Lupus: ESO Test report

EEV 44-82 -1-A57
CCD name : Lupus
Serial number : 00152-02-02
Type : Backside, Single layer AR Pixel size 15x15 µm
Number of photosensitive pixels 2048 x 4102 [HxV]
Number of outputs : 2
Overall rating :

Measurement made by Boris Gallard the : 24 September 2001
Data reduced by Fabrice Christen the : 23 January 2002

Quantum Efficiency, PRNU

Clock mode: 225kpx/rr/HG/512
Conversion Factor=   1.024 e-/ADU ± 0.003      for 24129.8 ADU
RMS noise        =   4.01 e-      ± 0.01

CCD temperature : -100.0Cº


Window area is : X1= 58 X2= 2073 Y1= 103 Y2= 505
Bandwidth 5nm

Wav.

Qe Lupus

Error

PRNU (5-95%)

320

64.6

0.7

3.14

330

67.5

0.7

2.94

340

71.5

0.7

2.86

350

72.1

0.7

2.88

360

71.5

0.7

2.87

370

73.9

0.7

2.55

380

79.9

0.8

1.90

390

84.5

0.9

1.48

400

87.2

0.9

1.27

420

89.1

0.9

1.04

440

89.4

0.9

0.95

450

89.2

0.9

1.00

460

88.9

0.9

1.05

480

88.4

0.9

1.00

500

87.5

0.9

1.01

520

86.5

0.9

0.99

540

85.8

0.9

0.97

550

85.5

0.9

0.96

560

85.1

0.9

0.95

580

84.3

0.8

0.96

600

83.2

0.8

0.95

620

81.9

0.8

0.94

640

80.5

0.8

0.84

650

79.6

0.8

0.92

660

78.7

0.8

1.00

680

76.5

0.8

0.89

700

74.0

0.7

0.95

720

70.5

0.7

1.06

740

66.8

0.7

1.23

750

64.6

0.7

1.32

760

62.4

0.6

1.40

780

57.8

0.6

1.49

800

53.2

0.5

1.68

820

49.0

0.4

1.84

840

44.7

0.5

1.82

850

42.1

0.4

1.85

860

39.4

0.4

1.88

880

34.2

0.3

2.61

900

28.2

0.3

2.87

920

22.4

0.2

4.32

940

16.9

0.2

5.81

950

14.6

0.1

6.32

960

12.2

0.1

6.83

980

8.38

0.08

8.36

1000

4.86

0.05

9.34

1040

0.99

0.01

8.63

1100

0.130

0.001

9.11



Table 1: Measurement of the Quantum Efficiency.

Quantum efficiency, comparison

In this section you can compare the QE we measured with the testbench and:

Figure 1: Comparison between the QE measured by ESO, the QE measured by Marconi, ESO specification and minimum specification.

Figure 2: Ratio between the ESO measurements and the ESO minimum specification.



Quantum efficiency, special specification



Special specification

Wavelength(nm)

Minimum spec. (%)

ESO measurements (%)

Result

350

50

72.1

OK

400

80

87.2

OK

650

80

79.6

Under the minimum spec.

900

25

28.2

OK



Table 2: Minimum specification for 25% of the ccds.

Difference between QE measurements made by ESO and Marconi.



Comparison QE ESO and QE Marconi

Wavelength (nm)

QE ESO (%)

Qe Marconi (%)

Difference (Eso - Marc. %)

Relative difference (Marconi as reference %)

Ratio QE ESO / QE Marconi

350

72.1

70.8

1.3

1.8

1.02

400

87.2

81

6.2

7.7

1.08

500

87.5

77.9

9.6

12.3

1.12

650

79.6

73.6

6.0

8.2

1.08

900

28.2

25.8

2.4

9.3

1.09



Table 3: Difference and relative difference between ESO measurements and Marconi.

Figure 3: Graphic representation of the difference and the relative difference.

Figure 4: Ratio between the ESO measurements and the Marconi measurements



PRNU

In this section you can compare the PRNU we measured at ESO and:

Figure 5: Comparison between the PRNU measured by ESO, the PRNU measured by Marconi, and the maximum specification.

Figure 6: Ratio between the ESO measurements and the Maximum specification.

Figure 7: Graphic representation of the difference and the relative difference.

Figure 8: Ratio between the ESO measurements and the Marconi measurements.





Comparison PRNU ESO and PRNU Marconi

Wavelength (nm)

PRNU ESO (5-95 %)

Maximum spec.

PRNU Marconi

Difference (ESO – Marc.)

Relative difference (Marc. as reference)

Ratio PRNU ESO / PRNU Marconi

320

3.14

6





350

2.88

5

3.5

-0.62

-17.71

0.82

400

1.27

2.5

1.5

-0.23

-15.33

0.85

500

1.01

2

1

0.01

1

1.01



Table 4: Difference and relative difference between ESO measurements and Marconi.

Comparison with the contract

In this section you will see the if the values we have measured for the QE and the PRNU are in accordance with the contract.



Wavelength (nm)

Qe

PRNU

320

OK

OK

340

OK


350

OK

OK

360

OK


380

OK


400

OK

OK

450

OK

OK

500

OK

OK

550

OK


600

OK


650

OK


700

OK


750

OK


800

OK


850

OK


900

OK


950

Below the specification


1000

Below the specification




Table 5: Comparison between the values we have measured and the specifications in the contract.

Cosmetic

flat field

For the flat field we use three wavelengths, 350nm, 600nm and 900nm. For each wavelength we make two images, high level (45000 ADU) and low level (1000 ADU).

350nm (UV), bandwidth 5nm

600nm, bandwidth 5nm

900nm, bandwidth 5nm

High level
Low level
High level
Low level
High level
Low level

Table 6: Flat field for three wavelengths.

Bias and dark

The time exposure, for the long dark exposure, is 3600 seconds.

Bias

Long exposure dark image

Table 7: Bias and dark.

Readout noise/Conversion factor

Clock mode: 50kpx/rlrl/HG/512
CCD Lupus, Left readout port
Conversion Factor=   0.476 e-/ADU ± 0.002     for 20514.2 ADU
RMS noise        =   3.3 e-      ± 0.3
CCD Lupus, Right readout port
Conversion Factor=   0.491 e-/ADU   ± 0.002     for 19902.7 ADU
RMS noise        =   3.3 e-      ± 0.2
Clock mode: 225kpx/rlrl/HG/512
CCD Lupus, Left readout port
Conversion Factor=   0.493 e-/ADU ± 0.002     for 20656.9 ADU
RMS noise        =   4.0 e-      ± 0.3
Right readout port
Conversion Factor=   0.507 e-/ADU ± 0.002     for 19975.8 ADU
RMS noise        =   4.1 e-      ± 0.2

Linearity (TDI method)

RMS non linearity (%)         =  0.26
Peak to peak non linearity (%)=  0.87



Figure 9: Error of linearity

Figure 10: Residual non linearity.

Dark current

Exposure time (s) = 3600
Dark current : 1.43 ± 0.03 ADU/hour/pixel

Charge Transfer Efficiency (CTE) Not available

Horizontal CTE =  Value
Vertical CTE   =  Value

Cosmetic defects

In this section we expose the hot pixel, the dark pixel, the trap and the very large trap we found.

Hot pixel

A hot pixel provides a signal of > 60 e- / pixel / hour.


Result: 77 hot points.

Very bright pixel

a very bright pixel provides a signal of > 200000 e-/pixel/hour


Result: Value very bright pixel.

Dark pixel

A dark pixel is one with 50% or less than the average output for uniform intensity light level, measured with a flat field level around 500 photo-electrons.


Result: 16 dark pixels detected.

Trap

A trap is defined as a pixel that captures more than 10 electrons, measured with a flat field level around 500 photo-electrons.


Result: Value trap

Very large trap

A very large trap is defined as a pixel that captures more than 10 000 electrons, measured with a flat field level around 90% of full well capability.


Result: / very large trap.


Bad column

A bad column is 10 or more contiguous hot or dark pixels in a single column or a very bright pixel or a very large trap.


Result: 3 bad columns.

Conclusion

Here is a summary of cosmetic defects:


Hot pixel

Dark pixel

A very bright pixel (a)

Trap

Very large trap (b)

Sup. 10 contiguous pixels (c)

Total bad column (a+b+c)

ESO

77

16

/

/

/

3

3

Marconi

30

9

4

5

3

17

Table 8: Summary of cosmetic defects.


Voltage table

###############################################################################
#Author:        Cyril CAVADORE
#CAMERA:        Double Marconi   ( Mosaic 2 Marconi/EEV )
#Purpose:       This is the global voltage definition table micro sequences
#               European Southern Observatory (ESO)
#Date:          20.11.00
###############################################################################
#  GOBAL VOLTAGE DEFINITION TABLE
#
# This table defines the voltages which will be applied to peripherals
# at initialisation time. It also defines the high and low limits which may
# be set for these voltages
###############################################################################
# BRD_ID  PERIPH_ID                LOW    HIGH   TOLERANCE   INIT_VAL
#
# Anabias voltages are in 0.001 volts
#
###############################################################################
#  BIASBRD 1 is for the EEV CCD-44 in the mosaic 
###############################################################################
# BRD_ID  PERIPH_ID                LOW    HIGH   TOLERANCE   INIT_VAL


BRD_ANABIAS1 ANB_PRESET_VOLT_A   -3500   -1000       10000      -3000 #OG1R  VOG1
BRD_ANABIAS1 ANB_PRESET_VOLT_B   -2500   -1000       10000      -2000 #OG2R  VOG2
BRD_ANABIAS1 ANB_PRESET_VOLT_C    2000   25000       10000      22000 #ODR   VOD
BRD_ANABIAS1 ANB_PRESET_VOLT_D    2000   15000       10000      11000 #RDR   VRD
BRD_ANABIAS1 ANB_PRESET_VOLT_E    2000   25000       10000      24000 #JDR   JFETVoltage
BRD_ANABIAS1 ANB_PRESET_VOLT_F       0       0           0          0 #not used
BRD_ANABIAS1 ANB_PRESET_VOLT_G       0       0           0          0 #not used
BRD_ANABIAS1 ANB_PRESET_VOLT_H       0       0           0          0 #not used

# CONNECTOR PO - B

BRD_ANABIAS1 ANB_PRESET_VOLT_I   -3500   -1000       10000      -3000 #OG1L  VOG1
BRD_ANABIAS1 ANB_PRESET_VOLT_J   -2500   -1000       10000      -2000 #OG2L  VOG2
BRD_ANABIAS1 ANB_PRESET_VOLT_K    2000   25000       10000      22000 #ODL   VOD
BRD_ANABIAS1 ANB_PRESET_VOLT_L    2000   15000       10000      11000 #RDL   VRD
BRD_ANABIAS1 ANB_PRESET_VOLT_M    2000   25000       10000      24000 #JDL
BRD_ANABIAS1 ANB_PRESET_VOLT_N       0       0           0          0 #not used
BRD_ANABIAS1 ANB_PRESET_VOLT_O    2000   19000       10000      18000 #DDLR  VDD
BRD_ANABIAS1 ANB_PRESET_VOLT_P       0       0           0          0 #not used

#The anabias board also has an opto isolated peripheral
BRD_ANABIAS1 ANB_OPTOOUT             0   32767           4        255


#
################################################################################
# Clock driver rail voltages are in 0.001 volts
#
################################################################################
#CLOCKDRIVER BOARD 1 is for the EEV CCD44 in the mosaic
################################################################################
#
#
# BRD_ID       PERIPH_ID        LOW        HIGH     TOLERANCE   INIT_VAL
#
#   CONNECTOR PO-A 
#
BRD_CLKDRV1 CLKDRV_DAC0_LO     -5000      -5000     1000       -5000 #SWL  VRPhi
BRD_CLKDRV1 CLKDRV_DAC0_HI      5000       5000     1000        5000 
BRD_CLKDRV1 CLKDRV_DAC1_LO     -5000      -5000     1000       -5000 #SWR  VRPhi
BRD_CLKDRV1 CLKDRV_DAC1_HI      5000       5000     1000        5000 
BRD_CLKDRV1 CLKDRV_DAC2_LO     -5000      -5000     1000       -5000 #RF3  VRPhi
BRD_CLKDRV1 CLKDRV_DAC2_HI      5000       5000     1000        5000 
BRD_CLKDRV1 CLKDRV_DAC3_LO     -5000      -5000     1000       -5000 #RF2L VRPhi
BRD_CLKDRV1 CLKDRV_DAC3_HI      5000       5000     1000        5000 
BRD_CLKDRV1 CLKDRV_DAC4_LO     -5000      -5000     1000       -5000 #RF1L VRPhi
BRD_CLKDRV1 CLKDRV_DAC4_HI      5000       5000     1000        5000
BRD_CLKDRV1 CLKDRV_DAC5_LO     -5000      -5000     1000       -5000 #RF2R VRPhi
BRD_CLKDRV1 CLKDRV_DAC5_HI      5000       5000     1000        5000
BRD_CLKDRV1 CLKDRV_DAC6_LO     -5000      -5000     1000       -5000 #RF1R VRPhi
BRD_CLKDRV1 CLKDRV_DAC6_HI      5000       5000     1000        5000
BRD_CLKDRV1 CLKDRV_DAC7_LO     -6000      -6000     1000       -6000 #DG VDG
BRD_CLKDRV1 CLKDRV_DAC7_HI      6000       6000     1000        6000
#
#     CONNECTOR PO-B
#
BRD_CLKDRV1 CLKDRV_DAC8_LO    -12000      -4000     1000       -7000 #IF1 VIPhi
BRD_CLKDRV1 CLKDRV_DAC8_HI     -2000       3000     1000        3000
BRD_CLKDRV1 CLKDRV_DAC9_LO    -12000      -4000     1000       -7000 #IF2 VIPhi
BRD_CLKDRV1 CLKDRV_DAC9_HI     -2000       3000     1000        3000
BRD_CLKDRV1 CLKDRV_DAC10_LO   -12000      -4000     1000       -7000 #IF3 VIPhi
BRD_CLKDRV1 CLKDRV_DAC10_HI    -2000       3000     1000        3000
BRD_CLKDRV1 CLKDRV_DAC11_LO    -0000      -0000     1000       -0000 #empty
BRD_CLKDRV1 CLKDRV_DAC11_HI     0000       0000     1000        0000
BRD_CLKDRV1 CLKDRV_DAC12_LO    -6000      -4000     1000       -6000 #FRL
BRD_CLKDRV1 CLKDRV_DAC12_HI     6000       8000     1000        6000
BRD_CLKDRV1 CLKDRV_DAC13_LO    -6000      -4000     1000       -6000 #FRR
BRD_CLKDRV1 CLKDRV_DAC13_HI     6000       8000     1000        6000


#
# Gain should be interpreted as follows
# There are two gains, gain1 is on the preamp, gain2 is on the video board.

# Gain1 =  
#     3 == 1.5
#     1 == 2.25
#     0 == 3.0
#
# Gain2 =
#     0 = Minimum (2.5) 
#     1 = Maximum (12.5) 
#
# BRD_ID  PERIPH_ID             LOW    HIGH   TOLERANCE       INIT_VAL
BRD_VIDBRD0 VID_GAIN1_CHAN0       0       3       0               1
BRD_VIDBRD0 VID_GAIN1_CHAN1       0       3       0               1
BRD_VIDBRD0 VID_GAIN1_CHAN2       0       3       0               1
BRD_VIDBRD0 VID_GAIN1_CHAN3       0       3       0               1

BRD_VIDBRD0 VID_GAIN2_CHAN0       0       1       0               0
BRD_VIDBRD0 VID_GAIN2_CHAN1       0       1       0               0
BRD_VIDBRD0 VID_GAIN2_CHAN2       0       1       0               0
BRD_VIDBRD0 VID_GAIN2_CHAN3       0       1       0               0

BRD_VIDBRD0 VID_FILT_CHAN0        0       3       0               0
BRD_VIDBRD0 VID_FILT_CHAN1        0       3       0               0
BRD_VIDBRD0 VID_FILT_CHAN2        0       3       0               0
BRD_VIDBRD0 VID_FILT_CHAN3        0       3       0               0

BRD_VIDBRD0 VID_TESTVID_CHAN0     0       1       0               0
BRD_VIDBRD0 VID_TESTVID_CHAN1     0       1       0               0
BRD_VIDBRD0 VID_TESTVID_CHAN2     0       1       0               0
BRD_VIDBRD0 VID_TESTVID_CHAN3     0       1       0               0

#
# Video Offsets are in 0.001 volts
#
# BRD_ID  PERIPH_ID           LOW    HIGH   TOLERANCE    INIT_VAL
#


BRD_VIDBRD0 VID_OFFSET_CHAN0    0   65535    6553            0
BRD_VIDBRD0 VID_OFFSET_CHAN1    0   65535    6553            0
BRD_VIDBRD0 VID_OFFSET_CHAN2    0   65535    6553            0
BRD_VIDBRD0 VID_OFFSET_CHAN3    0   65535    6553            0


Back to the overview page ESO Test Reports for the OmegaCAM CCDs