Pavo: ESO Test report

EEV 44-82 -1-A57
CCD name : Pavo
Serial number : 00371-08-01
Type : Backside, Single layer AR Pixel size 15x15 µm
Number of photosensitive pixels 2048 x 4102 [HxV]
Number of outputs : 2
Overall rating :

Measurement made by Fabrice Christen the: 08/01/2002
Data reduced by Fabrice Christen the: 27/05/2002

Quantum Efficiency, PRNU

Clock mode: 225kpx/rr/HG/512
Conversion Factor=   1.06 e-/ADU ± 0.01      for 26243.4 ADU
RMS noise        =   4.28 e-     ± 0.04

CCD temperature : -120.0Cº


Window area is : X1= 58 X2= 2073 Y1= 103 Y2= 505
Bandwidth 5nm
                                                                

Wav.

Qe Pavo

Error

PRNU Rms (%)

320

41.8

0.07

2.14

330

46.0

0.04

1.91

340

50.3

0.05

1.8

350

50.6

0.03

1.82

360

52.1

0.03

1.82

370

57.8

0.15

1.62

380

68.5

0.51

1.23

390

77.5

0.63

1.02

400

82.5

0.47

0.94

420

87.6

0.51

0.84

440

89.5

0.57

0.81

450

89.7

0.52

0.81

460

89.8

0.46

0.8

480

89.6

0.48

0.8

500

89.0

0.45

0.79

520

88.1

0.43

0.79

540

87.3

0.4

0.78

550

86.8

0.38

0.78

560

86.2

0.35

0.78

580

85.1

0.38

0.78

600

83.8

0.31

0.77

620

82.4

0.36

0.77

640

80.5

0.24

0.78

650

79.5

0.3

0.77

660

78.5

0.35

0.75

680

75.8

0.29

0.78

700

72.9

0.25

0.81

720

69.4

0.27

0.83

740

65.3

0.24

0.89

750

63.0

0.24

0.89

760

60.6

0.23

0.88

780

55.8

0.22

0.98

800

51.2

0.27

1.05

820

46.7

0.2

0.96

840

41.8

0.16

1.09

850

39.3

0.17

1.24

860

36.7

0.17

1.39

880

31.5

0.11

1.99

900

26.1

0.09

3.04

920

21.1

0.06

4.6

940

15.6

0.04

6.29

950

13.3

0.03

7.07

960

10.9

0.03

7.84

980

7.7

0.02

8.75

1000

4.28

0.01

10.6

1040

0.81

0.01

9.08

1100

0.09

6.30E-005

9.43

Table 1: Measurement of the Quantum Efficiency.

Quantum efficiency, comparison

In this section you can compare the QE we measured with the testbench and:

Figure 1: Comparison between the QE measured by ESO, the QE measured by Marconi, ESO specification and minimum specification.

Figure 2: Ratio between the ESO measurements and the ESO minimum specification.



Quantum efficiency, special specification



Special specification

Wavelength(nm)

Minimum spec. (%)

ESO measurements (%)

Result

350

50

50.6

OK

400

80

82.5

OK

650

80

79.5

Under the minimum spec.

900

25

26.1

OK

Conclusion:

No this ccd is not in the 25%

Table 2: Minimum specification for 25% of the ccds.

Difference between QE measurements made by ESO and Marconi.



Comparison QE ESO and QE Marconi

Wavelength (nm)

QE ESO (%)

Qe Marconi (%)

Difference (Eso - Marc. %)

Relative difference (Marconi as reference %)

Ratio QE ESO / QE Marconi

350

50.6

52.6

-2

-3.8

0.96

400

82.5

78.1

4.4

5.6

1.06

500

89

81.5

7.5

9.2

1.09

650

79.5

74.3

5.2

7.0

1.07

900

26.1

24.6

1.5

6.1

1.06

Table 3: Difference and relative difference between ESO measurements and Marconi.

Figure 3: Graphic representation of the difference and the relative difference.

Figure 4: Ratio between the ESO measurements and the Marconi measurements



PRNU

In this section you can compare the PRNU we measured at ESO and:

Figure 5: Comparison between the PRNU measured by ESO, the PRNU measured by Marconi, and the maximum specification.

Figure 6: Ratio between the ESO measurements and the Maximum specification.

Figure 7: Graphic representation of the difference and the relative difference.

Figure 8: Ratio between the ESO measurements and the Marconi measurements.





Comparison PRNU ESO and PRNU Marconi

Wavelength (nm)

PRNU ESO (rms %)

Maximum spec.

PRNU Marconi

Difference (ESO – Marc.)

Relative difference (Marc. as reference)

Ratio PRNU ESO / PRNU Marconi

320

2.14

6

/

/

/

/

350

1.82

5

2.6

-0.78

-30

0.7

400

0.94

2.5

1

-0.06

-6

0.94

500

0.79

2

0.9

-0.11

-12

0.88

Table 4: Difference and relative difference between ESO measurements and Marconi.

Comparison with the contract

In this section you will see the if the values we have measured for the QE and the PRNU are in accordance with the contract.



Wavelength (nm)

Qe

PRNU

320

OK

OK

340

OK


350

OK

OK

360

OK


380

OK


400

OK

OK

450

OK

OK

500

OK

OK

550

OK


600

OK


650

OK


700

OK


750

OK


800

OK


850

OK


900

OK


950

Below the specification


1000

Below the specification


Table 5: Comparison between the values we have measured and the specifications in the contract.

Cosmetic

flat field

For the flat field we use three wavelengths, 350nm, 600nm and 900nm. For each wavelength we make two images, high level (45000 ADU) and low level (1000 ADU).

350nm (UV), bandwidth 5nm

600nm, bandwidth 5nm

900nm, bandwidth 5nm

High level
Low level
High level
Low level
High level
Low level

Table 6: Flat field for three wavelengths.

Bias and dark

The time exposure, for the long dark exposure, is 3600 seconds.

Bias 50 kpix/s High Gain

Bias 225 kpix/s High Gain

Bias 625 kpix/s High Gain

Bias 225 kpix/s Low Gain



Dark 15min 50 kpix/s High Gain

Dark 15min 225 kpix/s High Gain

Dark 15min 625 kpix/s High Gain

Dark 15min 225 kpix/s Low Gain

/

/

/



Dark 1 hour 50 kpix/s High Gain

Dark 1 hour 225 kpix/s High Gain

Dark 1 hour 625 kpix/s High Gain

Dark 1 hour 225 kpix/s Low Gain



Table 7: Bias and dark.

Complementary analysis

Bias 50 kpix/s High Gain

Bias 225 kpix/s High Gain

Bias 625 kpix/s High Gain

Bias 225 kpix/s Low Gain

Peak to peak : 2.6e-

Peak to peak : 2.1e-

Peak to peak : 0.52e-

Peak to peak 2.5e-



Readout noise/Conversion factor


Clock mode: 50kpx/rlrl/HG/512



Clock mode: 225kpx/rlrl/HG/512

Left Port (e- / ADU)

Right port (e- / ADU)

Left Port (e- / ADU)

Right Port (e- / ADU)

Conversion Factor

0.51 ± 0.01

0.52 ± 0.01

Conversion Factor

0.53 ± 0.01

0.53 ± 0.01

RMS noise

2.9 ± 0.2

3 ± 0.2

RMS noise

4.7 ± 0.3

5.7 ± 0.3

CCD Pavo Left Port
Conversion Factor=   0.51239e-/ADU ±0.001773     for 20682.9ADU                     
RMS noise        =   2.8607e-      ±0.1413                                          

CCD Pavo Right Port
Conversion Factor=   0.51516e-/ADU ±0.001795     for 20915.8ADU                     
RMS noise        =   3.0213e-      ±0.1488                                          

Clock mode: 225kpx/rlrl/HG/512
CCD Pavo Left port
Conversion Factor=   0.52983e-/ADU ±0.001839     for 20548.5ADU                     
RMS noise        =   4.65e-        ±0.2211                                          

CCD Pavo Right Port
Conversion Factor=   0.53318e-/ADU ±0.001888     for 20568.9ADU                     
RMS noise        =   5.6604e-      ±0.2673                                          



Linearity (TDI method)

RMS non linearity (%)         =  0.71
Peak to peak non linearity (%)=  2.21



Figure 9: Error of linearity

Figure 10: Residual non linearity.

Dark current

Exposure time (s) = 3600
Dark current : 0.47 ± 0.01 e-/hour/pixel

Charge Transfer Efficiency (CTE EPER)


CTE (ESO)

CTE (Marconi)

CTE Serial (Horizontal) Left

/

0.999997

CTE Serial (Horizontal) Right

0.9999997

0.999996

CTE Parallel (Vertical)

0.9999997

0.999997

Cosmetic defects

In this section we expose the hot pixel, the dark pixel, the trap and the very large trap we found.

Hot pixel

A hot pixel provides a signal of > 60 e- / pixel / hour.


Result: 1 hot points.

Very bright pixel

a very bright pixel provides a signal of > 200000 e-/pixel/hour


Result: 0 very bright pixel.

Dark pixel

A dark pixel is one with 50% or less than the average output for uniform intensity light level, measured with a flat field level around 500 photo-electrons.


Result: 4 dark pixels detected.

Trap

A trap is defined as a pixel that captures more than 10 electrons, measured with a flat field level around 500 photo-electrons.


Result: 7 trap

Very large trap

A very large trap is defined as a pixel that captures more than 10 000 electrons, measured with a flat field level around 90% of full well capability.


Result: 1 very large trap.


Bad column

A bad column is 10 or more contiguous hot or dark pixels in a single column or a very bright pixel or a very large trap.


Result: 0 bad columns.

Conclusion

Here is a summary of cosmetic defects:


Hot pixel

Dark pixel

A very bright pixel (a)

Trap

Very large trap (b)

Sup. 10 contiguous pixels (c)

Total bad column (a+b+c)

ESO

1

4

0

7

1

0

1

Marconi

17

5

3

1

0

6

Table 8: Summary of cosmetic defects.


Voltage table

###############################################################################
#Author:        Cyril CAVADORE
#CAMERA:        Double Marconi   ( Mosaic 2 Marconi/EEV )
#Purpose:       This is the global voltage definition table micro sequences
#               European Southern Observatory (ESO)
#Date:          20.11.00
###############################################################################
#  GOBAL VOLTAGE DEFINITION TABLE
#
# This table defines the voltages which will be applied to peripherals
# at initialisation time. It also defines the high and low limits which may
# be set for these voltages
###############################################################################
# BRD_ID  PERIPH_ID              LOW     HIGH    TOLERANCE      INIT_VAL
#
# Anabias voltages are in 0.001 volts
#
###############################################################################
#  BIASBRD 0 is for the EEV CCD-44 in the mosaic 
###############################################################################
# BRD_ID  PERIPH_ID              LOW     HIGH    TOLERANCE      INIT_VAL

# CONNECTOR P0 - A

BRD_ANABIAS0 ANB_PRESET_VOLT_A  -3500    -1000   10000          -3500 #OG1R  VOG1
BRD_ANABIAS0 ANB_PRESET_VOLT_B  -2500    -1000   10000          -2500 #OG2R  VOG2
BRD_ANABIAS0 ANB_PRESET_VOLT_C   2000    25000   10000          22700 #ODR   VOD
BRD_ANABIAS0 ANB_PRESET_VOLT_D   2000    15000   10000          12100 #RDR   VRD
BRD_ANABIAS0 ANB_PRESET_VOLT_E   2000    25000   10000          24000 #JDR   JFETVoltage
BRD_ANABIAS0 ANB_PRESET_VOLT_F      0        0       0              0 #not used
BRD_ANABIAS0 ANB_PRESET_VOLT_G      0        0       0              0 #not used
BRD_ANABIAS0 ANB_PRESET_VOLT_H      0        0       0              0 #not used

# CONNECTOR PO - B

BRD_ANABIAS0 ANB_PRESET_VOLT_I  -3500   -1000    10000          -3500 #OG1L  VOG1
BRD_ANABIAS0 ANB_PRESET_VOLT_J  -2500   -1000    10000          -2500 #OG2L  VOG2
BRD_ANABIAS0 ANB_PRESET_VOLT_K   2000   25000    10000          22700 #ODL   VOD
BRD_ANABIAS0 ANB_PRESET_VOLT_L   2000   15000    10000          12100 #RDL   VRD
BRD_ANABIAS0 ANB_PRESET_VOLT_M   2000   25000    10000          24000 #JDL   JFETVoltage
BRD_ANABIAS0 ANB_PRESET_VOLT_N      0       0        0              0 #not used
BRD_ANABIAS0 ANB_PRESET_VOLT_O   2000   19000    10000          18000 #DDLR  VDD
BRD_ANABIAS0 ANB_PRESET_VOLT_P      0       0        0              0 #not used


#The anabias board also has an opto isolated peripheral

BRD_ANABIAS0 ANB_OPTOOUT        0       32767   4               255


#
################################################################################
# Clock driver rail voltages are in 0.001 volts
#
################################################################################
#CLOCKDRIVER BOARD 0 is for the EEV CCD44 in the mosaic
################################################################################
#
#
# BRD_ID       PERIPH_ID        LOW        HIGH     TOLERANCE   INIT_VAL
#
#   CONNECTOR PO-A 
#
BRD_CLKDRV0 CLKDRV_DAC0_LO     -5000      -5000     1000       -5000 #SWL  VRPhi
BRD_CLKDRV0 CLKDRV_DAC0_HI      5000       5000     1000        5000 
BRD_CLKDRV0 CLKDRV_DAC1_LO     -5000      -5000     1000       -5000 #SWR  VRPhi
BRD_CLKDRV0 CLKDRV_DAC1_HI      5000       5000     1000        5000 
BRD_CLKDRV0 CLKDRV_DAC2_LO     -5000      -5000     1000       -5000 #RF3  VRPhi
BRD_CLKDRV0 CLKDRV_DAC2_HI      5000       5000     1000        5000 
BRD_CLKDRV0 CLKDRV_DAC3_LO     -5000      -5000     1000       -5000 #RF2L VRPhi
BRD_CLKDRV0 CLKDRV_DAC3_HI      5000       5000     1000        5000 
BRD_CLKDRV0 CLKDRV_DAC4_LO     -5000      -5000     1000       -5000 #RF1L VRPhi
BRD_CLKDRV0 CLKDRV_DAC4_HI      5000       5000     1000        5000
BRD_CLKDRV0 CLKDRV_DAC5_LO     -5000      -5000     1000       -5000 #RF2R VRPhi
BRD_CLKDRV0 CLKDRV_DAC5_HI      5000       5000     1000        5000
BRD_CLKDRV0 CLKDRV_DAC6_LO     -5000      -5000     1000       -5000 #RF1R VRPhi
BRD_CLKDRV0 CLKDRV_DAC6_HI      5000       5000     1000        5000
BRD_CLKDRV0 CLKDRV_DAC7_LO     -6000      -6000     1000       -6000 #DG   VDG
BRD_CLKDRV0 CLKDRV_DAC7_HI      6000       6000     1000        6000
#
#     CONNECTOR PO-B
#
BRD_CLKDRV0 CLKDRV_DAC8_LO    -12000      -4000     1000       -7000 #IF1 VIPhi
BRD_CLKDRV0 CLKDRV_DAC8_HI     -2000       3000     1000        3000
BRD_CLKDRV0 CLKDRV_DAC9_LO    -12000      -4000     1000       -7000 #IF2 VIPhi  
BRD_CLKDRV0 CLKDRV_DAC9_HI     -2000       3000     1000        3000
BRD_CLKDRV0 CLKDRV_DAC10_LO   -12000      -4000     1000       -7000 #IF3 VIPhi
BRD_CLKDRV0 CLKDRV_DAC10_HI    -2000       3000     1000        3000
BRD_CLKDRV0 CLKDRV_DAC11_LO    -0000      -0000     1000       -0000 #empty
BRD_CLKDRV0 CLKDRV_DAC11_HI     0000       0000     1000        0000
BRD_CLKDRV0 CLKDRV_DAC12_LO    -6000      -4000     1000       -6000 #FRL
BRD_CLKDRV0 CLKDRV_DAC12_HI     6000       8000     1000        6000
BRD_CLKDRV0 CLKDRV_DAC13_LO    -6000      -4000     1000       -6000 #FRR
BRD_CLKDRV0 CLKDRV_DAC13_HI     6000       8000     1000        6000


#
# Gain should be interpreted as follows
# There are two gains, gain1 is on the preamp, gain2 is on the video board.

# Gain1 =  
#     3 == 1.5
#     1 == 2.25
#     0 == 3.0
#
# Gain2 =
#     0 = Minimum (2.5) 
#     1 = Maximum (12.5) 
#
# BRD_ID  PERIPH_ID             LOW     HIGH    TOLERANCE       INIT_VAL
BRD_VIDBRD0 VID_GAIN1_CHAN0       0       3       0               1
BRD_VIDBRD0 VID_GAIN1_CHAN1       0       3       0               1
BRD_VIDBRD0 VID_GAIN1_CHAN2       0       3       0               1
BRD_VIDBRD0 VID_GAIN1_CHAN3       0       3       0               1

BRD_VIDBRD0 VID_GAIN2_CHAN0       0       1       0               0
BRD_VIDBRD0 VID_GAIN2_CHAN1       0       1       0               0
BRD_VIDBRD0 VID_GAIN2_CHAN2       0       1       0               0
BRD_VIDBRD0 VID_GAIN2_CHAN3       0       1       0               0

BRD_VIDBRD0 VID_FILT_CHAN0        0       3       0               0
BRD_VIDBRD0 VID_FILT_CHAN1        0       3       0               0
BRD_VIDBRD0 VID_FILT_CHAN2        0       3       0               0
BRD_VIDBRD0 VID_FILT_CHAN3        0       3       0               0

BRD_VIDBRD0 VID_TESTVID_CHAN0     0       1       0               0
BRD_VIDBRD0 VID_TESTVID_CHAN1     0       1       0               0
BRD_VIDBRD0 VID_TESTVID_CHAN2     0       1       0               0
BRD_VIDBRD0 VID_TESTVID_CHAN3     0       1       0               0

#
# Video Offsets are in 0.001 volts
#
# BRD_ID  PERIPH_ID             LOW     HIGH    TOLERANCE       INIT_VAL
#


BRD_VIDBRD0 VID_OFFSET_CHAN0    0   65535    6553            0
BRD_VIDBRD0 VID_OFFSET_CHAN1    0   65535    6553            0
BRD_VIDBRD0 VID_OFFSET_CHAN2    0   65535    6553            0
BRD_VIDBRD0 VID_OFFSET_CHAN3    0   65535    6553            0


Back to the overview page ESO Test Reports for the OmegaCAM CCDs