VODA – Final Report
Johan Lindroos

21. Introduction, the SAMPO project

22. VODA

22.1 Introduction and motivation

22.1.1 Interaction with the Virtual Observatory (VO)

22.1.2 Integrating a desktop analysis package with the VO - how?

32.1.3 The VODA idea

32.1.4 An Imaginary Scenario

42.1.5 How it would work

42.1.6 Summary

42.2 Requirements

52.2.1 High Level Requirements and actual implementation level

62.2.2 Performance

72.2.3 Software Interfaces

82.2.4 Installation

92.2.5 Additional comments to the requirements

92.3 The system overview

102.4 Detailed system functionality

122.4.1 Virtual Directory Functionality

132.4.2 File scan functionality

142.4.3 Data discovery functionality

142.4.4 VOTable Viewer

152.4.5 Download Manager

162.4.6 Problems/Questions

162.5 External modules and packages

172.5.1 Astrogrid AR

172.5.2 Stil / VOTable

172.5.3 HSQLDB

182.5.4 PLASTIC - a protocol for communication between client-side astronomy applications [5]

182.5.5 Xerxes

193 Experiences with IVOA standards

203.1 PLASTIC experiences

204 Discontinuation of the VODA development

21References

21Appendix 1 – Java API Docs

1. Introduction, the SAMPO project
In summer 2004 Finland joined ESO. As part of its joining fee there was a contribution in kind of a software effort, amounting to about 18 person-years over three years starting in early 2005. It was decided to devote this resource to addressing the question of data analysis environments of the future, specifically for ESO, but also with wider applications. Although there is science involvement in Finland with this project the skills are mostly in the areas of computer science and mathematics. A project manager and project scientist from ESO manages this project. The scientific input to the project will come from a Finnish Astronomical Advisory Group, the ESO Faculty and the ESO community. It will be tunneled through the project scientist. In a parallel and earlier effort, an Opticon Network (3.6), with significant ESO involvement, is also looking at the question of future analysis systems and will also supply input to the project. [1]
2. VODA

2.1 Introduction and motivation
The following is taken from the presentation motivating the development of VODA, it describes the ideas behind VODA and by whom it was intended to be used. The presentation is included to show what the thoughts and questions were in the beginning of this pilot project.
2.1.1 Interaction with the Virtual Observatory (VO)

What are the ways to interact with the VO and what limitations are there?
· Through a VO-enabled tool (Aladin, VOplot, Specview etc). Great for many purposes, but not always as flexible as a data analysis package with a huge collection of general purpose tools.

· By finding datasets through VO tools and subsequently downloading them to local disk and working with standard analysis packages. The standard archive paradigm now. Rather “all or nothing”.

· Working within a distributed data processing workflow environment such as Astrogrid which uses a distributed file system such as MySpace/VOSpace.

2.1.2 Integrating a desktop analysis package with the VO - how?
· Most current general purpose legacy packages (IRAF etc) expect data on local disk

· Does extending this to remote access make sense?
· Remote data may be large and slow to get

· Remote data may not even exist when requested

· How do you integrate the searching process (using lots of nice VO tools) with the currently existing legacy software?

2.1.3 The VODA idea
Clearly one needs something between the local analysis tools and the VO. This would allow flexible browsing of the VO (as already implemented in many VO tools, such as DataScope) on one side and access from general purpose desktop analysis tools on the other. How could this be done in practice?
2.1.4 An Imaginary Scenario
· A user uses a VO tool to send requests in a general way to the VO ("what near-IR imaging do you have of M31 globular clusters").

· The result will initially contain the locations of data providers from the registry.

· Subsequently requests ("supply K-band 0".1/pixel cutouts at this position") will provide metadata related to datasets which are available, might be available soon, or could be made available on request.

Then, if this information were to be stored appropriately, inside an analysis package one could then possible do something like this:
-> Vodir

	Dataset ID
	Status
	File

	m31-G123-HST-vband
	Available
	http://archive.stsci.edu/...

	m31-G123-Keck-NIR
	Local
	/data/m31/keck…

	m31-G123-2Mass-cut
	Requestable
	---not yet known---

->Display m31-G123-Keck-NIR (Displays local image)

-> Display m31-G123-HST-vband

Fetching image... (Displayed after downloading to the local disk)

-> Vostatus m31-G123-2Mass-cut (query sent to 2Mass server somewhere)

Dataset cutout can be supplied and created in a few minutes.

-> Vorequest m31-G123-2Mass-cut (request sent)

Requesting…

 -> Vostatus m31-G123-2Mass-cut (query sent to 2Mass server somewhere)

Dataset is now available.

 -> Display m31-G123-2Mass-cut
2.1.5 How it would work
To implement this approach we will need several components:
· The application level data I/O interfaces need to be extended to handle "virtual data" in various ways - as URI’s and as "virtual directory" entries.

· Tools for creating, visualizing and querying such a “virtual directory” would be needed.

· These tools need to be directly available from “within” the analysis system – which could mean from the shell, a package such as IRAF, or from within Python or another scripting language.

2.1.6 Summary
· The users of desktop analysis tools may appreciate, help in getting convenient VO access at that level.

· The critical aspect of this idea is how to provide a layer between the applications and the VO.

· Without this layer one can only "find and download first" (the traditional archive paradigm), work within a distributed environment, or "use what is provided with the VO application" which doesn't allow general application of legacy software.

· Addressing this would need some new approaches to the VO
· The aim of the VODA - Sampo project is to produce a simple pilot tool for trying out these concepts, using the currently available VO standards where possible.

The statements made above were all included in the first presentation of VODA made by the project manager. It describes why the VODA prototype should be built, by showing the lack of similar tools. At that time there was no real VO client available, that actually could link together data spread out over remote, behind remote services and on the local disc, we had no application allowing the user to select, store and organize references to actual data as his own local file directory. Data is located behind several types of services (http-get, SOAP) such as the IVOA (http://www.ivoa.net) standards as Simple Image Access Protocol (SIAP) [7], Simple Spectral Access Protocol (SSAP) [8] and Cone Search [9] and locations where data can be stored, locally or remotely in VOSpace [10] services.
The results coming from these service are often in form of a list of metadata and access references to the actual data, located somewhere behind the service. The results are stored in a XML document called VOTable [11]
2.2 Requirements
The requirements set at the beginning of the project are described in the following chapter. Discussing each requirement and if and how they were implemented in the final prototype of VODA.
2.2.1 High Level Requirements and actual implementation level
[VODA-REQ-HL-1]: VODA should include the functionality to access VO-based resources (Registry, SIA, ConeSearch, and SSA)

VODA currently implements a service for querying several different kinds of VO services:

· Registry Keyword Query

· Registry ADQL Query

· Simple Image Access Protocol based services, SIAP

· ConeSearch based services

The current implementation only supports manual entries, one at a time, but several queries can be run simultaneously. Access to VO resources and services are handled to the external application/module Astro Runtime Workbench, AR provided by the Astrogrid.

This requirement was successfully implemented but with some room for autoimmunization in a future version.
[VODA-REQ-HL-2]: VODA should have the functionality and ability so that the user can browse, select and view datasets/services from query responses.

VODA currently implements functionality for viewing, browsing and selecting rows from query responses but only from services such as SIAP and CONE. Currently the user has to manually go through the XML table for Registry queries. Through Plastic (discussed later) the user can view the selected datasets in external Plastic implementing applications (e.g. Aladin, Topcat, Specview etc.) supporting loadFromURL messages. VODA can also by the command of the user startup external applications such as fv, DS9 and Aladin, loading the dataset. Remote datasets are first downloaded before viewing, using the download manager described later.

This requirement was fully implemented.
[VODA-REQ-HL-3]: VODA should provide the ability to store, eliminate, copy and filter dataset references, both local and distributed (located behind for example SIA services or within a VOStore).
VODA implements the virtual directory (discussed more thoroughly later) which allows for storage and ordering the data references in a similar way as files in a file system. It has the potential for copying, moving, deleting and adding new references and directories to the virtual file system showing local and remote data including the metadata. Currently it does not implement access to VOStore even if the AR currently would support such access. Filtering of data entries by the metadata is currently not implemented.
Requirement VODA-REQ-HL-3 is only partly implemented, missing the implementation for access to VOStores and meta-data filtering.
[VODA-REQ-HL-4]: VODA should provide a graphical user interface and at least one application interface.

VODA currently provides a prototype graphical user interface; it runs as a separate desktop allowing several frames/windows to be run simultaneously. VODA implements the Plastic interface for access to VO applications or other applications implementing the interface, VODA can also startup several external applications as separate processes owned by VODA. It contains the readiness and functionality for a XML-RPC interface but the interface itself is not yet implemented.
Requirement VODA-REQ-HL-4 is almost fully implemented only lacking the actual interface for XML-RPC, already implementing most of its functions.
[VODA-REQ-HL-5]: VODA should be able to download a remote dataset to a predefined local location.

VODA currently provides a download manager for downloading and managing downloads.

Requirement VODA-REQ-HL-5 is fully implemented.

[VODA-REQ-HL-6]: References to distributed data should, to a certain level, be persistent.

Currently the access references can only be guaranteed validity for a limited period of time, lacking the implementation to continuously validate and refresh access references to remote data, specially located behind services that generate the data on request.

Requirement VODA-REQ-HL-6 is not implemented.
2.2.2 Performance
[VODA-REQ-PE-1]: The execution of VO based queries with should be comparable to the speed of a query directly to the service.
Currently query execution is only limited by network speed and the speed of the actual service.

Requirement VODA-REQ-PE-1 is fulfilled.

[VODA-REQ-PE-2]: The access of local files should be comparable to direct file access, as the access of distributed files should be limited only by bandwidth and service speed.

Access time to local files can be compared to normal file access on a local disc, only limited by the actual file access speed of the current system. Access to distributed files is limited only by the network speed and the speed or availability of the accessed service.

Requirement VODA-REQ-PE-2 is fulfilled.

[VODA-REQ-PE-4]: VODA itself should function in a Linux and Windows environment.

VODA currently functions both on Linux and Windows XP when running Java version 1.5. Some limitations exist; some plug-in applications are not available on both platforms.
Requirement VODA-REQ-PE-3 is fulfilled.

2.2.3 Software Interfaces
[VODA-REQ-SI-1]: VODA is a standalone software package allowing for desktop access to the VO, the user interacts with VODA through a GUI or command-line interface.

VODA is run independently containing the necessary dependencies. The user can interact through the GUI or with external applications implementing the Plastic interface. VODA is currently lacking the capability of command-line access and XML-RPC.

Requirement VODA-REQ-SI-1 is partly implemented and by adding the XML-RPC interface it can be considered fully implemented.

[VODA-REQ-SI-2]: VODA should be accessible through an application interface from other languages, mainly Python, a Python module for interaction will be provided allowing calling the VODA functions.
This requirement is dependent on the full implementation of VODA-REQ-SI-1 that currently is lacking the XML-RPC allowing for external scripting languages/programming languages to access VODA.

Requirement VODA-REQ-SI-2 is not fulfilled.

[VODA-REQ-SI-3]: VODA should be platform independent and work on the platforms commonly used in astronomy, limitations due to the Java virtual machine should be taken into considerations. The software will be developed using the Java 1.5 Standard Edition version.

VODA currently is working on operating systems such as Linux and Windows XP.
Requirement VODA-REQ-SI-3 is fulfilled.

[VODA-REQ-SI-4]: VODA should provide access to the currently existing VO services, specified by the IVOA.
VODA provides access to services specified by the IVOA (only services based on v.1.0 specifications).

Requirement VODA-REQ-SI-4 is fulfilled.

[VODA-REQ-SI-5]: VODA may use external packages such as the Astrogrid AR and STIL package for access and use of VO-based resources.

VODA is currently using the Astrogrid AR for access to VO services and resources; the AR is also functioning as the Plastic hub. The STIL package is used for VOTable handling and visualization.

Requirement VODA-REQ-SI-5 is fulfilled.
2.2.4 Installation
[VODA-REQ-IN-1]: VODA must be distributed, complete with installation scripts for each platform with minimal interactive configuration.
The VODA project can be checked out from the ESO CVS, currently not providing setup scripts.

Requirement VODA-REQ-IN-1 is not fulfilled

[VODA-REQ-IN-2]: VODA should be distributed with all necessary software packages embedded. Java 1.5 will be required as a pre-requisite for the installation.
The project package that can be checked out from the CVS is containing all necessary dependencies. The system needs to run the Java 1.5 virtual machine.

Requirement VODA-REQ-IN-2 is fulfilled.

2.2.5 Additional comments to the requirements
VODA will be open source and fully available to the ESO/VO community.

The reliability and support of the Astrogrid components used might become an issue since we will be quite heavily dependent on them to provide some of the basic features for voda.

VODA will not be supported by any party and will only be available on request. The reliability and continuous support of the Astrogrid AR should not be an issue in the near future as their software is quite well established in the VO community and financially stable.

2.3 The system overview
The VODA software is to create the link between desktop analysis tools and the Virtual Observatory. It can be considered as a layer or a separate application for allowing access to the Virtual Observatory (VO) and the resources available. VODA will allow for simple access to the features of the VO through a graphical user interface or command-line interaction.
[image: image1.jpg]User

Analysis tool

Desktop

—

VODA

| ACR/Astrogrid |

<l

VO

Figure 1, a simplified block diagram on the role of VODA
The user will be able to, through simple commands, access the VO and its possible resources. The possible resources are those provided by the IVOA specified registries, Simple Image Access Protocol SIAP, Simple Spectral Access Protocol SSAP, Sky Query, and in the future releases Single Line Access Protocol SLAP and one of its more important features will be access to and handling of the proposed VOSpace resources (current version is called MySpace and is provided by the Astrogrid community).

VOAccess module
The VOAccess module will contain all VO related functionality. The functionality implemented by us and the functionality currently provided by the ACR form Astrogrid.

The ACR from Astrogrid will provide most of the necessary functions for access to the VO the other necessary functions will need to be implemented. The ACR will provide at least the following functions:
· Access to the Astrogrid registry

· The capability to query SIAP services

· The capability to query Cone search services

· Access and handling of MySpace resources
The ACR will be a separate component run through Java WebStart and will be running under a separate process. A future version will provide a package to be bundled with VODA so that it does not have to be run separately.
The VOAccess module will also contain a function very essential to VODA the possibility to keep dataset references persistent hence to be able to update them if the current one fails to deliver the requested data. This is though one of the more difficult parts to get to function reliably. The most reliable way to provide this will be to store enough dataset metadata to be able to re-query for exactly that dataset.
The VOAccess module will contain a graphical user interface for simplified interaction and visualization with the services and resources.

VODA main module

The VODA main will be the module to control the whole functionality of VODA and to provide the database handling for storing the references to the datasets the user wishes to store.

The VODA main will provide an application interface allowing for external modules to use its capabilities more essentially the possibility to use Python or similar programming languages to access the VODA functionality. This will be provided through XML-RPC which is supported by most programming languages at some level, it could even be possible to access voda from a mobile device(.

The VODA main module will contain a graphical user interface for simplified interaction and visualization of the resources and services provided. The basic/main functionality and visualization will also be provided through a command-line interface but due to certain limitations all will not be provided.

2.4 Detailed system functionality

The functionality in VODA can be divided into several groups, each containing related functions. We have the main module VODA containing the database and the actual logics. Then we have several modules that perform very specialized tasks, such as downloads, data discovery, result viewing and external applications management. The following figure shows the functional architecture for VODA.

[image: image2.emf]Plastic enabled apps.

XML-RPC enabled apps. Local data

AR

VODA – GUI, DB, Application interfaces.

Plastic enabled apps.

XML-RPC enabled apps. Local data

AR

VODA – GUI, DB, Application interfaces.

Figure 2 – VODA Functional Architecture
The main module called VODA contains the logics controlling and tying together all the functionality. We have the Astro Runtime, AR that controls and performs all the access to external VO resources, links to plastic enabled applications, links to any XML-RPC enabled applications, access to local data. Below there is a description of the detailed functions of the VODA module.
The VODA module contains:
· Virtual Directory

· Search Bar

· VOTable viewer

· Download Manager

These are all tied together by a manager interface allowing easy access to detailed functionality and therefore it is easy to add new application interfaces to VODA. One good example on this is implementing the Plastic interface; the effort needed was fairly small in contrast to the benefits acquired. The only thing needed was to link the plastic messages with the right function calls in the manager.

Followed is the required functionality for each part and what parts currently are existent in the prototype.

2.4.1 Virtual Directory Functionality
The most important part forming the actual functions of VODA is the Virtual Directory it contains all the references to the actual data and its meta-data both local and remote. It is where the user is able to organize his personal libraries of data references and search results.
Show a dynamic set of meta-data for every dataset, this dynamic set can be predefined by the user or by the system depending on available meta-data for the existing datasets in the virtual directory. The user can chose to show all or just a selected list of meta-data in the view.
This is implemented fully in the prototype, including the possibility to save the selections for future use.

Copy an entry (dataset reference) to a new location within the virtual directory. The user can copy one entry from a directory or the main list to another directory.
Not implemented in the GUI, functionality is ready.
Delete entries in the virtual director, including directories. The user can delete one or several selected entries including directories.
Implemented for dataset entries, but not yet for directories.

Move entries in the virtual directory. The user can move one directory or data reference to another directory.
Not yet implemented in the GUI, functionality is ready.
Manually add entries to the virtual directory. The user can manually add entries to the virtual directory by adding remote or local files by specifying their position.
Currently possible if the directory the file resides in is added to the file scan directories.
Download remote files to a locally predefined position. It is possible for the user to right-click on a remote data set and select download. This will then launch the download manager.
This is fully available in the prototype.
The virtual directory should contain a super directory called “Local Data” containing all the local data.

This is currently available in the prototype.

The virtual directory should contain a super directory called “Remote Data” containing a list of the remote data added to the virtual directory.

This is currently available in the prototype.

The virtual directory should contain a super directory called “User Data” containing the tree of user organized references.

This is currently available in the prototype.

Data organization should be available through the drag and drop functionality. The user can drag one entry to another directory and will by this action copy or move the selected entry.

This is not available in the current prototype.

2.4.2 File scan functionality

For adding locally resided data and data later added to the local disc, we need to have functionality to perform a file scan process on local discs. This process will be triggered on voda startup.

Scan local files and add them to the virtual directory under the directory called “Local Data”. The user can select what directories should be scanned.
This is currently available in the prototype, including a GUI implementation for managing the directories that are to be scanned.

The user can add new directories and remove directories from the list.

This is currently available in the prototype, currently if a directory is removed from the list no action is taken on the data already added to the virtual directory, this will still be available.

The scan should identify duplicate entries in the same directory. For repeated scans the same file/directory will not be added more than once.

This is currently available in the prototype.

The scan should identify new files in an already scanned directory adding this to the virtual directory.

This is currently available in the prototype.
2.4.3 Data discovery functionality
The VODA needs to have functionality for data discovery meaning it can search from several VO resources for services and data.

The user should be able to query VO registries using keyword or ADQL based queries. This should return a list of available services and resources. The results need to be browsable.

This is currently implemented using the Astrogrid AR as a link to the VO registries, the result is in form of a XML – table.

The user should be able to select the services he wishes to query for data.

This can only be done manually, one at a time.
The user should be able to query the selected VO services and when multiple services selected the system should automatically/prompt the user for search parameters for each.

This is now functional for only one service at a time.

The system should allow for several queries to run simultaneously, multithreading.

This is fully implemented, a list of running and finished queries are shown.

The user should be able to access the query results directly.

The results can be opened using the VOTable viewer discussed later.
As a extra feature, by implementing plastic, data discovery can be done using other external applications that implements the plastic interface They need to produce at minimum one VOTable as a result.
This is currently fully implemented and working with the AstroScope application, can be run from the Astrogrid workbench.
2.4.4 VOTable Viewer

For viewing the query results we need a viewer able to read and display VOTables and tables in different format. In this case the VOTables basically contains lists of data, references to the data and related meta-data.

The VOTable viewer needs to be able to be run independently from VODA and the data discovery application.
This is currently available in the prototype. The VOTable viewer can be run separately by opening a XML file containing a VOTable or by right-clicking a search result and choosing open. The user will be prompted to select a file through a standard file prompt.

The user should be able to dynamically select what parts of the table he/she wishes to see. This can be done by hiding and showing columns. The default columns to show can be changed by the user in runtime.

This is currently available in the prototype.

The user should be able to select what rows (data-set references) he/she wishes to store in his personal virtual directory. This should be possible to do it one by one, multiple selections or all.
This is currently available in the prototype by selecting the right rows and click the associated button. The selected data references are then put in the “Remote Data” directory.
Drag selected datasets to the virtual directory / Put in the Remote data directory
Not implemented.
2.4.5 Download Manager
Independently run application that manages all downloads triggered by VODA. The download manager has full control over the running downloads.

Should be able to download very large files that might or might not be situated behind web services as for example SIAP searches etc.

This is available in the prototype, fully functional except with VOSpace locations.

Should be able to be run in a separate frame independently from VODA..

The download manager is run in a separate frame but it is not possible to run separate from VODA to restrictions in db access.

Should be able to resume a download, if for some reason the network connection is temporarily broken.

This works only if VODA has not been closed.
Should be able to pause and resume running downloads.

This is fully functional for the running session, but not if VODA is closed in between.

Should be possible to cancel/delete running downloads
This is available in the prototype.
· Reset

· Download queue/Multiple download?

· Progress bar?

· Download history

2.4.6 Problems/Questions
· The manipulation of files (delete etc.), should that only affect the virtual directory or also the local file?

· Should the local file organization be changed accordingly to the virtual directory or should it as the name says is a virtual directory with the target files situated where ever they are.

· Regarding UCDs, how should we correctly identify the metadata

· Different versions

· Lack of UCDs

· Implementation of an application interface

· XML –RPC or another type of protocol?

· What functions should be supported through the interface?

2.5 External modules and packages
During the development of VODA it has been necessary to use several external packages to speed up development and to implement the necessary functionality. Most of the chosen packages or services have been tested for reliability and effectiveness before actual integration.

The external application playing the largest role in VODA is the Astrogrid AR[2], and have been used to quickly and easily provide an interface to the vast amount of services and resources available in the Virtual Observatory

Brief description of the external packages used and why these were used for voda, on AR and Plastic a more extensive description with experiences

2.5.1 Astrogrid AR

The AR is a programming interface provided by the Astrogrid Workbench. It presents a simple facade from which to call VO services, and hides the complexity of the system (e.g. the configuration, authentication, service resolution, etc). The ACR can be accessed via Java RMI, XMLRPC or HTTP. To date the interface has been called from Python, Perl, Java, and C++ and C #. The interface is suitable both for light scripting work (for example automating execution of a series of astronomical data queries and processing stems); and for accessing VO services from other UI applications (e.g. Aladin). [2]
2.5.2 Stil / VOTable
STIL is a pure Java library for generic input, output and processing of tabular data. It presents to the application programmer a view of a table which looks the same regardless of whether it came from a FITS file, a VOTable, an ASCII text file, a query on a relational database, or whatever. Thus the application doesn't have to worry about the storage format of tables either when reading or writing them, it can concentrate on doing processing. STIL's idea of a table is rich enough to include table and column metadata, and table cells which contain scalar or single- or multi-dimensional array data of numerical, string or other types. This is well suited to astronomical data, though it can be of use in other fields as well. [3]
2.5.3 HSQLDB

During the planning stage we decided that the most simple install method with as few as possible external dependences was the best way to go. We decided that an embedded database was the most feasible solution. We tested several possible candidates such as MySQL, Derby and HSQLDB. HSQLDB is a relational database engine written in Java, with a JDBC driver, supporting a large subset of ANSI-92 SQL. A small, fast engine with both in memory and disk based tables. This product is the continuation of HypersonicSQL. [4]
2.5.4 PLASTIC - a protocol for communication between client-side astronomy applications [5]
PLASTIC (PLatform for AStronomical Tool InterConnection) is a collaboration between the teams behind Aladin, Topcat, VisiVO, AstroGrid and others to develop interoperability standards for client-side virtual observatory tools. PLASTIC is a protocol for communication between client-side astronomy applications. It is very simple for application developers to adopt and is easily extended. Through PLASTIC applications can do tasks such as instruct each other to load VOTables, highlight a subset of rows or load an image of a particular area of sky. Although such operations are quite simple, they enable powerful collaborations between tools. The philosophy is that the astronomer should have a suite of interoperating tools at his disposal, each of which does one thing well and which can be composed according to his particular needs.
The two key concepts in PLASTIC are the Plastic Hub and Plastic Messages. PLASTIC is just a specification for a simple messaging system: applications send each other messages requesting certain actions via the Plastic Hub, which routes them to their destinations. The messages themselves are Strings (actually URIs) agreed by the application developers. Each message can be accompanied by several arguments, and can return a value. Again, the arguments and return values are defined by the application developers, they are not described by the PLASTIC specification, and (with a small number of exceptions) the Plastic Hub has no understanding of their meaning.
The PLASTIC specification is designed to be platform neutral and as such supports a number of different communication protocols. Java clients will usually communicate with the hub using Java-RMI, while applications written in other languages will usually use XML-RPC to access the same functionality. For those few platforms for which an XML-RPC library is not available, the hub supports a simple http-get protocol.
PLASTIC is a specification, not an application. However, there is a reference implementation of the Plastic Hub embedded in the Astro Runtime.

2.5.5 Xerxes

The Apache Xerces2 parser is the reference implementation of XNI but other parser components, configurations, and parsers can be written using the Xerces Native Interface. For complete design and implementation documents, refer to the XNI manual.

Xerces2 is a fully conforming XML Schema processor. For more information, refer to the XML schema page. Xerces2 also provides a complete implementation of the Document Object Model Level 3 Core and Load/Save W3C Recommendations and provides a complete implementation of the XML Inclusions (XInclude) W3C Recommendation. It also provides support for OASIS XML Catalogs. Xerces2 is able to parse documents written according to the XML 1.1 recommendation, except that it does not yet provide an option to enable normalization checking as described in section 2.13 of this specification. It also handles namespaces according to the XML Namespaces 1.1 recommendation, and will correctly serialize XML 1.1 documents if the DOM level 3 load/save APIs are in use. [6]
3 Experiences with IVOA standards

The experiences with the standards set by IVOA [12] can be described both in a positive and negative manner. Generally the standards are worked out by several working groups where each concentrates on a certain area of work for example we have the DAL working group concentrating on the Data Access Layer, responsible for specifications like the Simple Image Access Protocol SIAP and the Simple Spectral Access Protocol SSAP.
Each specification can have one of several maturity levels:

· Recommendation

· Proposed recommendation

· Working draft

As documents not yet having the status of recommendation will probably have changes made one cannot fully rely on these which then leads to inconsistency among provided services unless updated each time changes are made. This then easily leads to problems when building clients relying that the services are compliant with the actual recommendation. Quite many of the currently provided services and resources have been created for testing. An example of this is the response from a SIAP query, the format should always be in the format of an VOTable, this is clear, but the contents and the descriptive data is not always in the same format as required by the SIAP specification. We have problems with the keywords describing certain data fields as they follow incomplete or old versions of keyword lists or even having their own keyword, this makes it very hard to actually be able to identify the contents of the field. This is critical when the software is interpreting the query response and making assumptions based on that data. For example one of the simplest fields are the field containing the URL pointing at the actual data, if not being able to identify this field we will end up with a whole row in the response that is without value.

So the general experience is that the standards are coming on quite nicely but quite often taking too long to reach the recommended stage, sometimes becoming too complex to make the use of them any easier.

A word of caution for the future as some of the technologies, currently used, are quite slow there will be issues of speed and reliability when the amount of available resources supporting the IVOA[12] standards will reach larger numbers. Currently SOAP based web services are considered quite slow and will in large numbers impact the query speed very negatively. This is an issue that might/will critically impact the actual usage of VO-resources when becoming fully operational.

3.1 PLASTIC experiences

As there was a need to have a way of letting applications communicate, PLASTIC was develop by some of the people active in the VO communicate. PLASTIC itself is very simple and consists of one main controller/hub which keeps track of applications running that implements the PLASTIC interface and some of its messages. The hub knows what messages a registered application supports and delivers messages from one application to the right target application. This is very simple and making an application PLASTIC aware is very simple and requires very little effort. The only issue is making the internal functions performing the task requested by the message and delivering a possible response. The messages are standard and have to go through a certain process to be added to the list of messages; an application is required to implement all messages but only the ones that can be seen as useful for that particular application. One problem that limits the usage of PLASTIC is that messages can only be sent to applications running and registered to the hub, it is not possible to startup applications (PLASTIC aware) through PLASTIC, the user has to start the application first and possibly even register it with the hub. As this is a limitation when seeing PLASTIC enabled applications in a scripting/workflow environment as the process will halt when supposed to make use of a PLASTIC enabled application that is not registered with the hub. There is a lack of a message that allows for the application to send commands to an application.
4 Discontinuation of the VODA development

After a series of discussions, a decision at political level was made to end the development of VODA. The development will end with this project document and a poster at ADASS 2006 in Tucson. Most of the resources deployed to work on VODA were moved over to more pressing tasks from the end of May 2006. VODA itself will not be supported or further developed by the SAMPO team. The source will be available on request to anyone interested. The discontinuation of VODA can not be seen as a unsuccessful pilot study as the goal was to evaluate the current VO technologies and the possibility to link them together into a general use client tool. As described above this can be done but with some difficulties due to the inconsistencies in the realizations of services claiming to implement the IVOA standards.
References

[1] Hook, Richard Towards a new Data Analysis System for the age of the Virtual Observatory, A White Paper describing the ESO /Finnish Collaboration

[2] Astrogrid homepage, http://software.astrogrid.org/developerdocs/index.html
[3] STIL homepage, http://www.star.bris.ac.uk/~mbt/stil/
[4] HSQLDB homepage, http://www.hsqldb.org
[5] PLASTIC homepage, http://plastic.sourceforge.net
[6] XERXCES homepage, http://xerces.apache.org/xerces2-j
[7] SIAP, http://www.ivoa.net/Documents/latest/SIA.html
[8] SSAP, http://www.ivoa.net/internal/IVOA/InterOpMay2005DAL/ssa-v090.pdf#search=%22simple%20spectral%20access%20protocol%22
[9] Cone, http://us-vo.org/pubs/files/conesearch.html
[10] VOSpace, http://wiki.astrogrid.org/pub/Astrogrid/VoSpace20060515/vospace.20060517.01.pdf#search=%22vospace%22
[11] VOTable, http://www.ivoa.net/Documents/latest/VOT.html
[12] IVOA, http://www.ivoa.net
Appendix 1 – Java API Docs

PAGE
4

