

X-shooter CCD Detector Report Doc: XSH- SPE-ESO-6000-0200 Issue: 1.0 Date:28.05.2009 Page: 1 of 45

# **X-shooter**

# **Detector Report**

# **CCD** Readout Modes Characterization

DocNo.: XSH-TRE-ESO-6000-0200

**Issue:** 1.0

Date: 28.05.2009

Date

Date

4/6/00

Name **Prepared:** Mark Downing

Name Approved: *PI Board* 

Name **Released:** *Hans Dekker* 

. 3

Date 28/05/2009

Signature

S

Signature

Signature

.



# **CHANGE RECORD**

| ISSUE | DATE       | SECTION/PAGE<br>AFFECTED | REASON/INITIATION<br>DOCUMENTS/REMARKS                                                                                                                 |
|-------|------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.2   | 21.08.08   | §3.2                     | Dummy pixels removed before the prescan of the VIS arm detector on request of Joel Vernet.                                                             |
| 0.3   | 01.05.2009 | <u></u> §4               | Video board gain resistors R50 and R54 increased from<br>360hm to 440hm to compensate for change in timing files to<br>fix spectral linearity problem. |
| 1.0   | 28.05.2009 | All                      | First release                                                                                                                                          |
|       |            |                          |                                                                                                                                                        |



# **TABLE OF CONTENTS**

| 1  | IN      | FRODUCTION                                                                                 | 5  |
|----|---------|--------------------------------------------------------------------------------------------|----|
|    | 1.1     | PURPOSE AND SCOPE OF THIS DOCUMENT                                                         | 5  |
|    | 1.2     | APPLICABLE AND REFERENCE DOCUMENTS                                                         | 5  |
|    | 1.3     | ABBREVIATIONS AND ACRONYMS                                                                 | 6  |
| 2  | VE      | RIFICATION MATRIX                                                                          | 8  |
|    | 2.1     | UVB ARM DETECTOR: PISCES AUSTRALIS II                                                      | 8  |
|    | 2.2     | VIS ARM DETECTOR: MIT/LL CATHERINE                                                         | 9  |
| 3  | RE      | ADOUT MODES                                                                                | 10 |
|    | 3.1     | REQUESTED READOUT MODES                                                                    |    |
|    | 3.2     | Implemented Readout Modes                                                                  |    |
| 4  | SY      | STEM SETUP                                                                                 |    |
|    | 4.1     |                                                                                            | 12 |
|    | 4.1     | VIDEO BOARD<br>Preampi ifier                                                               | 12 |
|    | 4.3     | BIAS BOARD                                                                                 |    |
|    | 4.4     | CLOCK BOARDS                                                                               | 14 |
| 5  | DE      | TECTORS OPERATING TEMPERATURE                                                              | 15 |
|    | 5 1     | UVB ADM DETECTOR ODER ATING TEMPERATURE                                                    | 15 |
|    | 5.1     | 1 Bias Images at 155K                                                                      | 15 |
|    | 5.1     | 2 Dark Images at 155K                                                                      |    |
|    | 5.1.    | 3 Summary and Conclusion                                                                   | 15 |
|    | 5.2     | VIS ARM DETECTOR OPERATING TEMPERATURE                                                     | 16 |
|    | 5.2.    | 1 Bias Images Versus Temperature                                                           | 16 |
|    | 5.2     | 2 Dark Images Versus Temperature                                                           | 16 |
|    | 5.2.    | 5 Summary and Conclusion                                                                   | 20 |
| 6  | QU      | ANTUM EFFICIENCY (QE)                                                                      | 22 |
|    | 6.1     | QE UVB ARM DETECTOR: PISCES AUSTRALIS II                                                   | 22 |
|    | 6.2     | QE VIS ARM DETECTOR: CATHERINE                                                             | 24 |
| 7  | СТ      | E                                                                                          | 25 |
| 0  | 60      |                                                                                            |    |
| 8  | CO      | SME IIC                                                                                    | 25 |
| 9  | PLY     | KEL SATURATION/RESIDUAL IMAGE                                                              |    |
|    |         |                                                                                            |    |
| 1  | 0 I     | LINEARITY                                                                                  |    |
| 1  | 1 T     | READ MODES PERFORMANCES                                                                    | 27 |
| 1  | 1 1<br> |                                                                                            |    |
|    | 11.1    | UVB ARM DETECTOR: PISCES AUSTRALIS II                                                      |    |
|    | 11.2    | VIS ARM DETECTOR: CATHERINE                                                                |    |
|    | 11.     | 2.2 Measurements at Paranal in MMB                                                         |    |
| 1, | ,<br>т  | DCE                                                                                        | 24 |
| 1. | ۲ کے ۲  |                                                                                            |    |
|    | 12.1    | UV ARM DETECTOR: PISCES AUSTRALIS II                                                       |    |
|    | 12.2    | VIS AKM DETECTOR: CATHERINE                                                                |    |
| 1. | 3 (     | OVERSCAN OFFSET VARIATION WITH SIGNAL LEVEL                                                |    |
|    | 13.1    | PLOTS OF OVERSCAN OF E2V PISCES AUSTRALIS II: READ OUT MODE $100$ kpix/s and $2x2$ binning |    |



| 13 | 2 PLOTS OF OVERSCAN OF E2V PISCES AUSTRALIS II: READ OUT MODE 400KPIX/S AND 2X2 BINNING                |           |
|----|--------------------------------------------------------------------------------------------------------|-----------|
| 13 | 3 PLOTS OF OVERSCAN OF MIT CATHERINE: READ OUT MODE 100KPIX/S AND 2X2 BINNING                          |           |
|    | 13.3.1 Plots of overscan of MIT Catherine: Read out Mode 400kpix/s and 2x2 binning                     |           |
| 14 | PROBLEM OF SPECTRAL NON-LINEARITY WITH UVB ARM 100KPS MODE                                             |           |
| 14 | 1 PERFORMANCE OF SPARE VIDEO BOARD (SERIAL NUMBER 67) DURING COMMISSION (DATE - 30 <sup>th</sup> April | L 2009)42 |
| 15 | INVESTIGATION OF REPORTED BIAS JUMP ON VIS ARM                                                         |           |



X-shooter CCD Detector Report

## **1 INTRODUCTION**

## 1.1 Purpose and Scope of this Document

X-shooter is a wide band (300-1900nm), intermediate resolution (4500-7000), high efficiency spectrograph designed for the Cassegrain focus of a VLT UT. X-shooter is a fast-track instrument built from currently available technology. X-shooter consists of a central structure (the backbone) which supports three prism-cross dispersed echelle spectrographs optimized for the UV-Blue (UVB), Visible (VIS) and Near-IR (NIR) wavelength ranges.

This document reports on the testing and commissioning of X-shooter detectors, e2v Pisces Australis II and MIT/LL Catherine when read out using the final read out modes, [AD 01]. Pisces Australis II, an e2v CCD44-82 serial number 02395-04-01, is the UVB arm detector. Catherine, serial number 14-4-6, is the VIS arm detector. It is a phase 3 thick high resistivity (40 µm) BIV MIT/LL CCID-20.

## **1.2** Applicable and Reference Documents

The following documents, of the exact issue shown, form a part of this document to the extent specified herein.

| Reference | Document Number       | Issue | Date     | Title                                                                |
|-----------|-----------------------|-------|----------|----------------------------------------------------------------------|
| [AD 01]   |                       | 1.0   | 04.08.06 | X-shooter CCD readout modes V.1, Hans Dekker.                        |
| [AD 02]   | XSH-TRE-ESO-6000-0105 | 3.0   | 22.05.09 | X-shooter CCD Detector and Acquisition System<br>Final Design Report |
| [AD 03]   | XSH-VER-ESO-9000-0156 | 1.0   | 06.12.06 | PAE1 – Verification Matrix of Subsystems                             |

The following documents are not applicable, but are referred to in this document.

| Reference   | Document Number             | Issue | Date                                                                        | Title                                                                                                                       |
|-------------|-----------------------------|-------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| [RD 01]     | Internal ODT Technical Note |       | 24/5/2004                                                                   | Connecting more than one preamplifier to one video board of FIERA, Javier Reyes                                             |
| [RD 02]     | PSF measurement report      |       |                                                                             |                                                                                                                             |
| [RD 03]     | TO3-0500/prj                | 1.0   | 08/05/2000                                                                  | Design Information for CCD44-82 Devices for the<br>European Southern Observatory, May 2000, Marconi<br>Applied Technologies |
| [RD 04] 1.0 |                             |       | 2048x4096 CCD Imager for the U. of Hawaii<br>Consortium, Barry Burke MIT/LL |                                                                                                                             |
| [RD 05]     | 10683C                      | 1.0   | 10/11/00                                                                    | Pisces Australis II e2v Test Report, serial number 02395-04-01.                                                             |



# 1.3 Abbreviations And Acronyms

| AC          | Alternating Current                                                                         |
|-------------|---------------------------------------------------------------------------------------------|
| AFC         | Automatic Flexure Correction                                                                |
| BFD         | Back Focal Distance                                                                         |
| BIV         | Blue Indigo Voilet                                                                          |
| BFD         | Back Focal Distance                                                                         |
| BOB         | Broker for Observation Blocks (OB)                                                          |
| CAS         | Central Alarm System                                                                        |
| CCC         | Closed Cycle Cooler                                                                         |
| CCD         | Charge Coupled Device                                                                       |
| DC          | Direct Current                                                                              |
| DCS         | Detector Control Software                                                                   |
| DEE         | Detector Front-End Electronics                                                              |
| DH          | Detector Head                                                                               |
| DMA         | Direct Memory Access                                                                        |
| EMC         | Electromagnetic Compatibility                                                               |
| ESD         | ElectroStatic Discharge                                                                     |
| ESU SU ESU  | ally Technologies (CCD menufecturer http://alutechnologies.com)                             |
| E2V,E2V,E2V | Einel Design Deview                                                                         |
|             | Final Design Review                                                                         |
| FIEKA       | Flamit La La Controller                                                                     |
| FIIS        | Flexible image Transport System                                                             |
| FWHM        | Full width at Half Maximum                                                                  |
| GUI         | Graphical User Interface                                                                    |
| ICD         | Interface Control Document                                                                  |
| IWS         | Instrument WorkStation                                                                      |
| HW          | Hardware                                                                                    |
|             | Instrument Control Software                                                                 |
| FC          | Inter-IC BUS ( <u>http://www.semiconductors.philips.com/markets/mms/protocols/i2c</u> )     |
| IfA         | Institute for Astronomy ( <u>http://www.ifa.hawaii.edu</u> )                                |
| IWS         | Instrument Workstation                                                                      |
| LAN         | Local Area Network                                                                          |
| LBNL        | Lawrence Berkeley National Laboratory ( <u>http://www.lbl.gov</u> )                         |
| LCD         | Liquid Crystal Display                                                                      |
| LCU         | Local Control Unit                                                                          |
| LED         | Light Emitting Diode                                                                        |
| Lick        | University of California Observatories/Lick Observatory ( <u>http://www.ucolick.org</u> )   |
| LRU         | Line Replaceable Unit                                                                       |
| LN2         | Liquid Nitrogen                                                                             |
| MIT/LL      | Massachusetts Institute of Technology's Lincoln Laboratory ( <u>http://www.ll.mit.edu</u> ) |
| MMB         | Mirror Maintenance Building                                                                 |
| NGC         | New General detector Controller                                                             |
| MS          | Maintenance Software                                                                        |
| N/A         | Not Applicable                                                                              |
| ODT         | Optical Detector Team                                                                       |
| OS          | Observation Software                                                                        |
| OFDR        | Optical final Design review                                                                 |
| PAE         | Preliminary Acceptance Europe                                                               |
| PCI         | Peripheral Component Interconnect (Computer BUS)                                            |
| PDR         | Preliminary Design Review                                                                   |
| PID         | Proportional Derivative Integral                                                            |
| PRNU        | Photon Response Non-Uniformity                                                              |
| p.i.n       | "p" Intrinsic "n"                                                                           |
| PSF         | Point Spread Function (system response to an infinitely narrow stimulus)                    |
| QA          | Quality Assurance                                                                           |
| QE          | Quantum Efficiency                                                                          |
| r.o.n       | Read Out Noise                                                                              |
| RMS         | Root Mean Squared                                                                           |



Doc: XSH- SPE-ESO-6000-0200 Issue: 1.0 Date:28.05.2009 Page: 7 of 45

| RRM  | Rapid Response Mode              |
|------|----------------------------------|
| RTD  | Real Time Display                |
| SCP  | Service Connection Point         |
| SLCU | Sparc Local Control Unit         |
| SLED | Stabilized LED                   |
| SW   | Software                         |
| TBC  | To Be Clarified                  |
| TBD  | To Be Defined                    |
| TDI  | Time Domain Integration          |
| UPS  | Uninterruptible Power Supply     |
| UVB  | Ultra Violet-Blue (300 - 550 nm) |
| VIS  | VISible (550 - 1020 nm)          |
| VLT  | Very Large Telescope             |
| VME  | Versa Module Eurocard            |
| WS   | Workstation                      |
|      |                                  |



## 2 Verification Matrix

To confirm PAE (see [AD 03]), the following verification matrixes are provided.

## 2.1 UVB ARM DETECTOR: Pisces Australis II

 Table 1: Verification matrix of measured performance of CCD44-82 Pisces Australis II versus detector requirements of UVB arm. Measurements performed on ODT Test Bench.

| Detector                                                                                 | Required                                                                                                                                         | Pisces                                                                                                            | Compliance | Refn.         | Comments                                                                                                                                    |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Characteristics                                                                          | Performance                                                                                                                                      | Australis II                                                                                                      |            |               |                                                                                                                                             |
| UVB -DR1 Number of<br>Pixels                                                             | 2048 x 4096                                                                                                                                      | 2048 x 4102                                                                                                       | ~          | [RD 03]       | See manufacturer data sheet                                                                                                                 |
| UVB -DR2 Pixel size                                                                      | 15 um                                                                                                                                            | 15 μm                                                                                                             | ✓          | [RD 03]       | See manufacturer data sheet                                                                                                                 |
| UVB -DR3 Q.E. @ nm<br>(may be 5% below spec<br>if spec exceeded at<br>other wavelengths) | >70% @ 300<br>>75% @ 320<br>>77% @ 350<br>>78% @ 370<br>>80% @ 400<br>>85% @ 450<br>>85% @ 500<br>>80% @ 550                                     | 54% @ 300<br>79% @ 320<br>82% @ 350<br>82% @ 370<br>88% @ 400<br>86% @ 450<br>83% @ 500<br>81% @ 550              | ×          | §6.1          | 300nm not meet due to<br>difficulty of measuring. At<br>500nm, QE 2% low however<br>within measurement<br>tolerance.                        |
| UVB -DR4 Operating<br>Temperature                                                        | 150-160 K                                                                                                                                        | 155K                                                                                                              | ~          | §5.1          | Standard operating<br>temperature of CCD44-82<br>chosen.                                                                                    |
| UVB -DR5 Dark<br>Current                                                                 | <2e/px/h                                                                                                                                         | < 0.5 e <sup>-</sup> /pix/h<br>(at 155K)                                                                          | ~          | <b>§11</b>    | Dark current measurements<br>are normally dominated by<br>background radiation.                                                             |
| UVB -DR6 Read Out<br>Modes                                                               | Slow (50 – 100 kpix/sec,<br>tbc)<br>Fast, (600 kpix, sec tbc)<br>Binning 1x1, 1x2, 2x2                                                           | Slow: 100 kpix/sec<br>Fast: 400 kpix/sec<br>Binning 1x1, 1x2, 2x2                                                 | ~          | §3            | 400 kpix/sec read out speed<br>meets UVB -DR15 Read<br>Time + Overheads spec.                                                               |
| UVB -DR7 R.O.N                                                                           | Slow: < 3 e<br>Fast: < 8 e                                                                                                                       | Slow: <2.6e<br>Fast: <4.7e                                                                                        | ~          | §11           |                                                                                                                                             |
| UVB -DR8 Pixel<br>Saturation                                                             | > 120000 e                                                                                                                                       | > 200,000 e <sup>-</sup>                                                                                          | ~          | <b>§</b> 9    |                                                                                                                                             |
| UVB -DR9 Linearity                                                                       | <1% 10-100000 e<br>From best linear fit                                                                                                          | < ±0.5 %<br>100 - 120,000 e <sup>-</sup>                                                                          | ×          | <b>§10</b>    | Lower range 10-100e too difficult to measure.                                                                                               |
| UVB -DR10 Cosmetic<br>Defects                                                            | Max 1 bad column <0.01% hot or dead pixels                                                                                                       | 2 bad columns<br>2 Hot pixels<br>8 dead pixles                                                                    | ×          | §8            | Exceeds bad column specification.                                                                                                           |
| UVB -DR11 Radiation<br>Events                                                            | <120/cm <sup>2</sup> /h larger than 30 e                                                                                                         | <120/cm <sup>2</sup> /h                                                                                           | ~          | <b>§5.1.3</b> |                                                                                                                                             |
| UVB -DR12 PSF                                                                            | >42% in 1 pixel<br>>88% in 2x2 pixels<br>(point source at f/3)                                                                                   | > 45% in 1 x 1 pixel<br>> 93% in 2x2 pixels                                                                       | ~          | §12.1         | Measured down to 400nm.                                                                                                                     |
| UVB -DR13 Number<br>of detectors amplifiers                                              | 2                                                                                                                                                | 2                                                                                                                 | ~          | [RD 03]       | See manufacturer data sheet                                                                                                                 |
| UVB -DR14 Controller                                                                     | One Fiera/ two pulpo                                                                                                                             | One Fiera/ two pulpo                                                                                              | ✓          | [AD 02]       |                                                                                                                                             |
| UVB -DR15 Read<br>Time + Overheads                                                       | <pre>&lt;90 sec (CCD slow,1x1, hg)<br/>&lt;20 sec (CCD slow,2x2, 1g)<br/>&lt;20 sec (CCD fast,1x1, 1.g)<br/>&lt;10 sec (CCD fast,2x2, 1.g)</pre> | 70 sec (CCD slow,1x1, hg)<br>22 sec (CCD slow,2x2, lg)<br>19 sec (CCD fast,1x1, l.g)<br>8 sec (CCD fast,2x2, l.g) | ×          | §3.2          | Reported times do not<br>include software overheads.<br>Times slightly out of spec.<br>due to request to read out<br>through one amplifier. |



## 2.2 VIS ARM DETECTOR: MIT/LL Catherine

Table 2: Verification matrix of measured performance of high resistivity (40 μm) BIV MIT/LL CCID-20 Catherine versus detector requirements of VIS arm. Measurements performed on ODT Test Bench.

| Detector<br>Characteristics                                                              | Required                                                                                                                                  | Catherine                                                                                                         | Compli<br>ance | Refn.      | Comments                                                                                                                                                                 |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VIS -DR1 Number of<br>Pixels                                                             | <u>2048 x 4096</u>                                                                                                                        | 2048 x 4102                                                                                                       | ~              | [RD 04]    |                                                                                                                                                                          |
| VIS -DR2 Pixel size                                                                      | <u>15 um</u>                                                                                                                              | 15 μm                                                                                                             | ✓              | [RD 04]    |                                                                                                                                                                          |
| VIS -DR3 Q.E. @ nm<br>(may be 5% below spec<br>if spec exceeded at other<br>wavelengths) | >70% @ 500<br>>75% @ 550<br>>80% @ 600<br>>80% @ 650<br>>85% @ 750<br>>85% @ 800<br>>85% @ 800<br>>75% @ 900<br>>50% @ 950<br>>30% @ 1000 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                              | x              | §6.2       | Exceeds specs except for 1000 nm.                                                                                                                                        |
| VIS -DR4 Operating<br>Temperature                                                        | 150-160 K                                                                                                                                 | 135K                                                                                                              | ×              | §5.2       | Operating temperature chosen<br>to reduce "hot pixels". This is<br>the standard operating<br>temperature for this type of<br>CCD.                                        |
| VIS -DR5 Dark Current                                                                    | <2e/px/h                                                                                                                                  | < 0.4 e <sup>-</sup> /pix/h<br>(at 135K)                                                                          | ~              | §5.2.3     | Dark current measurements<br>are normally dominated by<br>background radiation.                                                                                          |
| VIS -DR6 Read Out<br>Modes                                                               | Slow (50 – 100 kpix/sec, tbc)<br>Fast, (600 kpix, sec tbc)<br>Binning options 1x1, 1x2, 2x2                                               | Slow: 100 kpix/sec<br>Fast: 400 kpix/sec<br>Binning 1x1, 1x2, 2x2                                                 | ~              | §3.2       |                                                                                                                                                                          |
| VIS -DR7 R.O.N                                                                           | Slow: (50–100 kpix/sec) < 3.5 e<br>Fast (600 kpix/sec) < 8 e                                                                              | Slow (100kpix/s): <3.2e<br>Fast (400kpix/s): <5.3e                                                                | ~              | §11        |                                                                                                                                                                          |
| VIS -DR8 Pixel<br>Saturation                                                             | > 90000 e                                                                                                                                 | > 90,000 e <sup>-</sup>                                                                                           | ~              | <b>§</b> 9 |                                                                                                                                                                          |
| VIS -DR9 Linearity                                                                       | <1% 10-100000 e<br>From best linear fit                                                                                                   | < 1 %<br>100 – 90,000 e <sup>-</sup>                                                                              | ×              | §10        | Lower range 10-200e too<br>difficult to measure. Typical<br>linearity range for this type of<br>device.                                                                  |
| VIS -DR10 Cosmetic<br>Defects                                                            | Max 1 bad column<br><0.01% hot or dead pixels                                                                                             | 2 bad columns<br>246 Hot pixels<br>249 dead pixles                                                                | ×              | §8         | Exceeds bad column specification.                                                                                                                                        |
| VIS -DR11 Radiation<br>Events                                                            | <120/cm2/h larger than 30 e                                                                                                               | <120/cm2/h                                                                                                        | ~              | §5.2.3     |                                                                                                                                                                          |
| VIS -DR12 PSF                                                                            | >42% in 1 pixel<br>>88% in 2x2 pixels<br>(point source at f/3)                                                                            | <ul> <li>&gt; 65% in 1 x 1 pixel</li> <li>&gt; 97% in 2x2 pixels<br/>(Note 1 below)</li> </ul>                    | ~              | §12.2      |                                                                                                                                                                          |
| VIS -DR13 Number of<br>detectors<br>amplifiers/channels                                  | 2                                                                                                                                         | 2                                                                                                                 | ~              | [RD 04]    |                                                                                                                                                                          |
| VIS -DR14 Controller                                                                     | One Fiera/ two pulpo                                                                                                                      | One Fiera/ two pulpo                                                                                              | ✓              | [AD 02]    |                                                                                                                                                                          |
| VIS -DR15 Read Time<br>+ Overheads                                                       | <90 sec (CCD slow,1x1, hg)<br><20 sec (CCD slow,2x2, lg)<br><20 sec (CCD fast,1x1, l.g)<br><10 sec (CCD fast,2x2, l.g)                    | 92 sec (CCD slow,1x1, hg)<br>27 sec (CCD slow,2x2, lg)<br>24 sec (CCD fast,1x1, l.g)<br>9 sec (CCD fast,2x2, l.g) | ×              | §3.2       | Reported times do not include<br>software overheads. Times<br>out of spec. due to request to<br>read out through one<br>amplifier. This simplifies the<br>data pipeline. |

1. Values for PSF of Catherine inferred from tests on similar CCDs.

Shooter

X-shooter CCD Detector Report

## 3 Readout Modes

## 3.1 Requested Readout Modes

The detailed read out modes as defined in technical note [AD 01] are:

| # | Mode              | Speed      | Gain      | Binning | Window                   | RON         | Read +     | Р |
|---|-------------------|------------|-----------|---------|--------------------------|-------------|------------|---|
|   |                   | (kpix/sec) | e<br>/ADU | _(X.Y)  |                          | (e)         | (s)        |   |
| 1 | 1pt/100kHz/hg     | 100        | 0.7       | 1x1     | B: 2K X 3K<br>V: 2K X 4K | < 3<br><3.5 | 67<br>87   |   |
| 2 | 1pt/100kHz/hg     | 100        | 0.7       | 1x2     | B: 2K X 3K<br>V: 2K X 4K | < 3<br><3.5 | 37<br>47   | Р |
| 3 | 1pt/100kHz/hg     | 100        | 0.7       | 2x2     | B: 2K X 3K<br>V: 2K X 4K | < 3<br><3.5 | 22<br>27   | Р |
| 4 | 1pt/400kHz/lg     | 400        | 1.7       | 1x1     | B: 2K X 3K<br>V: 2K X 4K | < 8         | 22<br>27   | Р |
| 5 | 1pt/400kHz/lg     | 400        | 1.7       | 1x2     | B: 2K X 3K<br>V: 2K X 4K | < 8         | 14<br>17   |   |
| 6 | 1pt/400kHz/lg     | 400        | 1.7       | 2x2     | B: 2K X 3K<br>V: 2K X 4K | < 8         | 11<br>12   |   |
| 7 | 1pt/400kHz/lg_AFC | 400        | 1.7       | 1x1     | B: 1K X 1K<br>V: 1K X 1K | < 8         | 2.5<br>2.5 |   |

Notes:

1. Modes most likely to be offered to users (pending commissioning results) are marked with P (priority).

2. Low noise is most important for the UVB arm detector, because of low sky background in UVB.



## 3.2 Implemented Readout Modes

The read out modes as implemented in X-shooter are defined in Table 3.

| # | Mode Name       | Speed<br>(kpix/<br>sec) | Sequence<br>File<br>(.seq)                 | Bin<br>(X.Y) | Window:<br>(prescan+X+Overscan)              | Read<br>Time<br>[# Note 1,2]<br>(s) |
|---|-----------------|-------------------------|--------------------------------------------|--------------|----------------------------------------------|-------------------------------------|
|   |                 |                         | B: shdetb_100_r_1x1<br>V: shdetv_100_a_1x1 | 1x1          | B: 48+2048+48 · 3000<br>V: 10+2048+48 · 4000 | 70<br>92                            |
| 1 | 100k/1pt/hg     | 100                     | B: shdetb_100_r_1x2<br>V: shdetv_100_a_1x2 | 1x2          | B: 48+2048+48 · 1500<br>V: 10+2048+48 · 2000 | 38<br>48                            |
|   |                 |                         | B: shdetb_100_r_2x2<br>V: shdetv_100_a_2x2 | 2x2          | B: 24+1024+24 · 1500<br>V: 5+1024+24 · 2000  | 22<br>27                            |
|   |                 |                         | B: shdetb_400_r_1x1<br>V: shdetv_400_a_1x1 | 1x1          | B: 48+2048+48 · 3000<br>V: 10+2048+48 · 4000 | 19<br>24                            |
| 4 | 400k/1pt/lg     | 400                     | B: shdetb_400_r_1x2<br>V: shdetv_400_a_1x2 | 1x2          | B: 48+2048+48 · 1500<br>V: 10+2048+48 · 2000 | 12<br>14                            |
|   |                 |                         | B: shdetb_400_r_2x2<br>V: shdetv_400_a_2x2 | 2x2          | B: 24+1024+24 · 1500<br>V: 5+1024+24 · 2000  | 8<br>9                              |
| 7 | 400k/1pt/lg_AFC | 400                     | B: shdetb_400_r_1x1<br>V: shdetv_400_a_1x1 | 1x1          | B: 1000 · 1000<br>V: 1000 · 1000             | 4.5<br>4.5                          |

 Table 3: X-shooter implemented read out modes.

1. Read out times as reported by FIERA software.

2. Includes wipe time of 2.5 sec, but not time to finalize saving of file at end of read out (~ 5s TBC).

Note the following:

- 1. The amplifiers of both CCDs have very similar good performance. The right "\_r\_" amplifier of e2v Pisces Australis II and the left "\_a\_" amplifier of MIT/LL Catherine were chosen as they had slightly better noise performance, however, the performance of the other amplifiers are very acceptable.
- 2. The read out time of the AFC mode (#7) is 4.5 sec compared to the requested 2.5 sec. The time is longer due to the need to do pre-clocking to exercise the video chain before read out. This is done to reduce the slope of the bias image in the first 100 or so lines. In addition, as only one amplifier is used for the read out, a substantial amount of time is spent skipping unused pixels in the lines that are read out. This mode can be sped up by reading out through two amplifiers or placing the window in the left or right half only of the CCD so that the whole window is read out through one amplifier.



X-shooter CCD Detector Report Doc: XSH- SPE-ESO-6000-0200 Issue: 1.0 Date:28.05.2009 Page: 12 of 45

## 4 System Setup

## 4.1 Video Board

Video board setup is shown in Table 4.

|                                 |                                         | 10                                      |                                         | LIL ID                                  |  |
|---------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--|
| Arm                             | V                                       | 15                                      | υνΒ                                     |                                         |  |
| Camera                          | shc                                     | letv                                    | 5                                       | shdetb                                  |  |
| CCD                             | Cath<br>MIT/LL                          | erine<br>CCID-20                        | Pisces Australis II<br>e2v CCD44-82     |                                         |  |
| Video board 0                   | Channel 0                               | Channel 1                               | Channel 2                               | Channel 3                               |  |
| CCD Amplifier                   | Left "a"<br>Amplifier                   | Right "b"<br>Amplifier                  | Left "l"<br>Amplifier                   | Right "r"<br>Amplifier                  |  |
| Nominal Gains:                  |                                         |                                         |                                         |                                         |  |
| Low Gain (Gain0)                | 1.5 e <sup>-</sup> /ADU                 | 1.5 e <sup>-</sup> /ADU                 | 1.7 e <sup>-</sup> /ADU                 | 1.7 e <sup>-</sup> /ADU                 |  |
| High Gain (Gain1)               | 0.6 e <sup>-</sup> /ADU                 |  |
| Common gain resistor            | R 44 = 620R                             | R 48 = 620R                             | R 52 = 620R                             | R 56 = 620R                             |  |
| Resistors<br>for low gain       | R 43 = 180R                             | R 47 = 180R                             | R 51= 120R                              | R 55 = 120R                             |  |
| Resistors<br>for high gain      | R 42 = 120R                             | R 46 = 120R                             | $\mathbf{R} \ 50 = \mathbf{44R}$        | R 54 = 44R                              |  |
| Video Offset<br>Range:          | -10 to 0 Volts                          | -10 to 0 Volts                          | -5 to 0 Volts                           | -5 to 0 Volts                           |  |
| Clamp/Sample<br>Time Constants: |                                         |                                         |                                         |                                         |  |
| Filter 0                        | $C21=100pF$ $(\tau = 150ns)$            | $C25=100pF$ $(\tau = 150ns)$            | C29=100 pF<br>( $\tau = 150 ns$ )       | C33=100pF<br>( $\tau = 150ns$ )         |  |
| Filter 1                        | C22=220 pF<br>( $\tau = 500 ns$ )       | $C26=220 pF$ $(\tau = 500 ns)$          | C30=220 pF<br>( $\tau = 500 ns$ )       | C34=220pF<br>( $\tau = 500ns$ )         |  |
| Filter 2                        | $C23=1nF$ ( $\tau = 1500ns$ )           | $C27=1nF$ ( $\tau = 1500ns$ )           | $C31=1nF$ ( $\tau = 1500ns$ )           | $C35=1nF$ $(\tau = 1500ns)$             |  |
| Filter 3                        | C24 = C374 = 1nF<br>( $\tau = 3000ns$ ) | C28 = C375 = 1nF<br>( $\tau = 3000ns$ ) | C32 = C376 = 1nF<br>( $\tau = 3000ns$ ) | C36 = C377 = 1nF<br>( $\tau = 3000ns$ ) |  |

| Table 4.  | Setun | of X-shooter | video | board  |
|-----------|-------|--------------|-------|--------|
| 1 abic 4. | Secup | UI A-SHUULCI | viucu | Dualu. |

• Low gain of MIT/LL Catherine was set to 1.5 e<sup>-</sup>/ADU to fully utilize the dynamic range of the 16 bit ADC. Maximum well depth of 90 ke<sup>-</sup> is best sampled by the 65535 levels of the ADC at a gain 1.5 e<sup>-</sup>/ADU (90 ke<sup>-</sup>/65535).

## 4.2 Preamplifier

The setup of the two X-shooter preamplifiers is shown in Table 5.



| Arm                          | VIS                         |                        | UVB                                 |                        |  |  |
|------------------------------|-----------------------------|------------------------|-------------------------------------|------------------------|--|--|
| Camera                       | sho                         | letv                   |                                     | shdetb                 |  |  |
| CCD                          | Catherine<br>MIT/LL CCID-20 |                        | Pisces Australis II<br>e2v CCD44-82 |                        |  |  |
| Preamplifier ID              | V                           | IS                     |                                     | UVB                    |  |  |
| I <sup>2</sup> C bus address | <b>3D</b> #1                | 3D # Note 2 3C         |                                     | 3C                     |  |  |
| Channel                      | Channel 0                   | Channel 1              | Channel 0                           | Channel 1              |  |  |
| Amplifier                    | Left "a"<br>Amplifier       | Right "b"<br>Amplifier | Left "l"<br>Amplifier               | Right "r"<br>Amplifier |  |  |
| CCD Output<br>Amplifier Load | 3k resistor                 | 3k resistor            | J511 (4.7mA)                        | J511 (4.7mA)           |  |  |
| Gains:                       |                             |                        |                                     |                        |  |  |
| Low Gain setting             | Gain3=1.5<br># Note 1       | Gain3=1.5<br># Note 1  | Gain1=2.25                          | Gain1=2.25             |  |  |
| High Gain setting            | Gain3=2.25                  | Gain3=2.25             | Gain1=2.25                          | Gain1=2.25             |  |  |

#### Table 5: Setup of X-shooter preamplifiers.

- The output amplifier responsitivity of the MIT/LL CCID-20 is 20uV/e. At well depth of 100ke, the output voltage range of the CCD amplifier is ~ 2.2V (110ke x 20 uV/e /10<sup>6</sup>) plus reset feedthrough spike. As the op-amps (supplied by 5V) in the preamplifier saturate at preamplifier gain of 2.25, the gain in the low gain mode was reduced to 1.5 to avoid saturation.
- 2. VIS Preamplifier has been modified ([RD 01]) to respond to address '3D'.

## 4.3 Bias Board

The following bias voltage settings were selected to provide low noise while at the same time good linearity ( $< \pm 0.5\%$ )

 

 Table 6: Bias voltage setting, assignment and setting of hardwired protection limits of connector A on bias board 0, BRD\_ANABIAS0, which provides the biases for the e2v CCD, Pisces Australis, of X-shooter UVB arm.

| PERIPH_ID         | Bias No. | Bias Name | Low Limit | High Limit | Voltage |
|-------------------|----------|-----------|-----------|------------|---------|
| _                 |          |           | (V)       | (V)        | (V)     |
| ANA_PRESET_VOLT_A | 0        | OG1-R     | -8        | +8         | -3.5    |
| ANA_PRESET_VOLT_B | 1        | OG2-R     | -8        | +8         | -2.5    |
| ANA_PRESET_VOLT_C | 2        | OD-R      | GND       | +30        | 23      |
| ANA_PRESET_VOLT_D | 3        | RD-R      | GND       | +15        | 11.25   |
| ANA_PRESET_VOLT_E | 4        | JD-R      | GND       | +30        | 25      |
| ANA_PRESET_VOLT_F | 5        | Not used  | GND       | +8         | 0       |
| ANA_PRESET_VOLT_G | 6        | Not used  | GND       | +8         | 0       |
| ANA_PRESET_VOLT_H | 7        | Not used  | GND       | +8         | 0       |
| ANA_PRESET_VOLT_I | 8        | OG1-L     | -8        | +8         | -3.5    |
| ANA_PRESET_VOLT_J | 9        | OG2-L     | -8        | +8         | -2.5    |
| ANA_PRESET_VOLT_K | 10       | OD-L      | GND       | +30        | 23      |
| ANA_PRESET_VOLT_L | 11       | RD-L      | GND       | +15        | 11.25   |
| ANA_PRESET_VOLT_M | 12       | JD-L      | GND       | +30        | 25      |
| ANA_PRESET_VOLT_N | 13       | Not used  | GND       | +8         | 0       |
| ANA_PRESET_VOLT_O | 14       | DD-LR     | GND       | +30        | 18      |
| ANA_PRESET_VOLT_P | 15       | Not used  | GND       | +8         | 0       |

• L" = e2v left amplifier, "R" = e2v right amplifier.



 

 Table 7: Bias voltage setting, assignment and setting of hardwired protection limits of connector B on bias board 0, BRD\_ANABIAS0, which provides the biases for MIT/LL CCD, Catherine, of X-shooter VIS arm.

| PERIPH_ID          | Bias No. | Bias Name | Low Limit | High Limit | Voltage |
|--------------------|----------|-----------|-----------|------------|---------|
| ANA_PRESET_VOLT_AA | 16       | OD-A      | GND       | +30        | 19      |
| ANA_PRESET_VOLT_AB | 17       | OG-A      | -8        | +8         | 0       |
| ANA_PRESET_VOLT_AC | 18       | RD-A      | GND       | +15        | 12.5    |
| ANA_PRESET_VOLT_AD | 19       | SCP-A     | GND       | +15        | 10      |
| ANA_PRESET_VOLT_AE | 20       | Not used  | GND       | +8         | 0       |
| ANA_PRESET_VOLT_AF | 21       | Not used  | GND       | +8         | 0       |
| ANA_PRESET_VOLT_AG | 22       | Not used  | GND       | +8         | 0       |
| ANA_PRESET_VOLT_AH | 23       | Not used  | GND       | +8         | 0       |
| ANA_PRESET_VOLT_AI | 24       | OD-B      | GND       | +30        | 19      |
| ANA_PRESET_VOLT_AJ | 25       | OG-B      | -8        | +8         | 0       |
| ANA_PRESET_VOLT_AK | 26       | RD-B      | GND       | +15        | 12.5    |
| ANA_PRESET_VOLT_AL | 27       | SCP-B     | GND       | +15        | 10      |
| ANA_PRESET_VOLT_AM | 28       | Not used  | GND       | +8         | 0       |
| ANA_PRESET_VOLT_AN | 29       | Not used  | GND       | +8         | 0       |
| ANA_PRESET_VOLT_AO | 30       | Not used  | GND       | +8         | 0       |
| ANA_PRESET_VOLT_AP | 31       | Not used  | GND       | +8         | 0       |

• "A" = MIT/LL left amplifier, "B" = MIT/LL right amplifier.

## 4.4 Clock Boards

The following clock voltage settings and SIMM output resistors were selected for best performance.

| Ca      | mera:       |                                     | UVB      |       |       | VIS                         |          |       |       |
|---------|-------------|-------------------------------------|----------|-------|-------|-----------------------------|----------|-------|-------|
| (       | CCD         | Pisces Australis II<br>e2v CCD44-82 |          |       |       | Catherine<br>MIT/LL CCID-20 |          |       |       |
| Bo      | ard ID      | B                                   | RD_CLKD  | RV0   |       | H                           | BRD_CLKD | RV1   |       |
| Board E | SUS address |                                     | 0        |       |       |                             | 1        |       |       |
| #1      | note 3      |                                     |          |       |       |                             |          |       |       |
| SIMM/   | DAC ID      | Name                                | Output   | High  | Low   | Names                       | Output   | High  | Low   |
| Clock   | CLKDRV_     | # Note 1,2                          | Resistor | Level | Level | # Note 1,2                  | Resistor | Level | Level |
| No.     |             |                                     |          | (V)   | (V)   |                             |          | (V)   | (V)   |
| 0       | DAC0        | SWL                                 | 50R      | -5    | +5    | SWA                         | 50R      | -5    | +5    |
| 1       | DAC1        | SWR                                 | 50R      | -5    | +5    | SWB                         | 50R      | -5    | +5    |
| 2       | DAC2        | RF3                                 | 50R      | -5    | +5    | S3                          | 50R      | -3    | +6    |
| 3       | DAC3        | RF2L                                | 50R      | -5    | +5    | S2A                         | 50R      | -3    | +6    |
| 4       | DAC4        | RF1L                                | 50R      | -5    | +5    | S1A                         | 50R      | -3    | +6    |
| 5       | DAC5        | RF2R                                | 50R      | -5    | +5    | S2B                         | 50R      | -3    | +6    |
| 6       | DAC6        | RF1R                                | 50R      | -5    | +5    | S1B                         | 50R      | -3    | +6    |
| 7       | DAC7        | DG                                  | 50R      | -6    | +6    | empty                       | -        | -     | -     |
|         |             |                                     |          |       |       | # Note 4                    |          |       |       |
| 8       | DAC8        | IF1                                 | 10R      | -8    | +2    | P1                          | 10R      | -6    | +2    |
| 9       | DAC9        | IF2                                 | 10R      | -8    | +2    | P2                          | 10R      | -6    | +2    |
| 10      | DAC10       | IF3                                 | 10R      | -8    | +2    | P3                          | 10R      | -6    | +2    |
| 11      | DAC11       | Empty                               | 10R      | 0     | 0     | empty                       | -        | -     | -     |
|         |             | # Note 4                            |          |       |       | # Note 4                    |          |       |       |
| 12      | DAC12       | FRL                                 | 10R      | -6    | +6    | RGA                         | 10R      | 0     | +10   |
| 13      | DAC13       | FRR                                 | 10R      | -6    | +6    | RGB                         | 10R      | 0     | +10   |

| Table 8: Clock Board SIMM | output resistors and | voltage settings. |
|---------------------------|----------------------|-------------------|
|---------------------------|----------------------|-------------------|

1. "L" = e2v left amplifier, "R" = e2v right amplifier, "A" = MIT left amplifier, and "B" = MIT right amplifier.

2. The clock phase names shown here are the ones used by the waveform generation program, WES.

3. Addresses are selected by changing jumpers on the clock board.

4. To reduce power dissipation, only clocks used are populated with SIMMs.



# 5 Detectors Operating Temperature

## 5.1 UVB Arm Detector Operating Temperature

Standard operating temperature of 155K which has been used on other CCD44-82 CCDs at La Silla Paranal was chosen. Operating Pisces Australis II at this temperature meets all X-shooter requirements.

### 5.1.1 Bias Images at 155K

Good uniformity of bias is shown in the row plot (left graph where bias has been collapsed in column direction) and column plot (right graph where bias has been collapsed in row direction) of Figure 1 for temperatures of 155K. The kink at pixel 1000 is a common feature and is due to discontinuity in the FIERA timing as a maximum of 1024 pixels can be read out before reloading the micro-sequencer.



Figure 1: Pisces Australis II: Left: Row plot of Bias Image (100kps/1pt/1x1/hg) collapsed in column direction at temperatures of 155K. Right: Column plot of Bias Image (100kps/1pt/1x1/hg) collapsed in row direction at temperature of 155K.

### 5.1.2 Dark Images at 155K

Good uniformity of 3600s Dark images is shown in the row plot (left graph where bias has been collapsed in column direction) and column plot (right graph where bias has been collapsed in row direction) of Figure 2 for temperature of 155K.



Figure 2: Pisces Australis II: Left: Row plot of biased subtracted median filtered 3600s Dark image (100kps/1pt/1x1/hg) collapsed in column direction at temperature of 155K. Right: Column plot of biased subtracted median filtered 3600s Dark Image (100kps/1pt/1x1/hg) collapsed in row direction at temperature of 155K.

### 5.1.3 Summary and Conclusion

Table 14 contains a summary of bias and dark measurements (dark current, cosmic event rate and hot pixels) of the UVB arm detector Pisces Australis II at temperature of 155K.

Table 9: Summary of Bias and Dark measurements (100kps/1pt/1x1/hg) at temperature of 155K on ODT TetsBench.

| Tompor | Bias                              | 1 Hour Dark               |                                      |                             |                                                 |  |
|--------|-----------------------------------|---------------------------|--------------------------------------|-----------------------------|-------------------------------------------------|--|
| ature  | Number of<br>Pixels<br>outside 5σ | Dark Current<br>(e/px/hr) | Cosmic Event Rate<br>(events/cm²/hr) | Hot Pixels<br>(>60 e/px/hr) | Very Hot Pixels<br>(>2x10 <sup>5</sup> e/px/hr) |  |
| 155K   | 0                                 | 0.45                      | 84                                   | 0                           | 0                                               |  |



# Table 10: Summary of Bias and Dark measurements (100kps/1pt/1x1/hg) at temperature of 155K during commissioning in the MMB (Mirror Maintenance Building) at Paranal

| Tompor | Bias                              |                           | 1 Hour                               | Dark                        |                                                 |
|--------|-----------------------------------|---------------------------|--------------------------------------|-----------------------------|-------------------------------------------------|
| ature  | Number of<br>Pixels<br>outside 5σ | Dark Current<br>(e/px/hr) | Cosmic Event Rate<br>(events/cm²/hr) | Hot Pixels<br>(>60 e/px/hr) | Very Hot Pixels<br>(>2x10 <sup>5</sup> e/px/hr) |
| 155K   | 0                                 | 0.6                       | 132                                  | 0                           | 0                                               |

Operating Pisces Australis II at temperature of 155K meets X-shooter requirements of dark current < 2e/px/hr, cosmetics of <0.01% hot or dead pixels (i.e. 615 pixels for 2Kx3K regions) and cosmetic event rate of <120 events/cm<sup>2</sup>/hr. However, when installed in the instrument at Paranal, the cosmetic event rate is slightly above specification (132 versus the required of 120 events/cm<sup>2</sup>/hr).

## 5.2 VIS Arm Detector Operating Temperature

The operating temperature of Catherine, VIS arm detector, was varied to determine its optimum operating temperature.

### 5.2.1 Bias Images Versus Temperature

The uniformity of bias is shown in the row plots of Figure 3 (bias collapsed in column direction) and column plot of Figure 4 (bias collapsed in row direction) for temperatures of 135K, 155K, and 165K.



Figure 3: Catherine: Row plot of Bias image (100kps/1pt/1x1/hg) collapsed in column direction at temperatures of 135K, 155K, and 165K.



Figure 4: Catherine: Column plot of Bias image (100kps/1pt/1x1/hg) collapsed in row direction at temperatures of 135K, 155K, and 165K.

### 5.2.2 Dark Images Versus Temperature

The uniformity of 3600s Dark image is shown in the row plot of Figure 5 (collapsed in column direction) and column plot of Figure 6 (collapsed in row direction) for temperatures 135K, 155K, and 165K. Note the initial ramp up of the image and kink seen in the bias in Figure 3 (in first 400 columns) and Figure 4 (in first 800 rows) are fully subtracted in the row direction and almost in the column direction. Master bias was generated by median stacking. No overscan subtraction was performed.



Figure 5: Catherine: Row plot of biased subtracted median filtered 3600s Dark image (100kps/1pt/1x1/hg) collapsed in column direction at temperatures of 135K, 155K, and 165K.



Figure 6: Catherine: Column plot of biased subtracted median filtered 3600s Dark image (100kps/1pt/1x1/hg) collapsed in row direction at temperatures of 135K, 155K, and 165K.



Figure 7: Catherine: Image of biased subtracted median filtered 3600s Dark image (100kps/1pt/1x1/hg) at temperatures of 135K, 155K, and 165K.



| Position<br>(X,Y)      | Image | Histogram around the hot pixels                                                                                                                                                                                                                                                                                                                                                                        | Comment        |
|------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1281, 88               |       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                  | 1 hot pixel    |
| 887, 1338              |       | 865         886         887         888         883           1339         2         5         2         5         2           1338         -1         1 <b>577</b> 17         1           1337         -1         0         0         2         -1           1338         3         -1         3         6         2           1339         -1         1         3         5         5                | 1 hot pixel    |
| 2050, 1750             | •     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                  | 1 hot pixel    |
| 1298, 3548             |       | 1296         1297         1298         1293         1300           3550         -1         -3         5         -1         0           3549         1         0         -2         0         3           3548         0         0         514         5         2           3547         -2         0         6         4         4           3546         -2         -3         0         1         2 | 1 hot pixel    |
| 311,3824               |       | 309         310         311         312         313           3826         -6         3         -2         0         -2           3825         0         2         0         0         2           3824         2         5         31744         22         5           3823         -5         -1         1         1         1           3822         -1         0         -6         0         2   | 1 hot pixel    |
| 186-195, 3809-<br>3858 | 1     | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                 | 241 hot pixels |

## Table 11: Hot pixel (> 60 e/px/hr) map of Catherine at 135K.



| Table 12: Hot pixel (> 60 e/px/hr) map of Catherine at 155K. |  |
|--------------------------------------------------------------|--|
|--------------------------------------------------------------|--|

| Position<br>(X,Y)                                                                      | Image             | Histogram around the hot pixels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comment               |
|----------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| [1281,88], [253,569], [888<br>[1630,2121], [65,2538], [2<br>[487,3181], [1103,3200], [ | Single hot pixels |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
| [186:195, 3807:3860]                                                                   | I                 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cluster of hot pixels |
| [311,3823:3828]                                                                        |                   | 310         311         312         313           3833         7         52         3         3           3832         1         58         3         -5           3831         -2         70         1         2           3830         7         8         3         -5           3831         -2         70         1         2           3830         -2         80         1         0           3929         1         78         3         5           3826         2         93         -6         -3           3826         2         115         4         1           3826         2         1378         0         2           3827         3         115         4         1           3826         2         1378         0         2           3824         0         -2:10         223         3           3823         2         1170         6         2           3921         1         2         0         1 | Cluster of hot pixels |
| [2049: 2050,1750:1751                                                                  |                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cluster of hot pixels |
| [630,2517:2518]                                                                        |                   | 627         628         629         630         631           2520         -2         4         -2         1         1           2519         -1         1         2         3         -2           2518         4         2         4         190         1           2517         -2         1         -4         820         0           2516         6         0         0         1         3           2515         -3         0         -6         2         -2           2514         -3         0         1         -1         2                                                                                                                                                                                                                                                                                                                                                                                         | Cluster of hot pixels |
| [200:202,3058:3063                                                                     |                   | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cluster of hot pixels |



| Position<br>(X X)                                                                                                  | Image                                                                         | Histogram around the hot pixels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Comment               |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| [1281,88], [953,159], [12<br>[1975,875], [2059,987], [2<br>[65,2538], [266,2569], [77<br>[1298,3548], [1962,3773], | 4,165], [53,294],<br>99,1126], [917,1<br>,2576], [1301,25<br>[272,3790], [14] | [253,569], [1750,603], [888,698], [1456,735],<br>280], [887,1338], [1506,2000], [1630,2121],<br>93], [2036,2649], [1103,3200], [1973,3525],<br>18,3957], [1647,3968]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Single hot pixel      |
| [590:591,213:215]                                                                                                  |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cluster of hot pixels |
| [1159:1160,1389]                                                                                                   |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cluster of hot pixels |
| [2049: 2050,1749: 1758]                                                                                            |                                                                               | 2048         2049         2050         2051           1757         1         106         31         11           1756         6         139         33         2           1755         4         153         37         2           1754         8         194         53         8           1753         3         241         62         0           1762         5         365         132         2           1751         3         618         1175         2           1750         3         7534         31660         -2           1743         2         2526         4         -4           1748         3         1         5         5           1747         4         5         4         5                                                                                                                                                                                                                         | Cluster of hot pixels |
| [1115,1804:1805]                                                                                                   |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cluster of hot pixels |
| [451:452,2195]                                                                                                     |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cluster of hot pixels |
| [811:812,2339:2340]                                                                                                |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cluster of hot pixels |
| [630,2517: 2518]                                                                                                   |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cluster of hot pixels |
| [723:724,2669]                                                                                                     |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cluster of hot pixels |
| [487:488,3181]                                                                                                     |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cluster of hot pixels |
| [185:199,3807:3865]                                                                                                | 0                                                                             | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cluster of hot pixels |
| [302:312,3823:3832]                                                                                                |                                                                               | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cluster of hot pixels |
| [633:634,3865]                                                                                                     |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cluster of hot pixels |
| [200:202,3058:3064]                                                                                                |                                                                               | 197         198         199         200         201         2022         203           3065         11         11         9         21         14         13         5           3064         11         11         21         69         97         48         15           3063         12         18         60         164         199         116         39           3062         10         26         71         211         274         192         55           3061         7         15         79         167         309         207         53           3060         16         27         57         122         240         213         72           3059         7         15         20         106         206         288         69           3056         2         3         10         37         115         183         51           3067         5         7         15         26         30         8 | Cluster of hot pixels |

### Table 13: Hot pixel (> 60 e/px/hr) map of Catherine at 165K.

### 5.2.3 Summary and Conclusion

Table 14 contains a summary of bias and dark measurements (dark current, cosmic event rate and hot pixels) of the VIS arm detector Catherine at temperatures of 135K, 155K, and 165K.



# Table 14: Summary of Bias and Dark measurements (100kps/1pt/1x1/hg) of the VIS arm detector Catherine at temperatures of 135K, 155K, and 165K.

| Tompor | Bias                              | 1 Hour Dark                                      |                                      |                             |                                                 |  |  |  |  |
|--------|-----------------------------------|--------------------------------------------------|--------------------------------------|-----------------------------|-------------------------------------------------|--|--|--|--|
| ature  | Number of<br>Pixels<br>outside 5σ | Dark Current<br>(e/px/hr)                        | Cosmic Event Rate<br>(events/cm²/hr) | Hot Pixels<br>(>60 e/px/hr) | Very Hot Pixels<br>(>2x10 <sup>5</sup> e/px/hr) |  |  |  |  |
| 135K   | 17<br>(threshold<br>9.4 ADU)      | $\begin{array}{c} 0.36 \\ \pm \ 0.3 \end{array}$ | 114<br>±6                            | 246                         | 0                                               |  |  |  |  |
| 155K   | 201<br>(threshold<br>7.5ADU)      | 0.49<br>± 0.3                                    | 120<br>±6                            | 524                         | 0                                               |  |  |  |  |
| 165K   | 204<br>(threshold<br>7.8 ADU)     | 3.4<br>± 1.0                                     | 114<br>±36                           | 636                         | 0                                               |  |  |  |  |

To meet X-shooter requirements of dark current of < 2e/px/hr and cosmetics of <0.01% hot or dead pixels (i.e. 800pixels for 2Kx4K regions) and cosmetic event rate of <120 events/cm<sup>2</sup>/hr, the operating temperature of 135K was chosen. This temperature is the standard operating temperature used with other MIT/LL CCID-20 detectors at La Silla Paranal.

| Table 15: Summary of Bias and Dark measurements (100kps/1pt/1x1/hg) of the VIS arm detector Catherine at |
|----------------------------------------------------------------------------------------------------------|
| temperatures of 135K measured during commissioning in the MMB at Paranal.                                |

| Temper<br>ature | Bias                        | 1 Hour Dark  |                          |               |                              |
|-----------------|-----------------------------|--------------|--------------------------|---------------|------------------------------|
|                 | Number of<br>Pixels         | Dark Current | <b>Cosmic Event Rate</b> | Hot Pixels    | Very Hot Pixels              |
|                 | outside 5o                  | (e/px/hr)    | (events/cm²/hr)          | (>60 e/px/hr) | (>2x10 <sup>5</sup> e/px/hr) |
| 135K            | 11<br>(threshold<br>48 ADU) | 0.9          | 198<br>±5                |               | 0                            |



## 6 Quantum Efficiency (QE)

## 6.1 QE UVB Arm Detector: Pisces Australis II

Table 16 contains measured value of QE and Photon Response Non-Uniformity (PRNU) of Pisces Australis II.

| Wavelength | QE%  | PRNU rms% | Wavelength | QE%  | PRNU rms% |
|------------|------|-----------|------------|------|-----------|
| 300        | 54.7 | 1.7       | 660        | 75.7 | 1.03      |
| 310        | 82.9 | 1.37      | 680        | 73.7 | 1.04      |
| 320        | 79.7 | 1.19      | 700        | 70.8 | 1.05      |
| 330        | 82.1 | 1.16      | 720        | 67.4 | 1.1       |
| 340        | 83.5 | 1.17      | 740        | 63.8 | 1.09      |
| 350        | 83.3 | 1.18      | 750        | 61.2 | 1.1       |
| 360        | 81.8 | 1.18      | 760        | 59.3 | 1.12      |
| 370        | 82.7 | 1.14      | 780        | 54.6 | 1.21      |
| 380        | 85.5 | 1.1       | 800        | 50.3 | 1.25      |
| 390        | 87.3 | 1.06      | 820        | 45.7 | 1.79      |
| 400        | 88.4 | 1.04      | 840        | 41.3 | 2.05      |
| 420        | 88.3 | 1.03      | 850        | 38.7 | 2.2       |
| 440        | 87.6 | 1.01      | 860        | 36.3 | 2.25      |
| 460        | 86.3 | 1.01      | 880        | 31.5 | 2.94      |
| 450        | 86.1 | 1.0       | 900        | 25.9 | 2.98      |
| 480        | 84.9 | 0.999     | 920        | 20.4 | 2.66      |
| 500        | 83.4 | 1         | 940        | 15.4 | 2.17      |
| 520        | 82.4 | 0.995     | 950        | 13.2 | 2.0       |
| 540        | 81.4 | 0.997     | 960        | 10.9 | 1.74      |
| 550        | 80.5 | 1.0       | 980        | 7.21 | 1.4       |
| 560        | 80.8 | 0.994     | 1000       | 4.19 | 2.1       |
| 580        | 80.3 | 0.995     | 1020       | 2.01 | 3.06      |
| 600        | 79.5 | 1         | 1040       | 0.71 | 3.74      |
| 620        | 78.6 | 1         | 1060       | 0.34 | 3.84      |
| 640        | 77.4 | 1.02      | 1080       | 0.2  | 4.5       |
| 650        | 75.9 | 1.0       | 1100       | 0.1  | 5.8       |

Table 16: Measured quantum efficiency and PRNU of Pisces Australis II.

A safe process of cleaning the surfaces of CCDs of moisture contamination has been developed at ESO. The process involves baking the CCD at 60°C in the presence of dry synthetic air while at the same time illuminating the imaging surface with a UV lamp. This process was applied to Pisces Australis II in the anticipation of a QE improvement in the blue. However no significant improvement was observed (Figure 8). The conclusion is that CCDs with already high QE do not suffer from moisture contamination thus little improvement can be gained.



Before Baking

400

%<sup>80</sup> **30** 

70

65

60

55 50 300

Figure 8: Comparison of measured QEs of E2V Pisces Australis II before and after treatment to that required for the UVB Arm.

500

E2V Pisces Australis II before baking

E2V Pisces Australis II after baking

X-shooter UVB Arm Requirement

Wavelength (nm)

600

700

800

The measured PRNU (Plot Figure 9) of E2V Pisces Australis II is typical of standard silicon CCD44-82 CCDs. The PRNU peaks at 1.9% at 300nm (due to the laser annealing of the back-side surface), drops to 1.2% by 340nm and progressively gets better until 750nm where the uniformity degrades due to fringing in the red. Experience has shown that this non-uniformity flat fields out.



Figure 9: Measured PRNU of E2V Pisces Australis II.



## 6.2 QE VIS Arm Detector: Catherine

Table 17 contains measured value of QE and Photon Response Non-Uniformity (PRNU) of Catherine.

| Wavelength | QE%  | PRNU rms% | Wavelength | QE%  | PRNU rms% |
|------------|------|-----------|------------|------|-----------|
| 310        | 13.0 | 6.7       | 680        | 89.4 | 2.0       |
| 320        | 13.5 | 6.5       | 700        | 90.8 | 1.9       |
| 330        | 15.2 | 6.4       | 720        | 92.0 | 1.8       |
| 340        | 16.8 | 6.4       | 740        | 93.0 | 1.7       |
| 350        | 17.7 | 6.4       | 750        | 93.2 | 1.7       |
| 360        | 18.2 | 6.4       | 760        | 93.4 | 1.6       |
| 370        | 22.7 | 5.9       | 780        | 92.6 | 1.5       |
| 380        | 35.3 | 4.4       | 800        | 91.9 | 1.4       |
| 390        | 47.4 | 3.4       | 820        | 90.8 | 1.3       |
| 400        | 55.5 | 2.9       | 840        | 87.5 | 1.3       |
| 420        | 63.8 | 2.6       | 850        | 85.5 | 1.2       |
| 440        | 67.7 | 2.4       | 860        | 83.4 | 1.2       |
| 450        | 68.9 | 2.4       | 880        | 80.1 | 1.2       |
| 460        | 70.1 | 2.4       | 900        | 75.1 | 1.1       |
| 480        | 71.5 | 2.3       | 920        | 65.0 | 1.1       |
| 500        | 73.0 | 2.3       | 940        | 55.3 | 1.1       |
| 520        | 74.8 | 2.3       | 950        | 50.9 | 1.1       |
| 540        | 76.5 | 2.3       | 960        | 46.4 | 1.1       |
| 550        | 77.5 | 2.3       | 980        | 35.3 | 1.1       |
| 560        | 78.4 | 2.3       | 1000       | 23.6 | 1.2       |
| 580        | 80.5 | 2.2       | 1020       | 12.8 | 1.2       |
| 600        | 82.3 | 2.2       | 1040       | 5.4  | 1.1       |
| 620        | 84.4 | 2.2       | 1060       | 3.0  | 1.1       |
| 640        | 86.3 | 2.1       | 1080       | 1.5  | 1.4       |
| 650        | 87.1 | 2.1       | 1100       | 0.7  | 1.6       |
| 660        | 87.9 | 2.0       |            |      |           |

Table 17: Measured quantum efficiency and PRNU of Catherine.



Figure 10: Plot of measured QEs versus wavelength of Catherine compared to the requirements of the VIS Arm.

The measured PRNU (Plot Figure 11) of Catherine is typical of MIT/LL phase 3 CCID-20 40 $\mu$ m thick CCD. The PRNU peaks at 7 % at 300nm (due to the laser annealing of the back-side surface, the brick-wall pattern), drops to 2.5 % by 420nm and progressively gets better. In the red (>750nm), the uniformity remains good (in fact improves at this measured



X-shooter CCD Detector Report Doc: XSH- SPE-ESO-6000-0200 Issue: 1.0 Date:28.05.2009 Page: 25 of 45

bandwidth of 7nm) due to much less "fringing in the red" of a  $40\mu m$  thick device. Experience has shown that this non-uniformity flat fields out.



Figure 11: Plot of measured PRNU versus wavelength of Catherine.

# **7 CTE**

Charge transfer efficiency (CTE) was measured (results Table 18) by Extended Pixel Edge Response (EPER) in both the serial and parallel transfer direction. Both devices, Pisces Australis II and Catherine, exhibit excellent CTEs.

| Table 18: Results of serial and | parallel CTE measurements for | 400k/1pt/lg/1x1 read out mode. |
|---------------------------------|-------------------------------|--------------------------------|
|---------------------------------|-------------------------------|--------------------------------|

| Arm | Device              | Serial CTE              | Parallel CTE            | Comment |
|-----|---------------------|-------------------------|-------------------------|---------|
|     | Pisces Australis II | 0.9999997               | 0.9999995               |         |
| UVD | E2v CCD44-82        | (Signal Level 100,000e) | (Signal Level 100,000e) |         |
| VIC | Catherine           | 0.999997                | 0.9999998               |         |
| V15 | MIT/LL CCID-20      | (Signal Level 80,000e)  | (Signal Level 80,000e)  |         |

## 8 Cosmetic

Following definitions were used for hot pixels, very bright pixels, dark pixels, traps very large traps, and bad columns.

Table 19: Definition of defective pixels.

| Defect            | Definition                                                                                              | Read out Mode                             | Comment |
|-------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------|---------|
| Hot pixel         | generates charge at $> 60 \text{ e/px/hr}$                                                              | 100kps/1pt/1x1/hg                         |         |
| Very bright pixel | generates charge at $> 2 \times 10^5$ e/px/hr                                                           | 100kps/1pt/1x1/hg                         |         |
| Dark pixel        | < 50% sensitivity w.r.t. average measured with uniform illumination of 50e.                             | 100kps/1pt/1x1/hg                         |         |
| Trap              | pixel that captures more than 10 electrons, measured with uniform illumination of 500e.                 | 100kps/1pt/1x1/hg                         |         |
| Very large trap   | pixel that captures more than 10,000 electrons, measured with uniform illumination of 90%.              | 400kps/1pt/1x1/lg                         |         |
| Bad column        | 20 or more contiguous hot or dark pixels in a single column or a very bright pixel or a very large trap | 100kps/1pt/1x1/hg or<br>400kps/1pt/1x1/lg |         |



| Camera | CCD                                    | Hot<br>pixel | Dark<br>pixel | Very<br>bright<br>pixel<br>(a) | Trap | Very large<br>trap<br>(b)  | 20<br>Continuous<br>Pixels<br>(c) | Bad<br>Columns |
|--------|----------------------------------------|--------------|---------------|--------------------------------|------|----------------------------|-----------------------------------|----------------|
| UVB    | Pisces Australis<br>II<br>e2v CCD44-82 | 0            | 8             | 0                              | 2    | 2<br>Columns<br>721& 722   | 0                                 | 2              |
| VIS    | Catherine<br>MIT/LL CCID-20            | 246          | 249           | 0                              | 26   | 2<br>Columns<br>843 & 844) | 0                                 | 2              |

### Table 20: Defective pixels of X-shooter CCDs.

The X-shooter cosmetic requirement is < 0.01% hot or dead pixels and 1 bad column per CCD. From Table 20, Pisces Australis II has 12 bad pixels and 2 bad columns and Catherine has 525 bad pixels and 2 bad columns. Both CCDs do not meet the bad column requirement.

## 9 Pixel Saturation/Residual Image

The requirement on pixel saturation is > 120ke.

Test report on previous measurements of pixel saturation/residual image can be found at

- a) <u>http://odt12.hq.eso.org/Testbench/EEV/residual/testreport.html</u> for e2v CCD44-82
- b) <u>http://odt12.hq.eso.org/Testbench/MIT/Residual-image-effect/testreport.html</u> for MIT/LL CCID-20.

Report a) shows that the e2v CCD44-82 has no problem with residual images even when overexposed. The e2v data sheet shows measured pixel saturation level of image area >200ke.

Report b) shows that the MIT/LL CCID-20 has no problem with residual images up to pixel saturation level of 200ke. Beyond saturation, residual images take 3 hours to decrease to 1e/pix/hr.

Quick measurements on Pisces Australis II and Catherine confirmed these results.

During Active Flexure Compensation (AFC), there is chance that the CCDs may be over-illuminated. This will not cause a problem with Pisces Australis II, however Catherine may suffer from residual image. To mitigate this risk, a special wipe mode has been implemented whereby the CCD is first wiped with the parallel clocks taken heavily into inversion (-10V to +2V) and then wiped a second time with normal wipe clock voltages (-6V to +2V). The first inversion wipe gets rid of the residual image and the second one cleans up the spurious charge left behind from taking the CCD into inversion.

## **10** Linearity

The X-shooter requirement on linearity is <1% 10-100000 e from best linear fit. The difficult with verifying this requirement is to measure linearity over a wide dynamic range and down to 10e. The main source of errors is shutter uncertainty and stability of illumination source.

Figure 12 contains residual linearity results of accurate signal measurement of flats versus exposure time. For Pisces Australis II, linearity of < 1% over 100-110,000e is measured. For Catherine, linearity of < 1% over 100-90,000e is observed.





## **11 Read Modes Performances**

This section reports on the performance of the CCDs for the different read out modes.

## 11.1 UVB Arm Detector: Pisces Australis II

### 11.1.1 Measured on ODT Test Bench

The following measurements were performed on the ODT test bench at the end of characterization.

| Table 21: Performance of the UVB arm detector, e2v Pisces Australis II, when read out through its right "r" |
|-------------------------------------------------------------------------------------------------------------|
| amplifier.                                                                                                  |

| #          | Mode Name       | Bin<br>(X.Y) | Gain<br>(e <sup>-</sup> /ADU) | RON<br>(e <sup>-</sup> ) | Linearity<br>Peak-to-<br>peak<br>(%) | Dark<br>Current<br>(e <sup>-</sup> /binnedpix/hr)<br>See note #1 | Bias Level<br>(ADU) |
|------------|-----------------|--------------|-------------------------------|--------------------------|--------------------------------------|------------------------------------------------------------------|---------------------|
|            |                 | 1x1          | 0.67                          | 2.6                      | 0.6                                  | 0.45                                                             | 1000                |
| 1          | 100k/1pt/hg     | 1x2          | 0.67                          | 2.6                      | 0.6                                  | 0.73                                                             | 1000                |
|            |                 | 2x2          | 0.67                          | 2.6                      | 0.7                                  | 1.3                                                              | 1000                |
| 4 4001-/1- | 400k/1pt/lg     | 1x1          | 1.76                          | 4.5                      | 0.8                                  | 0.17                                                             | 1000                |
| 4          | 400K/1pt/1g     | 1x2          | 1.75                          | 4.6                      | 0.7                                  | 0.3                                                              | 1000                |
|            |                 | 2x2          | 1.75                          | 4.73                     | 0.7                                  | 0.5                                                              | 1000                |
| 7          | 400k/1pt/lg_AFC | 1x1          | 1.76                          | 4.5                      | 0.7                                  | -                                                                | 1000                |

1. At temperature of 155K, Dark Current (DC) measurement is limited by background radiation, luminescence of surrounding material, and to a much lesser extent stabilization and low level persistence in the CCD than intrinsic



DC of the detector. DC decreases the longer the CCD and surrounding materials are keep in the dark. The DC measurements were recorded in the order they appear in the column and thus the reason why dark current per pixel (division of DC column by binning factor) becomes less as one moves down the column.

The following linearity curves for different read modes of Pisces Australis II were taken using Time Domain Integration (TDI) method.



Figure 13: e2v Pisces Australis II TDI Residual Linearity plots for different binning factors of 100k/1pt/hg read out mode.



400k/1pt/lg 2x2 bin

AFC 400k/1pt/lg 1x1 bin

Figure 14: e2v Pisces Australis II TDI Residual Linearity plots for different binning factors of 400k/1pt/lg read out mode.

### 11.1.2 Measurements at Paranal in MMB (Mirror Maintenance Building)

Confirmation of noise, gain, linearity, and dark current was performed during commissioning in the MMB at Paranal. Measurements were performed by taking a sequence of double flats with increasing exposure time using the Stabilized LED.

The gain is normally determined by taking a progressive increasing time series of two flats at constant illumination and calculating the slope (the measured gain) of the variance versus signal level. It has been shown previously ("CCD riddle: a) signal vs time: linear; b) signal vs variance: non-linear", M Downing et al, SPIE2006) that e2v CCDs do not have a linear relationship between variance and signal level and thus the gain calculated by this method is dependent on the signal levels used. The true gain is where the gain curve crosses the Y-axis.

Table 22: Performance confirmed in the MMB at Paranal during commissioning of the UVB arm detector, e2vPisces Australis II, when read out through its right "r" amplifier.

| # | Mode Name       | Bin<br>(X.Y) | Gain<br>(e <sup>-</sup> /ADU) | RON<br>(e <sup>-</sup> ) | Linearity<br>Peak-to-<br>peak<br>(%) | Dark<br>Current<br>(e <sup>-</sup> /binnedpix/hr) | Nominal<br>Bias Level<br>(ADU) |
|---|-----------------|--------------|-------------------------------|--------------------------|--------------------------------------|---------------------------------------------------|--------------------------------|
|   |                 | 1x1          | 0.66                          | 2.2-2.3                  | 0.7                                  | < 0.6                                             | 1000                           |
| 1 | 100k/1pt/hg     | 1x2          | 0.66                          | 2.2-2.3                  | 0.7                                  |                                                   | 1000                           |
|   |                 | 2x2          | 0.66                          | 2.2-2.3                  | 0.7                                  |                                                   | 1000                           |
| 4 | /00k/1pt/lg     | 1x1          | 1.73                          | 4.2                      | 0.8                                  |                                                   | 1000                           |
| - | 400K/1pt/1g     | 1x2          | 1.73                          | 4.2                      | 0.8                                  |                                                   | 1000                           |
|   |                 | 2x2          | 1.73                          | 4.2                      | 0.8                                  |                                                   | 1000                           |
| 7 | 400k/1pt/lg_AFC | 1x1          | 1.73                          | 4.2                      | 0.8                                  |                                                   | 1000                           |



Figure 15: e2v Pisces Australis II Residual Linearity plots at MMB Paranal for the various read out modes. Note legend is defined as SSSrXxYgg, where SSS is read out speed (100kps and 400kps), r is amplifier (r=right, l=left), XxY is the binning factor, and gg is the gain (hg=high gain and lg=lowgain. Plot generated by taking exposures of increasing exposure time with the Stabilized LED.



Figure 16: e2v Pisces Australis II Calculated Gain Vs Signal plots at MMB Paranal for the various read out modes. Note legend is defined as SSSrXxYgg, where SSS is read out speed (100kps and 400kps), r is amplifier (r=right, I=left), XxY is the binning factor, and gg is the gain (hg=high gain and Ig=lowgain.

#### 11.1.3 Measurements at Paranal During Telescope Commissioning

Confirmation of noise was performed during Telescope commissioning at Paranal. A set of biases in each read out mode was taken.



| Table 23: Performance confirmed during Telescope commissioning of the UVB arm detector, e2v Pisces Austr | alis II, |
|----------------------------------------------------------------------------------------------------------|----------|
| when read out through its right "r" amplifier.                                                           |          |

| # | Mode Name       | Bin<br>(X.Y) | Gain<br>(e <sup>-</sup> /ADU) | RON<br>(e <sup>-</sup> ) | Linearity<br>Peak-to-<br>peak<br>(%) | Dark<br>Current<br>(e <sup>-</sup> /binnedpix/hr) | Nominal<br>Bias Level<br>(ADU) |
|---|-----------------|--------------|-------------------------------|--------------------------|--------------------------------------|---------------------------------------------------|--------------------------------|
|   |                 | 1x1          | 0.66                          | 2.3-2.4                  | -                                    | -                                                 | 987                            |
| 1 | 100k/1pt/hg     | 1x2          | 0.66                          | 2.3-2.4                  | -                                    | -                                                 | 987                            |
|   |                 | 2x2          | 0.66                          | 2.3-2.4                  | -                                    | -                                                 | 987                            |
| 4 | 400k/1pt/lg     | 1x1          | 1.73                          | 4.2                      | -                                    | -                                                 | 987                            |
| 4 |                 | 1x2          | 1.73                          | 4.2                      | -                                    | -                                                 | 986                            |
|   |                 | 2x2          | 1.73                          | 4.2                      | -                                    | -                                                 | 989                            |
| 7 | 400k/1pt/lg_AFC | 1x1          | 1.73                          | 4.2                      | -                                    | -                                                 | 987                            |

## **11.2** VIS Arm Detector: Catherine

### 11.2.1 Measured on ODT Test Bench

The following measurements were performed on the ODT test bench at the end of characterization.

| Table 24: Performance of the VIS arm detector, MIT/LL Catherine, read out through its left "a" amplifier. |
|-----------------------------------------------------------------------------------------------------------|
| Measurements performed on ODT Test Bench.                                                                 |

| # | Mode Name       | Bin<br>(X.Y) | Gain<br>(e <sup>-</sup> /ADU) | RON<br>(e <sup>-</sup> ) | Linearity<br>Peak-to-<br>peak<br>(%) | Dark<br>Current<br>(e <sup>-</sup> /binnedpix/hr)<br>See note #1 | Bias Level<br>(ADU) |
|---|-----------------|--------------|-------------------------------|--------------------------|--------------------------------------|------------------------------------------------------------------|---------------------|
|   |                 | 1x1          | 0.64                          | 3.2                      | 0.8                                  | 0.7                                                              | 1000                |
| 1 | 100k/1pt/hg     | 1x2          | 0.64                          | 3.2                      | 0.8                                  | 0.5                                                              | 1000                |
|   |                 | 2x2          | 0.63                          | 3.2                      | 0.7                                  | 1.1                                                              | 1000                |
| 4 | 400k/1pt/lg     | 1x1          | 1.5                           | 5.3                      | 0.8                                  | 0.3                                                              | 1000                |
| + | 400K/1pt/1g     | 1x2          | 1.49                          | 5.3                      | 0.8                                  | -                                                                | 1000                |
|   |                 | 2x2          | 1.49                          | 5.3                      | 0.7                                  | -                                                                | 1000                |
| 7 | 400k/1pt/lg_AFC | 1x1          | 1.5                           | 5.4                      | 0.7                                  | -                                                                | 1000                |

 At temperature of 135K, Dark Current (DC) measurement is limited by background radiation, luminescence of surrounding material, and to a much lesser extent stabilization and low level persistence in the CCD than intrinsic DC. DC decreases the longer the CCD and surrounding materials are keep in the dark. The DC measurements were recorded in the order they appear in the column and thus the reason why dark current per pixel (division of DC column by binning factor) becomes less as one moves down the column.

The following linearity curves of MIT Catherine read out modes were taken using Time Domain Integration (TDI) method.



Figure 17: MIT Catherine TDI Residual Linearity plots for different binning factors of 100k/1pt/hg read out mode.



Figure 18: MIT Catherine TDI Residual Linearity plots for different binning factors of 400k/1pt/lg read out mode.



Confirmation of noise, gain, linearity, and dark current was performed during commissioning in the MMB at Paranal. Measurements were performed by taking a sequence of double flats with increasing exposure time using the Stabilized LED.

| Table 25: Performance confirmed in the MMB at Paranal during commissioning of the VIS arm detector, MIT/LL |
|------------------------------------------------------------------------------------------------------------|
| Catherine, read out through its left "a" amplifier.                                                        |

| # | Mode Name       | Bin<br>(X.Y) | Gain<br>(e <sup>-</sup> /ADU) | RON<br>(e <sup>-</sup> ) | Linearity<br>Peak-to-<br>peak<br>(%) | Dark<br>Current<br>(e <sup>-</sup> /binnedpix/hr)<br>See note #1 | Bias Level<br>(ADU) |
|---|-----------------|--------------|-------------------------------|--------------------------|--------------------------------------|------------------------------------------------------------------|---------------------|
|   |                 | 1x1          | 0.62                          | 3.0                      | 0.8                                  | < 0.5                                                            | 1000                |
| 1 | 100k/1pt/hg     | 1x2          | 0.62                          | 3.0                      | 0.8                                  |                                                                  | 1000                |
|   |                 | 2x2          | 0.62                          | 3.0                      | 0.8                                  |                                                                  | 1000                |
|   | 400k/1pt/lg     | 1x1          | 1.45                          | 4.8                      | 1.0                                  |                                                                  | 1000                |
| + | 400K/1pt/1g     | 1x2          | 1.45                          | 4.9                      | 1.0                                  | -                                                                | 1000                |
|   |                 | 2x2          | 1.45                          | 4.9                      | 1.0                                  | -                                                                | 1000                |
| 7 | 400k/1pt/lg_AFC | 1x1          | 1.45                          | 4.9                      | 1.0                                  | -                                                                | 1000                |



Figure 19: MIT Catherine Residual Linearity plots at MMB Paranal for the various read out modes. Note legend is defined as SSSrXxYgg, where SSS is read out speed (100kps and 400kps), a is amplifier (a=right, b=left), and gg is the gain (hg=high gain and lg=lowgain). Plot generated by taking exposures of increasing exposure time with the Stabilized LED.



Figure 20: MIT Catherine Calculated Gain Vs Signal plots at MMB Paranal for the various read out modes. Note legend is defined as SSSrXxYgg, where SSS is read out speed (100kps and 400kps), a is amplifier (a=right, b=left), and gg is the gain (hg=high gain and lg=lowgain).

### 11.2.3 Measurements at Paranal During Telescope Commissioning

Confirmation of noise was performed during Telescope commissioning at Paranal. A set of biases in each read out mode was taken.

| Table 26: Performance confirmed during Telesco | pe commissioning of the V | /IS arm detector, M | IT/LL Catherine, |
|------------------------------------------------|---------------------------|---------------------|------------------|
| read out through its left "a" amplifier.       |                           |                     |                  |

| # | Mode Name       | Bin<br>(X.Y) | Gain<br>(e <sup>-</sup> /ADU) | RON<br>(e <sup>-</sup> ) | Linearity<br>Peak-to-<br>peak<br>(%) | Dark<br>Current<br>(e <sup>-</sup> /binnedpix/hr)<br>See note #1 | Bias Level<br>(ADU) |
|---|-----------------|--------------|-------------------------------|--------------------------|--------------------------------------|------------------------------------------------------------------|---------------------|
|   | 100k/1pt/hg     | 1x1          | 0.62                          | 3.1                      | -                                    | -                                                                | -                   |
| 1 |                 | 1x2          | 0.62                          | 3.1                      | -                                    | -                                                                | -                   |
|   |                 | 2x2          | 0.62                          | 3.1                      | -                                    | -                                                                | -                   |
| 4 | 4001/1/         | 1x1          | 1.45                          | 5.0                      | -                                    | -                                                                | -                   |
| 4 | 400k/1pt/1g     | 1x2          | 1.45                          | 5.0                      | -                                    | -                                                                | -                   |
|   |                 | 2x2          | 1.45                          | 5.0                      | -                                    | -                                                                | -                   |
| 7 | 400k/1pt/lg_AFC | 1x1          | 1.45                          | 5.0                      | -                                    | -                                                                | -                   |

## **12 PSF**

Requirements are > 42% of electrons is collected in the adjacent pixel and > 88% within 2x2 pixels (point source at f/3).

## 12.1 UV Arm Detector: Pisces Australis II

The results of scanning a spot across a pixel (details [RD 02]) of same technology (standard silicon CCD44-82) CCD as Pisces Australis II are shown in Figure 21 (left plot: Gauss fit to PSF profile and right plot: % of charge collected within central pixel) and Figure 22 (% of charge collected within central one and two lines). Right plot of Figure 21 shows that > 45% of electrons is collected in the central pixel. Right plot of Figure 22 shows that > 93% of electrons is collected within two lines when the spot is positioned at a common boundary between the lines.



Figure 21: PSF measurement results of same technology CCD as Pisces Australis II. Left: Plot of PSF FWHM in units of pixels versus wavelength. Right: Plots of percentage of charge collected in the central pixel versus wavelength.



Figure 22: Plots of percentage of charge collected in central lines versus wavelength of same technology CCD as Pisces Australis II. Left: Percentage in central line. Right: Percentage in central two lines.

## 12.2 VIS Arm Detector: Catherine

The results of scanning a spot across a pixel (details [RD 02]) of same technology (CCID-20 40 $\mu$ m thick Deep Depletion) CCD as Catherine are shown in Figure 23 (left plot: Gauss fit to PSF profile and right plot: % of charge collected within central pixel) and Figure 24 (% of charge collected within central one and two lines). For operating wavelengths (500nm to 960nhm), the right plot of Figure 23 shows that > 65% of electrons is collected in the central pixel. Right plot of Figure 24 shows that > 97% of electrons is collected within two lines when the spot is positioned at a common boundary between the lines.



Figure 23: PSF measurement results of same technology CCD as MIT/LL CCID-20 CCD Catherine. Left: Plot of PSF FWHM in units of pixels versus wavelength. Right: Plots of percentage of charge collected in the central pixel versus wavelength.



Figure 24: Plots of percentage of charge collected in central lines versus wavelength of same technology CCD as Catherine. Left: Percentage in central line. Right: Percentage in central two lines.



X-shooter CCD Detector Report

# 13 Overscan Offset Variation with Signal Level

It has been reported that the offset level of images taken with FIERA varies with signal intensity and progressively get worse at higher read out speeds. This affect was investigated by taking flat field images which are considered worse case for this affect. The following sections contain column plots for both Catherine and Pisces Australis II that clearly show that the FIERA of X-shooter exhibits this behavior.

For 100kpix/sec read out speed, the affect is very small and at a uniform flat field intensity of ~ 50,000ADU over the whole image area is less than 2 times the read noise at ~ 10 ADU. This will cause a negligible error of < 0.02%.

For 400kpix/sec read out speed, the affect is larger but still very small and is 60-70 ADU for a flat field intensity of ~ 50,000ADU. This will cause an error of < 0.14%.

Normal scientific images will not fill all pixels with signal (in fact much less than 50% of pixels will contain signal) and thus the offset level of the FIERA video chain will have time to settle back to its no signal level and the affect will be much less.

Note also that offset variation is observed in strong point sources.

If greater accuracy is required for the Flat Fields and strong point source type images then the overscan pixels can be subtracted to correct for this affect.

## 13.1 Plots of overscan of e2v Pisces Australis II: Read out Mode 100kpix/s and 2x2 binning

Figure 25 to Figure 27 contain column plots of image area and overscan region of flat fields of e2v Pisces Australis II at increasing intensity levels for read out mode of 100kpix/s and 2x2 binning. The overscan plots show that the offset level varies with the intensity of the flat field in ratio of  $\sim 0.016\%$ .









X-shooter CCD Detector Report Doc: XSH- SPE-ESO-6000-0200 Issue: 1.0 Date:28.05.2009 Page: 37 of 45

Figure 26: Column plots of flat field with intensity level of ~ 28,000ADU of e2v Pisces Australis II when read out at 100kpix/s and 2x2 binning. Left: Column plot of image area; Right Column plot of overscan region.



Figure 27: Column plots of flat field with intensity level of ~ 53,000ADU of e2v Pisces Australis II when read out at 100kpix/s and 2x2 binning. Left: Column plot of image area; Right Column plot of overscan region.

## 13.2 Plots of overscan of e2v Pisces Australis II: Read out Mode 400kpix/s and 2x2 binning

Figure 28 to Figure 31 contain column plots of image area and overscan region of flat fields of e2v Pisces Australis II at increasing intensity levels for read out mode of 400kpix/s and 2x2 binning. The overscan plots show that the offset level varies with the intensity of the flat field in ratio of ~ 0.12%.



Figure 28: Column plot of bias image of e2v Pisces Australis II when read out at 400kpix/s and 2x2 binning.



Figure 29: Column plots of flat field with intensity level of ~ 14,000ADU of e2v Pisces Australis II when read out at 400kpix/s and 2x2 binning. Left: Column plot of image area; Right Column plot of overscan region.



Figure 30: Column plots of flat field with intensity level of ~ 26,000ADU of e2v Pisces Australis II when read out at 400kpix/s and 2x2 binning. Left: Column plot of image area; Right Column plot of overscan region.



Figure 31: Column plots of flat field with intensity level of ~ 52,000ADU of e2v Pisces Australis II when read out at 400kpix/s and 2x2 binning. Left: Column plot of image area; Right Column plot of overscan region.

## 13.3 Plots of overscan of MIT Catherine: Read out Mode 100kpix/s and 2x2 binning

Figure 32 to Figure 34 contain column plots of image area and overscan region of flat fields of MIT Catherine at increasing intensity levels for read out mode of 100kpix/s and 2x2 binning. The overscan plots show that the offset level varies with the intensity of the flat field in ratio of ~ 0.02%.



Figure 32: Column plot of bias image of MIT Catherine when read out at 100kpix/s and 2x2 binning.



Figure 33: Column plots of flat field with intensity level of ~ 26,000ADU of MIT Catherine when read out at 100kpix/s and 2x2 binning. Left: Column plot of image area; Right Column plot of overscan region.



Figure 34: Column plots of flat field with intensity level of ~ 50,000ADU of MIT Catherine when read out at 100kpix/s and 2x2 binning. Left: Column plot of image area; Right Column plot of overscan region.

### 13.3.1 Plots of overscan of MIT Catherine: Read out Mode 400kpix/s and 2x2 binning

Figure 36 to Figure 38 contain column plots of image area and overscan region of flat fields of MIT Catherine at increasing intensity levels for read out mode of 400kpix/s and 2x2 binning. The overscan plots show that the offset level varies with the intensity of the flat field in ratio of  $\sim 0.14\%$ .



Figure 35: Column plot of overscan region of bias image (0 ADU) of MIT Catherine when read out at 400kpix/s and 2x2 binning.



Figure 36: Column plots of flat field with intensity level of ~ 14,000ADU of MIT Catherine when read out at 400kpix/s and 2x2 binning. Left: Column plot of image area; Right Column plot of overscan region.



Figure 37: Column plots of flat field with intensity level of ~ 27,000ADU of MIT Catherine when read out at 400kpix/s and 2x2 binning. Left: Column plot of image area; Right Column plot of overscan region.



Figure 38: Column plots of flat field with intensity level of ~ 52,000ADU of MIT Catherine when read out at 400kpix/s and 2x2 binning. Left: Column plot of image area; Right Column plot of overscan region.

## 14 Problem of Spectral Non-linearity with UVB arm 100kps Mode

Linearity with flat-fields on the ODT test bench and SLED at Paranal was measured to be very good and within specifications. However with Spectral images, a flattening of the peaks was observed above 50 kADU (see Figure 39).



Figure 39: Line plots at Y=1166 showing flattening of peaks of spectra above 50 kADU. Left: Spectral below 50 kADU. Right: Spectral above 50 kADU.

To investigate the degree of non-linearity, Spectra at increasing exposure times was analyzed. The results (Figure 40) show good linearity below 50kADU and rapid degradation above.



Figure 40: Linearity plot of spectra data taken in sub-region [350:370,1100:1120].

The problem was diagnosed to inadequate settling time in the FIERA video chain. FIERA video board settling time constant was decreased from 1.5us to 500us. This fixed the problem (see linearity plot in Figure 41 and spectral line plot in Figure 42).

See §14.1 for results of performance measurements after the change and after the spare video board was inserted.



Figure 41: Photon transfer curve (left) and linearity (right) plot of spectra data taken in sub-region [390:418,550:750] after changing time constants. Good linearity behavior is observed.



Figure 42: Line plots showing no flattening of peaks of spectra up to ADC saturation (65 kADU) after changing time constants.

# 14.1 Performance of Spare Video Board (serial number 67) During Commission (date - 30<sup>th</sup> April 2009)

Due to observed bias jumps in the detector of the VIS arm (§15) and the fact that one of the unused channels was faulty, the video board used during commissioning (serial number 71) was replaced by the spare video board (serial number 67). The performance of noise, gain, and linearity of the Spare Video Board (serial number 67) was measured by taking a sequence of double flats with increasing exposure time using the Stabilized LED. The results are summarized in the following tables and figures.



| Table 27: Performance with spare video board (serial number 67) of the UVB arm detector, e2v Pisces Au | stralis II, |
|--------------------------------------------------------------------------------------------------------|-------------|
| when read out through its right "r" amplifier.                                                         |             |

| # | Mode Name       | Bin<br>(X.Y) | Gain<br>(e <sup>-</sup> /ADU) | RON<br>(e <sup>-</sup> ) | Linearity<br>Peak-to-<br>peak<br>(%) | Dark<br>Current<br>(e <sup>-</sup> /binnedpix/hr) | Nominal<br>Bias Level<br>(ADU) |
|---|-----------------|--------------|-------------------------------|--------------------------|--------------------------------------|---------------------------------------------------|--------------------------------|
|   | 100k/1pt/hg     | 1x1          | 0.62                          | 2.5                      | 0.4                                  | -                                                 | 1000                           |
| 1 |                 | 1x2          | 0.62                          | 2.5                      | 0.4                                  | -                                                 | 1000                           |
|   |                 | 2x2          | 0.62                          | 2.5                      | 0.4                                  | -                                                 | 1000                           |
| 4 |                 | 1x1          | 1.75                          | 4.5                      | 1.0                                  | -                                                 | 1000                           |
| 4 | 400k/1pt/1g     | 1x2          | 1.75                          | 4.5                      | 1.0                                  | -                                                 | 1000                           |
|   |                 | 2x2          | 1.75                          | 4.5                      | 1.0                                  | -                                                 | 1000                           |
| 7 | 400k/1pt/lg_AFC | 1x1          | 1.75                          | 4.5                      | 1.0                                  | -                                                 | 1000                           |

 Table 28: Performance with spare video board (serial number 67) of the VIS arm detector, MIT/LL Catherine, read out through its left "a" amplifier.

| # | Mode Name       | Bin<br>(X.Y) | Gain<br>(e <sup>-</sup> /ADU) | RON<br>(e <sup>-</sup> ) | Linearity<br>Peak-to-<br>peak<br>(%) | Dark<br>Current<br>(e <sup>-</sup> /binnedpix/hr)<br>See note #1 | Bias Level<br>(ADU) |
|---|-----------------|--------------|-------------------------------|--------------------------|--------------------------------------|------------------------------------------------------------------|---------------------|
| 1 |                 | 1x1          | 0.595                         | 3.1                      | 0.8                                  | -                                                                | 1000                |
|   | 100k/1pt/hg     | 1x2          | 0.595                         | 3.1                      | 0.8                                  | -                                                                | 1000                |
|   |                 | 2x2          | 0.595                         | 3.1                      | 0.8                                  | -                                                                | 1000                |
| 4 | 400k/1pt/lg     | 1x1          | 1.4                           | 5.2                      | 0.8                                  | -                                                                | 1000                |
| + | 400K/1pt/1g     | 1x2          | 1.4                           | 5.2                      | 0.8                                  | -                                                                | 1000                |
|   |                 | 2x2          | 1.4                           | 5.2                      | 0.8                                  | -                                                                | 1000                |
| 7 | 400k/1pt/lg_AFC | 1x1          | 1.4                           | 5.2                      | 0.8                                  | -                                                                | 1000                |



Figure 43: e2v Pisces Australis II Residual Linearity plots of the spare video board for the various read out modes. Note legend is defined as SSSrXxYgg, where SSS is read out speed (100kps and 400kps), r is amplifier (r=right, l=left), and gg is the gain (hg=high gain and lg=lowgain. Plot generated by taking exposures of increasing exposure time with the Stabilized LED.



Figure 44: e2v Pisces Australis II Calculated Gain Vs Signal plots of the spare video board for the various read out modes. Note legend is defined as SSSrXxYgg, where SSS is read out speed (100kps and 400kps), r is amplifier (r=right, l=left), and gg is the gain (hg=high gain and lg=lowgain.



Figure 45: MIT Catherine Residual Linearity plots of the spare video board for the various read out modes. Note legend is defined as SSSrXxYgg, where SSS is read out speed (100kps and 400kps), a is amplifier (a=right, b=left), and gg is the gain (hg=high gain and lg=lowgain). Plot generated by taking exposures of increasing exposure time with the Stabilized LED.



Figure 46: MIT Catherine Calculated Gain Vs Signal plots of the spare video board for the various read out modes. Note legend is defined as SSSrXxYgg, where SSS is read out speed (100kps and 400kps), a is amplifier (a=right, b=left), and gg is the gain (hg=high gain and lg=lowgain).

# 15 Investigation of Reported Bias Jump on VIS Arm

Table 29 and Table 30 contain measurements of one (date 16 Jan 2009) of several bias jumps observed during commissioning 1 to 3 on the VIS arm. To fix the problem, the video board (serial number 71) was replaced with the spare one (serial number 67). See §14.1 for results of performance measurements after the swap.

| # | Mode Name   | Gain<br>Ratio | Bias<br>Ratio | Bin<br>(X.Y) | Before Bia                       | as Jump                  |                        | After Bias                    | Jump                     |                        |
|---|-------------|---------------|---------------|--------------|----------------------------------|--------------------------|------------------------|-------------------------------|--------------------------|------------------------|
|   |             |               |               |              | Gain<br>(e <sup>-</sup><br>/ADU) | RON<br>(e <sup>-</sup> ) | Bias<br>Level<br>(ADU) | Gain<br>(e <sup>-</sup> /ADU) | RON<br>(e <sup>-</sup> ) | Bias<br>Level<br>(ADU) |
| 3 | 100k/1pt/hg | 1.068         |               | 2x2          | 0.62                             | 3.1                      | 1044                   | 0.58                          | 3.0                      | 1370                   |
| 6 | 400k/1pt/lg | 1.058         |               | 2x2          | 1.45                             | 5.0                      | 1012                   | 1.37                          | 5.0                      | 1124                   |

Table 29: Gain, RON, and bias level before and after bias jump during Telescope second commissioning run of the VIS arm detector, MIT/LL Catherine, read out through its left "a" amplifier.

| Table 30: Gain, RON, and bias level before and after bias jump in VIS arm during Telescope second commissionin | ıg |
|----------------------------------------------------------------------------------------------------------------|----|
| run of the UVB arm detector, e2v Pisces Australis II, when read out through its right "r" amplifier.           | -  |

| # | Mode Name   | Gain  | Bias  | Bin   | Before Bias Jump |                   |       | After Bias Jump       |                   |       |
|---|-------------|-------|-------|-------|------------------|-------------------|-------|-----------------------|-------------------|-------|
|   |             | Ratio | Ratio | (X.Y) |                  | -                 |       | _                     |                   |       |
|   |             |       |       |       | Gain             | RON               | Bias  | Gain                  | RON               | Bias  |
|   |             |       |       |       | (e <sup>-</sup>  | (e <sup>-</sup> ) | Level | (e <sup>-</sup> /ADU) | (e <sup>-</sup> ) | Level |
|   |             |       |       |       | /ADU)            |                   | (ADU) | , í                   |                   | (ADU) |
| 3 | 100k/1pt/hg |       |       | 2x2   | 0.66             | 2.4               | 987   | 0.65                  | 2.4               | 994   |
| 6 | 400k/1pt/lg |       |       | 2x2   | 1.73             | 4.2               | 989   | 1.7                   | 4.3               | 992   |