Tucana : ESO CCD Test Report






General information

EEV 44-82-1-A57
NB -  NB: Please note that the correct CCD names are :
CCD Name : Tucana
Grade :
Science
Tucana (serial no: 02395-20-01) and not Alcor as the data files are called.
Serial Number : 02395-20-01
Triangulum Australe ( serial no: 02395-19-01) and not Alcalurops as the data files are called.
Type : Backside, Single layer AR Pixel size 15 x 15 μm
Number of photosensitive pixels 2048 x 4102 [HxV]
When the CCD's was tested they were given the wrong name and therefor all the datafiles used
Number of outputs : 2
this wrong name. Test reports etc. have a note about this issue.
Overall rating :

Measurement made by  S.D. the 2-Apr-2003
Data reduced by 
JT the 17-Apr-2003

Setup

D-Marc 1
Position in the head B
Tested with the CCD Triangulum Australe

Concession form /

Volt table


Channel voltage potential 10.25

This table defines the voltages which will be applied to peripherals
at initialisation time. It also defines the high and low limits which may
be set for these voltages

BIASBRD is for the EEV CCD-44 in the mosaic 

# BRD_ID  PERIPH_ID 



# CONNECTOR P0 - A



LOW HIGH TOLERANCE INIT_VAL
BRD_ANABIAS0 ANB_PRESET_VOLT_A -3500 -1000 10000 -3500 #OG1R
BRD_ANABIAS0 ANB_PRESET_VOLT_B -2500 -1000 10000 -2500 #OG2R
BRD_ANABIAS0 ANB_PRESET_VOLT_C 2000 25000 10000 22000 #ODR
BRD_ANABIAS0 ANB_PRESET_VOLT_D 2000 15000 10000 11750 #RDR
BRD_ANABIAS0 ANB_PRESET_VOLT_E 2000 25000 10000 25000 #JDR
BRD_ANABIAS0 ANB_PRESET_VOLT_F 0 0 0 0 #not used
BRD_ANABIAS0 ANB_PRESET_VOLT_G 0 0 0 0 #not used
BRD_ANABIAS0 ANB_PRESET_VOLT_H 0 0 0 0 #not used



# CONNECTOR PO - B



LOW HIGH TOLERANCE INIT_VAL
BRD_ANABIAS0 ANB_PRESET_VOLT_I -3500 -1000 10000 -3500 #OG1L
BRD_ANABIAS0 ANB_PRESET_VOLT_J -2500 -1000 10000 -2500 #OG2L
BRD_ANABIAS0 ANB_PRESET_VOLT_K 2000 25000 10000 22000 #ODL
BRD_ANABIAS0 ANB_PRESET_VOLT_L 2000 15000 10000 11750 #RDL
BRD_ANABIAS0 ANB_PRESET_VOLT_M 2000 25000 10000 25000 #JDL
BRD_ANABIAS0 ANB_PRESET_VOLT_N 0 0 0 0 #not used
BRD_ANABIAS0 ANB_PRESET_VOLT_O 2000 19000 10000 18000 #DDLR
BRD_ANABIAS0 ANB_PRESET_VOLT_P 0 0 0 0 #not used






#The anabias board also has an opto isolated peripheral




BRD_ANABIAS0 ANB_OPTOOUT 0 32767 4 255

CLOCKDRIVER BOARD 0 is for the EEV CCD44 in the mosaic


# BRD_ID  PERIPH_ID




#   CONNECTOR PO-A 



LOW HIGH TOLERENCE INIT_VAL
BRD_CLKDRV0 CLKDRV_DAC0_LO -5000 -5000 1000 -5000 #SWL
BRD_CLKDRV0 CLKDRV_DAC0_HI 5000 5000 1000 5000

BRD_CLKDRV0 CLKDRV_DAC1_LO -5000 -5000 1000 -5000 #SWR
BRD_CLKDRV0 CLKDRV_DAC1_HI 5000 5000 1000 5000

BRD_CLKDRV0 CLKDRV_DAC2_LO -5000 -5000 1000 -5000 #RF3
BRD_CLKDRV0 CLKDRV_DAC2_HI 5000 5000 1000 5000

BRD_CLKDRV0 CLKDRV_DAC3_LO -5000 -5000 1000 -5000 #RF2L
BRD_CLKDRV0 CLKDRV_DAC3_HI 5000 5000 1000 5000

BRD_CLKDRV0 CLKDRV_DAC4_LO -5000 -5000 1000 -5000 #RF1L
BRD_CLKDRV0 CLKDRV_DAC4_HI 5000 5000 1000 5000

BRD_CLKDRV0 CLKDRV_DAC5_LO -5000 -5000 1000 -5000 #RF2R
BRD_CLKDRV0 CLKDRV_DAC5_HI 5000 5000 1000 5000

BRD_CLKDRV0 CLKDRV_DAC6_LO -5000 -5000 1000 -5000 #RF1R
BRD_CLKDRV0 CLKDRV_DAC6_HI 5000 5000 1000 5000

BRD_CLKDRV0 CLKDRV_DAC7_LO -6000 -6000 1000 -6000 #DG
BRD_CLKDRV0 CLKDRV_DAC7_HI 6000 6000 1000 6000




#     CONNECTOR PO-B



LOW HIGH TOLERENCE INIT_VAL
BRD_CLKDRV0 CLKDRV_DAC8_LO -12000 -4000 1000 -8000 #IF1
BRD_CLKDRV0 CLKDRV_DAC8_HI -2000 3000 1000 2000

BRD_CLKDRV0 CLKDRV_DAC9_LO -12000 -4000 1000 -8000 #IF2
BRD_CLKDRV0 CLKDRV_DAC9_HI -2000 3000 1000 2000

BRD_CLKDRV0 CLKDRV_DAC10_LO -12000 -4000 1000 -8000 #IF3
BRD_CLKDRV0 CLKDRV_DAC10_HI -2000 3000 1000 2000

BRD_CLKDRV0 CLKDRV_DAC11_LO 0 0 1000 0 #empty
BRD_CLKDRV0 CLKDRV_DAC11_HI 0 0 1000 0

BRD_CLKDRV0 CLKDRV_DAC12_LO -6000 -4000 1000 -6000 #FRL
BRD_CLKDRV0 CLKDRV_DAC12_HI 6000 8000 1000 6000

BRD_CLKDRV0 CLKDRV_DAC13_LO -6000 -4000 1000 -6000 #FRR
BRD_CLKDRV0 CLKDRV_DAC13_HI 6000 8000 1000 6000


#
# Gain should be interpreted as follows
# There are two gains, gain1 is on the preamp, gain2 is on the video board.

# Gain1 =  
#     3 == 1.5
#     1 == 2.25
#     0 == 3.0
#
# Gain2 =
#     0 = Minimum (2.5) 
#     1 = Maximum (12.5) 
#
# BRD_ID  PERIPH_ID  LOW HIGH TOLERANCE INIT_VAL
BRD_VIDBRD0 VID_GAIN1_CHAN0 0 3 0 1
BRD_VIDBRD0 VID_GAIN1_CHAN1 0 3 0 1
BRD_VIDBRD0 VID_GAIN1_CHAN2 0 3 0 1
BRD_VIDBRD0 VID_GAIN1_CHAN3 0 3 0 1



BRD_VIDBRD0 VID_GAIN2_CHAN0 0 1 0 0
BRD_VIDBRD0 VID_GAIN2_CHAN1 0 1 0 0
BRD_VIDBRD0 VID_GAIN2_CHAN2 0 1 0 0
BRD_VIDBRD0 VID_GAIN2_CHAN3 0 1 0 0



BRD_VIDBRD0 VID_FILT_CHAN0 0 3 0 0
BRD_VIDBRD0 VID_FILT_CHAN1 0 3 0 0
BRD_VIDBRD0 VID_FILT_CHAN2 0 3 0 0
BRD_VIDBRD0 VID_FILT_CHAN3 0 3 0 0



BRD_VIDBRD0 VID_TESTVID_CHAN0 0 1 0 0
BRD_VIDBRD0 VID_TESTVID_CHAN1 0 1 0 0
BRD_VIDBRD0 VID_TESTVID_CHAN2 0 1 0 0
BRD_VIDBRD0 VID_TESTVID_CHAN3 0 1 0 0

# Video Offsets are in 0.001 volts

# BRD_ID  PERIPH_ID  LOW HIGH TOLERANCE INIT_VAL
BRD_VIDBRD0 VID_OFFSET_CHAN0 0 65535 6553 0
BRD_VIDBRD0 VID_OFFSET_CHAN1 0 65535 6553 0
BRD_VIDBRD0 VID_OFFSET_CHAN2 0 65535 6553 0
BRD_VIDBRD0 VID_OFFSET_CHAN3 0 65535 6553 0

Quantum Efficiency

Clock mode :  225kpx/rr/HG/512
Conversion factor 1.0697e-/ADU ±0.005578 for 23618.1ADU
Rms noise : 5.2794e- ±0.03948

CCD Temperature : -120.2Cº


Wav. QE% QE error PRNU rms%
Wav. QE% QE error PRNU rms%

300 29.4 0.1 2.3
660 75.3 0.0 1.0

310 46.1 0.0 2.0
680 73.2 0.0 1.0

320 45.8 0.0 1.9
700 70.2 0.3 1.0

330 48.1 0.0 1.8
720 67.2 0.0 1.0

340 49.6 0.0 1.8
740 63.5 0.0 1.0

350 50.1 0.0 1.8
750 61.4 0.0 1.0

360 50.6 0.0 1.8
760 59.3 0.0 1.1

370 54.7 0.1 1.5
780 54.7 0.0 1.1

380 63.7 0.1 1.3
800 50.3 0.0 1.1

390 70.9 0.1 1.1
820 46.0 0.0 1.1

400 75.8 0.1 1.1
840 41.7 0.0 1.1

420 80.7 0.0 1.0
850 39.2 0.0 1.1

440 82.6 0.1 1.0
860 36.6 0.0 1.1

450 82.8 0.0 1.0
880 31.2 0.0 1.1

460 82.9 0.0 1.0
900 25.8 0.0 1.4

480 82.5 0.0 1.0
920 20.0 0.0 1.4

500 81.8 0.1 1.0
940 15.0 0.0 1.7

520 81.2 0.0 1.0
950 12.8 0.0 1.5

540 80.5 0.0 1.0
960 10.6 0.0 1.4

550 80.3 0.0 1.0
980 6.9 0.0 1.2

560 80.0 0.0 1.0
1000 4.0 0.0 1.4

580 79.5 0.0 1.0
1020 1.9 0.0 1.7

600 78.8 0.0 1.0
1040 0.7 0.0 2.2

620 77.9 0.0 1.0
1060 0.3 0.0 2.8

640 76.8 0.0 1.0
1080 0.2 0.0 3.1

650 76.1 0.0 1.0
1100 0.1 0.0 4.1


Table 1: Measurements of the quantum efficiency and PRNU

Quantum efficiency, comparison

In this section you can compare the QE we measured with the testbench and:


l QE Minimum specification

l Typical QE

l QE from Marconi










































































Figure 1: Comparison between the QE measured by ESO, the QE measured by Marconi, ESO specification and minimum specification
Figure 2: Ratio between the ESO measurements and the ESO minimum specification



Quantum efficiency, special specification


Special specification

Wavelength (nm) Minimum spec.(%) ESO measure. (%) Result

350 50 50.1 OK

400 80 75.8 Under the minimum spec.

650 80 76.1 Under the minimum spec.

900 25 25.8 OK

Conclusion: No this ccd is not in the 25%


Table 2: Minimum specification for 25% of the ccds.

Difference between QE measurements made by ESO and Marconi


Comparison QE ESO and Marconi

Wavelength (nm) QE ESO (%) QE E2V (%) Difference (ESO - E2V %) Relative diff. (E2V as reference %) Ratio QE ESO / QE E2V



350 50.1 50.4 -0.3 -0.6 1.0

400 75.8 74.6 1.2 1.6 1.0

500 81.8 81.7 0.1 0.1 1.0

650 76.1 73.1 3.0 4.0 1.0


Table 3: Difference and relative difference between ESO measurements and E2V

































































Figure 3: Graphic representation of the fdifference and the relative difference
Figure 4: Ration between the ESO measurements and the E2V Measurements


PRNU comparison

In this section you can compare the PRNU we measured at ESO and:


l PRNU Minimum specification

l PRNU from Marconi







































































Figure 5: Comparison between the PRNU measured by ESO, the PRNU measured by Marconi, and the maximum specification
Figure 6: Ratio between the ESO measurements and the maximum specification




Comparison PRNU ESO and PRNU Marconi

Wavelength (nm) PRNU ESO (rms %) Maximum spec. PRNU E2V Difference (ESO - E2V) Relative difference (E2V as reference) Ratio PRNU ESO / PRNU E2V



320 1.9 6.0 / / / /

350 1.8 5.0 2.2 -0.4 -16.4 0.8

400 1.1 2.5 1.1 0.0 -3.6 1.0

500 1.0 2.0 1.1 -0.1 -10.7 0.9


Table 4: difference and relative difference between ESO and E2V measurements

















































Comparison with the contract

In this section you will see the if the values we have measured for the QE and the PRNU are in accordance with the contract.


Wavelength (nm) QE PRNU

320 OK OK

340 OK /

350 OK OK

360 OK /

380 Below the specification /

400 OK OK

450 OK OK

500 Below the specification OK

550 Below the specification /

600 Below the specification /

650 OK /

700 OK /

750 OK /

800 OK /

850 OK /

900 OK /

950 Below the specification /

1000 Below the specification /


Table 5: Comparison between the values we have measured and the specifications in the contract

Cosmetic

Click here to see the images

Cosmetic defects

In this section we expose the hot pixel, the dark pixel, the trap and the very large trap we have found.

Hot pixel A hot pixel provides a signal of > 60 e- / pixel / hour.


Very bright pixel a very bright pixel provides a signal of > 200000 e-/pixel/hour


Dark pixel A dark pixel is one with 50% or less than the average output for uniform intensity light level, measured with a flat field level around 500 photo-electrons


Trap A trap is defined as a pixel that captures more than 10 electrons, measured with a flat field level around 500 photo-electrons.


Very large trap A very large trap is defined as a pixel that captures more than 10 000 electrons, measured with a flat field level around 90% of full well capability.


Bad column A bad column is 10 or more contiguous hot or dark pixels in a single column or a very bright pixel or a very large trap.






  Hot pixel Dark pixel Very bright pixel (a) Trap Very large trap (b) Sup. 10 contiguous pixels (c) Total bad column (a+b+c)



ESO 1 12 0 3 0 13 13

E2V 4 0 3 0 2 2


Table 6: Cosmetic defects measured by ESO and E2V

Dark and Bias

Click here to see the images

Readout noise and conversion factor

Conversion factor, recommend specification: 0.55 e-/pixel/hour
Maximum readout noise at 50kpix/s: 2 e-
Maximum readout noise at 225kpix/s: 2.8 e-


Conversion factor Readout noise

50kpix/s Left port 0.51 2.64

Right port 0.51 2.64

225kpix/s Left port 0.52 5.52

Right port 0.53 5.43


Table 7: Readout noise and Conversion factor measured at 50 and 225kpix/s

Linearity

Minimum specification: 1 (%)


Rms non linearity (%) 0.24

Peak to peak non linearity (%) 0.70


Table 8: Linearity

Click here to see the graphics

Dark current
Exposure time (s): 3600
Readout mode: 50kpix/s
Port: Right



Minimum specification: 2 e-/pixel/hour


Dark current error

0.69 0.24 ADU/pixel/hour

0.35 0.12 e-/pixel/hour


Table 9: Dark current in electron per pixel and per hour

Charge Transfer Efficiency (CTE)

Method used: EPER



Minimum specification: 0.999995


CTE (ESO) CTE (E2V)

CTE Serial (Horizontal) Left 0 0.999995

CTE Serial (Horizontal) Right 0.999996 0.999995

CTE Parallel (Vertical) 0.999999 0.999998


Table 10: Charge transfer efficiency measured at 50 kpix/s and the high gain amplification























Back to the overview page ESO Test Reports for the OmegaCAM CCDs