next up previous contents
Next: Convergence Up: Regularization from significant structures Previous: Regularization of the one-step

   
Regularization of Lucy's algorithm

Now, define I(n)(x,y) = P(x,y) * O(n) (x,y). Then R(n)(x,y) = I(x,y) - I(n)(x,y), and hence I(x,y) = I(n)(x,y) + R(n)(x,y). Lucy's equation is:
$\displaystyle O^{(n+1)}(x,y) = O^{(n)}(x,y) [ \frac{I^{(n)}(x,y) +
R^{(n)}(x,y)}{I^{(n)}(x,y)} * P(-x,-y) ]$     (14.119)

and the regularization leads [39] to:
$\displaystyle O^{(n+1)}(x,y) = O^{(n)}(x,y) [ \frac{I^{(n)}(x,y) +
{\bar{R}}^{(n)}(x,y)}{I^{(n)}(x,y)} * P(-x,-y) ]$     (14.120)



Petra Nass
1999-06-15