8), upload on VxWorks run time and debugging
Future releases of ACS will also support small-footprint run time only installations.
An MS-Windows version of most ACS core components is used at JSI for
development and testing.

26

26

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

ACS installations and projects

ACS is installed in all ALMA development sites, but it is also used or under evaluation by a number
of other projects.
On March 8th and 9th there will be a workshop in at ESO in Garching with all current and potentially
interested users of ACS.

ABeans have been developed by JSI/Cosylab independently from ACS and are used on different
projects, in particular on a number of EPICS projects.

27

27

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

ACS Development Plan

• ACS long term development is specified in
the ACS SW Development Plan:
http://www.eso.org/~almamgr/AlmaAcs/Plan/ACSDevelopmentPlan_2.0.pdf

• 6-months cycle. Driven by ALMA
Subsystem’s requirements

• ALMA using ACS 3.0 (the 6th release)
• Content of each release discussed with

user’s community

The ACS development is based on the ACS SW Development Plan document, that
is updated at each ALMA SW Design Review. This document gives the long term
direction of development.

The ACS release plan is further based on a 6-months release cycle, synchronized
with ALMA SW releases to allow subsystems to develop the code for their releases
based on a stable ACS release. We alternate:
•Major releases, with the main objective of introducing new features
•Minor releases, with the main objective of bug fixing
Between release we have “third number” patch releases, if and when necessary.
The detailed content of each release is discussed with the user’s community
beforehand, based on a proposal of the ACS team that takes into account both the
long term development plan and the requests from the ALMA subsystems (and
eventually other external users).

This scheme allows ACS development to follow a clearly defined roadmap, being at
the same time very responsive to user’s needs.

28

28

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

ACS 3.1 and after

• Objective until ACS 2.1:
– support Control SW Development (TICS)

• Objective for ACS 3.0:
– Support Pipeline, OT and high level software

requirements
• ACS 3.1 and after:

– Bulk data transfer, HTTP and email protocols, Alarm System and
other planned packages

– Optimization, scalability, performances, security
– New trends: IDL generic simulator, code generation from UML
– Backward compatibility!

The first releases of ACS concentrated on supporting Control SW development, because of the priority of TICS for the project.

With ACS 3.0 we have moved the focus of the development to satisfying the requirements from higher level subsystems and in
particular the Pipeline and the OT. For the first “customer” we have therefore implemented much stronger support for Python
scripting and dynamic deployment that are needed for the integration of AIPS++ in ACS. For the OT we have implemented
pure Java installation features based on Java Web Start technology, allowing the automatic installation and update of
applications on the astronomer’s desk.

The upcoming ACS 3.1 release will provide updates on the operating systems supported, introduce support for RTAI and solve
bugs and requests for changes triggered by the usage of 3.0.
On top of that we will introduce prototypes for new developments that will be released as production code in ACS 4.0:
•A new ALMA Alarm System (a prototype is available already now, but is very limited and does not implement the desired
architecture).
•A first implementation of the bulk data transfer
•ACS support for HTTP and email communication for higher level subsystems
•IDL Generic Simulator to emulate the interfaces of any Component known to the system

The ACS interfaces have stabilized in the course of the previous releases and from ACS 3.1 we want to put as an objective
backward compatibility, to minimize the changes in code required for the porting to a new release.

We are also introducing new packages and developments on top of the existing framework based on emerging technologies
that we confider sufficiently mature to be applied successfully. The ALMA HLA team is for example working, in collaboration
with the ACS team, with code generation tools to produce code for the LAMA Data Model from a UML model. We consider
this approach extremely effective. Using these same technology applied to Component design, we will be able to simplify to a
high degree ACS development and system deployment (the APEX and HPT team are already using successfully a less
advanced form of Component code generation).

From ACS 4.0 we will also concentrate on some optimization, scalability and performance issues (like Manager federation)
that are not a concern now but will be important for the final deployment of ALMA. CORBA provides anyway strong support
for such issue (as well as for security, if needed) and therefore it is more a matter of selecting what to do and how among the
various available solutions, rather than really investigating if the problems can be solved.

29

29

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

ALMA Sites
Chajnantor

www.alma.nrao.edu/development/computing

http://www.eso.org/projects/alma/develop/acs

http://kgb.ijs.si/KGB/

www.eso.org/projects/alma

30

30

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Conclusion

• Developed based on the experience of both
astronomical and accelerator control projects

• Can easily run on many platforms
• Open source (LGPL license)
• Free development tools and ORBs

We think that many other projects can use ACS
A wider user’s base can provide valuable

feedback

31

31

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Questions (& Answers)

32

32

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Extra slides

• What follow are extra slides, in case of
questions

33

33

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Entity data: XML value
objects

Why Value Objects?
• Less remote calls -> Better performance
• Run-time independence between subsystems

increases reliability

Subsystem2

Logic

obj.getFoo()

Subsystem1

obj.getFoo()

Transport
by value

value
objectremote

object

The Acs Architecture requires the abilty to send Entity Data as Value Objects from one subsystem to
another or to retrieve Entity Data from the Archive Subsystem and use it locally, until it is time to
commit the changes in the archive.
Thie applies, for example, to Persistent Objects, like “User”, “ObservingProject”, “CorrelatorConfig”
XML as the Format for Value Objects

We have chosen to use XML as the format to be used for the serialization of Value Objects.

Using CORBA and different programming languages, the only alternative would have been CORBA
valuetype.

XML serialization has the following advantages over CORBA valuetype:

• XML is suitable also for Data Persistence

• XML is usable also on transport protocols different from CORBA, like http or email.

• XML Schema allows stronger typed declarations with respect to IDL and allows to use versatile
automatic validation tools

• CORBA valuetype is not supported by many ORBs

• XML can be easily manipulated “by hand”or using many publicly available tools. This is
particularly important for a step-by-step development of the software, where advanced manipulation
tools will be developed in later phases of the project.

34

34

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

container

C
om

p

Transparent XML Integration

container

C
om

p

XML

C
om

p

Flat-XML API
seen from outside

Transparent-XML
API implemented

by component

Mapping code
layer

XML

35

35

ALMA Project

G.Chiozzi
Feb, 12 2004

ALMA Common Software

Transparent XML Integration

“IDL-XML”
code

generator

XML-Java binding:
“ObsProject” ->

alma.data.ObsProject

Transparent-XML IF

...
alma.data.ObsProject

getObsProject()

IDL
compilertypedef xmlstring

ObsProject;
…

ObsProject
getObsProject()

IDL IF

Flat-XML IF
...

getObsProject()

mapping code
return

getObsProject.marshal()

CORBA IDL signature of a method includes XML Data Entity parameters as a simple structure
containing a string with the XML information.
A code generator is used to map this signatures into a new API that contains the corresponding XML
mapping classes:
• Native binding classes instead of XML strings
• New structures, interfaces etc. if they contain XML Data Entities
• Automatic (de)serialization

