

European Southern Observatory

GIRAFFE

CCD Detector Systems Detector design and performance report

Version 1.02

VLT-TRE-ESO-13730-2765

	Name	Date	Signature
Prepared			
	Cyril Cavadore	25 April 2002	
Approved			
1 pproved	Dietrich Baade		
Released			
	Guy Monnet		

Change Record

Issue/ Revision	Date	Section/Page affected	by	Reason
1	10-June-01 to 25-April-02	All	C.CAVADORE	First release

List of Abbreviations

ADC	Analog to Digital Converter
ADU	Analog to Digital Unit
ATM	Asynchronous Transfer Mode
BOB	Broker for Observation Blocks
CCD	Charge Coupled Device
CFC	Continuous Flow Cryostat
COM1	Commissioning 1
DSP	Digital Signal Processor
EMI	Electromagnetic Immunity
EPER	Extended Pixel Edge Response
FIERA	Fast Imager Electronic Readout Assembly
Gbps	Gigabit/second
IC-LCU	Instrument Control LCU
ICS	Instrument Control System
kps	kilopixel/port/second
LAN	Local Area Network
LCU	Local Control Unit
LRU	Line Replaceable Unit
Mps	Megapixel/port/second
MTBF	Mean Time Between Failures
MIDAS	Image processing software package
ODT	Optical Detector Team
PRISM	Image processing software package
RTD	Real Time Display
TBD	To Be Defined
WS	Workstation

Table of Contents

1 Introduction	6
1.1 Purpose	6
2 CCD dimensions and data format	6
3 GIRAFFE detector – Gain and readout modes	8
3.1 Bias spatial stability	8
4 Detector system components	11
4.1 System components overview	11
4.2 Grounding Scheme	
5 Cryogenic parameters	12
5.1 CCD temperatures	12
5.2 Telemetry and alarms	
6 Fiera detector head electronics and hardware setup	13
6.1 Video board	13
6.2 Clock driver board	14
6.3 Other boards and parts	14
6.4 CCD operating voltages	14
7 CCD system performance data	16
7.1 Gain and readout noise	16
7.2 The scientific CCD (BRUCE)	18
7.2.1 CCD specification	
7.2.2 Cosmetic defects	19
7.2.3 Dark current	24
7.2.4 Cosmic ray hit event	24
7.2.5 Charge Transfer Efficiency	24
7.2.6 Linearity	24
7.2.7 Dynamic range vs readout modes	26
7.2.8 Overexposure	26
7.2.9 Readout direction	27
7.2.10 CCD flatness	27
7.2.11 Quantum efficiency (QE) and photo-response non uniformity (PRNU)	
7.3 Opto-mechanical requirements for CCD's for GIRAFFE	30
8 Fiera housing, system design technical notes	31
8.1 Fiera housing	31
8.2 Fiera cooling system	
9 System Maintenance	32
9.1 Regular CCD performance checking	32
9.1.1 CCD Contamination	32
9.1.2 Noise and conversion factor	
9.2 Electronic and detector head boxes	
9.3 SPARC Maintenance	
9.4 Shutter	
10 System pictures	
11 System cables	37
12 Acknowledgement	42

Figure index

Figure 1.1-1 CCD data layout, binning 1x1 modes	7
Figure 1.1-2 CCD data layout, binning 2x2 modes	7
Figure 3.1-1 Bias stability during readout, 50Kpx/High gain	9
Figure 3.1-2 Bias stability during readout, 225Kpx/Low gain.	9
Figure 3.1-3 Bias stability during readout, 225Kpx High gain	10
Figure 3.1-4 Bias stability during readout, 625Kpx/Low gain.	10
Figure 4.1-1 Overall system	11
Figure 5.1-1, At 140K, the right side of the CCD is fine, whereas the left side already shows incipient cosmic hits trailing	12
<i>Figure 5.1-2, at 138K, Figure 5.1-3, at 130K</i>	13
Figure 7.1-1 Noise power spectrum at 50Kpx/sec, 512x512 window, nothing but white noise is visible.	17
Figure 7.1-2 Noise power spectrum at 225Kpx/sec High Gain, 512x512 window	17
Figure 7.1-3 Noise power spectrum at 225Kpx/sec Low gain, 512x512 window	18
Figure 7.1-4 Noise power spectrum at 625Kpx/sec, 512x512 windo.	18
Figure 7.2-1 Full frame bias image	20
Figure 7.2-2 Full frame Flat field image, 350 nm, 5nm bandwidth.	20
Figure 7.2-3 Full frame flat field image,600 nm, 5nm bandwidth	21
Figure 7.2-4 Full frame flat field image,900 nm, 5nm bandwidth.	21
Figure 7.2-5, 4x3600s dark exposure median stacked.	22
<i>Figure 7.2-6, 7200s, 0.58e-/ADU, top right glowing at X=1844,Y= 4096</i>	22
Figure 7.2-7, 7200s dark exposure, vertical cross section ending where the glowing is the strongest	23
<i>Figure 7.2-8, 900s, 0.58e-/ADU, top right of the CCD at X=1844,Y= 4096.</i>	23
Figure 7.2-9, Dust particle, flat field, it extends to a 47x67 pixel box at X=1922, Y= 905.	24
Figure 7.2-10, Mode 1 Non linearity	25
Figure 7.2-11, Mode 3 Non linearity	25
Figure 7.2-12, Mode 5 Non linearity	26
Figure 7.2-13, 120sec exposure spectra calibration (Thorium Lamp) over exposed.	26
Figure 7.2-14, Different exposures showing the blooming extensions vs photon rate per pixel, spot size is 30x30 pixels	27
Figure 7.2-15, CCD Top view including the deviations in microns from a reference	28
Figure 7.2-14, Quantum Efficiency curve	28
Figure 7.2-15, PRNU curve	29
Figure 7.3-1, Optical path to the detector	30
Figure 8.2-1, FIERA heat exchanger unit located at the bottom of detector head box and power supply	32
Figure 8.2-1, Preamp box and detector head	34
Figure 8.2-2, Power supply box, detector head box and PULPO+Shutter controller rack	35
Figure 8.2-3, Detector head attached to the spectrograph, at Paranal, the input ln2 transfer line has been rotated by 180	degrees
Figure 8.2-4. Detector head FIERA Box cable feed thru	
о ,	

1 Introduction

This document is meant as a short introduction to the Optical Detector System for GIRAFFE for the ESO Very Large Telescope. It describes the basic hardware and the performance of the system. All additional information can be found in the GIRAFFE Detector Preliminary and Final Design Reviews documents (VLT-TRE-ESO-13740-0000) and will not be repeated in this document.

1.1 <u>Purpose</u>

This document shall be used as a reference document for hardware and the performance of the system i.e. components, readout noise, implemented readout modes, measurements. As reference, one should read the following documents relating to :

- 1. FIERA CCD software manual : VLT-MAN-ESO-13640-1388 : <u>http://www.eso.org/projects/vlt/sw-dev/wwwdoc/MAR2001/VLT-MAN-ESO-13640-1388/Output/NewFrontCover.html</u>
- 2. FIERA Software Maintenance Manual: VLT-MAN-ESO-13640-1707
- 3. FIERA Hardware Manual and System Manual are VLT-MAN-ESO-13640-1844 and VLT-MAN-ESO-13640-1845 respectively
- 4. EEV44-82 General tests report and performances : <u>http://www.eso.org/projects/odt/EEV-report/EEV44-General-perfs.html</u>
- 5. PULPO user manual : <u>http://www.eso.org/projects/odt/pulpo/pulpo.html</u>

2 CCD dimensions and data format

Figure 1.1-1 shows how the data of the EEV44-82 are laid out for modes 1, 3, 5 to 7 (see next section for mode definition) on. The 2x2 binning image formed is shown in figure 1.1-2.

There are 50 overscan, 50 prescan pixels visible on the image (RTD display at LCU level, no geometric transformation, all readout modes), 2048 photosensitive columns and 4096 photosensitive rows in binning 1x1, 2048 photosensitive rows in binning 1x2. All the readouts are performed from the **right port**.

The left port can be used as a backup solution in case of problems with the right port : In that case, the readout patterns located at \$INS_ROOT/SYSTEM/COMMON/CONFIGFILES/ccdFg must be modified accordingly. The video cable has to be moved from channel 1 to channel 0. Also keep in mind that the FIERA video board has only one channel with an implemented ADC.

Figure 1.1-1 CCD data layout, 1x1 binning modes

Figure 1.1-2 CCD data layout, 2x2 binning modes

3 <u>GIRAFFE detector – Gain and readout modes</u>

All the pixels are readout from a single port (RIGHT port). Slightly worse performance is obtained from the left port. Mode 7 is an engineering mode that is not offered for science purposes.

GIRAFF	Displayed	Mode description	Ir	Image size (Pixels)				Readout
E modes	mode name		Prescan	Over- scan	Width	Height	Sequences ¹	time (s) 2
0	none	-	-	-	-	-	-	-
1	50kpx_1x1_HG	50,000 pixels per second, 1x1 binning, High gain mode	50	50	2048	4096	Read_50_1x1.wsq	190.2
2	50kpx_1x2_HG	50,000 pixels per second, 1x2 binning, High gain mode	50	50	2048	2048	Read_50_1x2.wsq	97.4
3	225kpx_1x1_HG	225,000 pixels per second, 1x1 binning, High gain mode	50	50	2048	4096	Read_225_1x1.wsq	42.7
4	225kpx_1x2_HG	225,000 pixels per second, 1x2 binning, High gain mode	50	50	2048	2048	Read_225_1x2.wsq	22.1
5	225kpx_1x1_LG	225,000 pixels per second, 1x1 binning, Low gain mode	50	50	2048	4096	Read_225_1x1.wsq	42.7
6	225kpx_1x2_LG	225,000 pixels per second, 1x2 binning, High gain mode	50	50	2048	2048	Read_225_1x2.wsq	22.1
7	625kpx_1x1_LG (Engineering mode, not offered)	625,000 pixels per second, 1x1 binning, Low gain mode	50	50	2048	4096	Read_625_1x1.wsq	24.2

Bias value table :

GIRAFFE modes	Displayed mode name	Mode description	Offset value ³ ADUs (+/- 1)
1	50kpx 1x1 HG	50,000 pixels per second, 1x1 binning, High gain mode	279
2	50kpx_1x2_HG	50,000 pixels per second, 1x2 binning, High gain mode	279
3	225kpx_1x1_HG	225,000 pixels per second, 1x1 binning, High gain mode	181
4	225kpx_1x2_HG	225,000 pixels per second, 1x2 binning, High gain mode	181
5	225kpx_1x1_LG	225,000 pixels per second, 1x1 binning, Low gain mode	156
6	225kpx_1x2_LG	225,000 pixels per second, 1x2 binning, Low gain mode	156
7	625kpx_1x1_LG	625,000 pixels per second, 1x1 binning, Low gain mode	212

3.1 Bias spatial stability

¹ Files can be found at \$INS_ROOT /SYSTEM/COMMON/CONFIGFILES/ccdFg

² Does not include transfer to Instrument Workstation (overhead is about 10-15 sec)

³ Measured 11th April 2002 at 148K

Bias exposures show some ramp-up effect, along the Y-axis and are stable from readout to readout (2-3 adus). The previous plots where made by median stacking horizontally pixels. High gain mode stands for 0.6 e-/ADU whereas Low Gain modes stand for 2.2 e-/ADU. All measurements were recorded in Garching (Feb 2002).

Figure 3.1-1 Bias stability during readout, 50Kpx at High gain

Figure 3.1-2 Bias stability during readout, 225Kpx at Low gain.

Figure 3.1-3 Bias stability during readout, 225Kpx at High gain

Figure 3.1-4 Bias stability during readout, 625Kpx at Low gain.

4 Detector system components

4.1 System components overview

Figure 4.1-1 Overall system

4.2 Grounding Scheme

To ensure good noise performance and a system free of noise pick-up, ground loops must be eliminated. More particularly no direct earth/ ground connections are allowed between the FIERA power supply box and the FIERA detector head electronics. The thick power cable has its shield connected only to the power supply box, not the detector electronic box. Also, the detector head box temperature sensor cable must not have the shield connected in both sides. Another source of noise is the CFC LN2 exhaust valve switch during operation. If the cable is too close to the preamp box, this can inject noise pattern to the system. To remedy noise pattern injection from the LN2 exhaust valve, one has to ensure that the cable that provides the pulse, is far away from the preamp box and a free-wheel diode is installed at the pins of the CFC exhaust valve.

5 Cryogenic parameters

	Temperature (°Celsius)	Temperature (°Kelvin)	Notes
CCD Table	-127.3	144	At 140K, CTE degradation is visible, 144K is
			fine and a good trade off. This is set up by the
			Pulpo.dat file when Fiera starts up.
Actual CCD temperature	-120	150	There is an offset of 7 degrees between the CCD
-			carrier table and the CCD surface (silicon).
CFC cold plate temperature	-155	123	Set by the CFC controller
Electronic box shut down temp	40	313	Set by Hardware

5.1 <u>CCD temperatures</u>

The next images (Figure 5.1-1) show how CTE degrades by lowering too much the operating temperature. The readout port used was the right port (readout from left to right).

Figure 5.1-1, At 140K, the right side of the CCD is fine, whereas the left side already shows incipient cosmic hits trailing.

Figure 5.1-2, at 138K,

Figure 5.1-3, at 130K

5.2 <u>Telemetry and alarms</u>

These values are intended to set alarm levels at the ICS level. They are supposed to provide alarms when the CCD and the Detector head box temperatures are out of range.

CCD temp min:	145 K
CCD temp max:	155 K
Detector head box, temp min:	273 K
Detector head box temp max:	308 K

6 Fiera detector head electronics and hardware setup

6.1 <u>Video board</u>

	EEV left amp	EEV right amp	Not used	Not used
Videobrd 0	Channel 0	Channel 1	Channel 2	Channel 3
Gain0	2 e-/ADU	2 e-/ADU	default	default
Gain1	0.6 e-/ADU	0.6 e-/ADU	default	default
Resistors (gain0)	R 43= 300R // 270R = 142R	R 47 = 300R // 270R = 142R	default	default
Resistors (gain1)	R 42 = 36R	R 46 = 36R	default	default
Filter 0	C21=100pF ($\tau = 150$ ns)	C25=100pF ($\tau = 150$ ns)	default	default
Filter 1	C22= 220pF (τ = 500ns)	C26= 220pF (τ = 500ns)	default	default
Filter 2	C23= 1nF (τ = 1500ns)	C27= 1nF (τ = 1500ns)	default	default
Filter 3	C24 = $2nF = C374$ ($\tau =$	$C28 = C375$ ($\tau = 3000$ ns)	default	default
	3000ns)			
Offset setting	0 to 5 Volts	0 to 5 Volts	default	default

The current video board installed is #59 (June 2001), only one channel is used (currently $\underline{1}$), the other channel ($\underline{0}$) could be used, but it <u>NEEDS</u> the clock patterns to be modified accordingly to be able to read from that output. No ADCs have been installed in channels 2 and 3.

6.2 Clock driver board

SIMM	DAC	PHASE	OUTPUT RESISTOR
0	BRD_CLKDRV0 CLKDRV_DAC0	SWL	50R
1	BRD_CLKDRV0 CLKDRV_DAC1	SWR	50R
2	BRD_CLKDRV0 CLKDRV_DAC2	RF3	50R
3	BRD_CLKDRV0 CLKDRV_DAC3	RF2L	50R
4	BRD_CLKDRV0 CLKDRV_DAC4	RF1L	50R
5	BRD_CLKDRV0 CLKDRV_DAC5	RF2R	50R
6	BRD_CLKDRV0 CLKDRV_DAC6	RF1R	50R
7	BRD_CLKDRV0 CLKDRV_DAC7	DG	50R
8	BRD_CLKDRV0 CLKDRV_DAC8	IF1	10R
9	BRD_CLKDRV0 CLKDRV_DAC9	IF2	10R
10	BRD_CLKDRV0 CLKDRV_DAC10	IF3	10R
11	BRD_CLKDRV0 CLKDRV_DAC11	empty	10R
12	BRD_CLKDRV0 CLKDRV_DAC12	FRL	10R
13	BRD_CLKDRV0 CLKDRV_DAC13	FRR	10R

The current clock board installed is #45 (June 2001).

6.3 Other boards and parts

Communication board	:	default	(no modifications)
Bias board	:	default	(no modifications)
Power supplies	:	default	(+15V 4A; -15V 4A; +30V 1A; +24V 5A; +5V, 3A)
DSP board (40 MHz)	:	default	(no modifications)
Benner board	:	default	(no modifications)
Sparc computer	:	Intermediate	flat SPARC prototype Ultra Iii 440Mhz, the Sparc can be
		accessed thru	the RS232 console thru TTYA or thru the Ethernet RJ45
		port at IP=134	4.171.5.158, this Sparc includes an ATM board that is
		attached to th	e Paranal's network.

6.4 CCD operating voltages

The file's path and name are : \$INS ROOT/SYSTEM/COMMON/CONFIGFILES/volttable.def

```
**********
#Author : Cyril CAVADORE
               ( 1 EEV CCD)
#CAMERA :
         Giraffe
         This is the global voltage definition table
#Purpose:
         European Southern Observatory (ESO)
#Date:
         20.11.00
############################
                ******
# GOBAL VOLTAGE DEFINITION TABLE
# This table defines the voltages, which will be applied to peripherals
# at initialization time. It also defines the high and low limits, which may
# be set for these voltages
*****
# BRD ID PERIPH ID
                   LOW
                       HIGH TOLERANCE
                                     INIT VAL
# Anabias voltages are in 0.001 volts
**********
# BIASBRD 0 is for the EEV CCD-44 in the mosaic
# BRD ID PERIPH ID
                   LOW HIGH TOLERANCE
                                     INIT VAL
```

<pre># CONNECTOR # STANDARD C</pre>	PO - A CONFIGURATION FOR	EEV44-82	CCDs				
# BRD ID PE	ERIPH ID	LOW	HIGH	TOLERA	NCE	INIT VAL	
BRD_ANABIAS() ANB_PRESET_VOLT_	A	-3500	-1000	10000		3500 #OG1R
BRD_ANABIAS() ANB_PRESET_VOLT_	В	-2500	-1000	10000	-	2500 #0G2R
BRD_ANABIAS() ANB_PRESET_VOLT_	C	20000	26000	10000	2	3000 #ODR
BRD_ANABIAS) ANB_PRESET_VOLT_	D	11000	15000	10000	1	1000 #RDR
BRD ANABIAS) ANB_PRESET_VOLT_) ANB_PRESET_VOLT_	E F	20000	26000	10000	2	5000 #JDR 5000 #JDI
BRD ANABIAS() AND TRESET_VOLT_	G	10000	23000	10000	1	8500 #000 8500 #000
BRD ANABIAS) ANB PRESET VOLT	H	9000	15000	10000	1	1000 #RDL
BRD ANABIAS) ANB PRESET VOLT	I	20000	26000	10000	2	3000 #ODL
BRD ANABIAS) ANB PRESET VOLT	J	-2500	-1000	10000	-	2500 #OG2L
BRD_ANABIAS() ANB_PRESET_VOLT_	K	-3500	-1000	10000	-	3500 #OG1L
#The anabias	s board also has a	n opto i	solated	periph	eral		
BRD_ANABIAS() ANB_OPTOOUT	0	32767	4		255	
#							
######################################	######################################	######## are in 0	######## .001 vo	####### lts	#######	########	****
# #############	:######################################	########	#######	#######	#######	#########	***
#CLOCKDRIVEF	R BOARD 0 is for t	he EEV C	CD44 in	the mo	saic		
###########	+ # # # # # # # # # # # # # # # # # # #	#######	######	######	# # # # # # # #	########	###########
#							
#							
# BRD_ID	PERIPH_ID	LOW	H	IGH	TOLERAN	CE INIT_	_VAL
# # CONNECTO	DR PO-A						
#	CINDER DACO IO	6000	5 (000	1000	5000	# OMT
BRD_CLKDRV0	CIKDRV DACO HI	5000	-30	000	1000	-3000	#SWL
BRD_CLKDRV0	CLKDRV DAC1 LO	-6000	-5(000	1000	-5000	#SWR
BRD CLKDRV0	CLKDRV DAC1 HI	5000	6(000	1000	5000	
BRD CLKDRV0	CLKDRV DAC2 LO	-6000	-50	000	1000	-6000	#RF3
BRD CLKDRV0	CLKDRV DAC2 HI	5000	60	000	1000	6000	
BRD_CLKDRV0	CLKDRV_DAC3_LO	-6000	-50	000	1000	-6000	#RF2L
BRD_CLKDRV0	CLKDRV_DAC3_HI	5000	60	000	1000	6000	
BRD_CLKDRV0	CLKDRV_DAC4_LO	-6000	-50	000	1000	-6000	#RF1L
BRD_CLKDRV0	CLKDRV_DAC4_HI	5000	60	000	1000	6000	
BRD_CLKDRV0	CLKDRV_DAC5_LO	-6000	-50	000	1000	-6000	#RF2R
BRD_CLKDRV0	CLKDRV_DAC5_HI	5000	6(000	1000	6000	UDE1D
BRD_CLKDRV0	CLKDRV_DAC6_LO	-6000	-50	000	1000	-6000	#RF1R
BRD_CIKDRVO	CIKDRV DACO HI	-6000	-50	000	1000	-6000	#DC
BED CIKDEVO	CLKDRV_DAC7_LO	5000	-50	000	1000	6000	#DG
#		5000	01	000	1000	0000	
# CONNEC #	CTOR PO-B						
BRD_CLKDRV0	CLKDRV_DAC8_LO	-12000	-40	000	1000	-8000	#IF1
BRD_CLKDRV0	CLKDRV_DAC8_HI	-2000	4(000	1000	3000	
BRD_CLKDRV0	CLKDRV_DAC9_LO	-12000	-40	000	1000	-8000	#IF2
BRD_CLKDRV0	CLKDRV_DAC9_HI	-2000	4(000	1000	3000	
BRD_CLKDRV0	CLKDRV_DAC10_LO	-12000	-40	000	1000	-8000	#IF3 Makes the line reset
BRD_CLKDRV0	CLKDRV_DAC10_HI	-2000	4 (000	1000	3000	
BRD_CLKDRV0	CLKDRV_DAC11_LO	-0000	-00	000	1000	-0000	#empty
BRD_CLKDRV0	CLKDRV_DACII_HI	0000	00	000	1000	0000	4 D D I
BRD_CLKDRV0	CLKDRV_DACI2_LO	-0000	-40	000	1000	-6000	#FKT
BRD CLKDRVO	CLKDKV_DACI2_HI	6000	8(000	1000	6000	# F DD
BRD CLKDRVO	CLKDKV_DACI3_LO	-0000	-4(000	1000	-6000	#ĽKK
	CTURA DACIQ HI	0000	80	000	TUUU	6000	

Gain should be interpreted as follows # There are two gains, gain1 is on the preamp, gain2 is on the video board.

```
# Gain1 =
# 3 == 1.5
# 1 == 2.25
# 0 == 3.0
#
# Gain2 =
# 0 = Minimum (2.5)
# 1 = Maximum (12.5)
```

#									
#	INIT VALUES,	overridden	by modes	files,	High	gain	filtre	xxx.vol	.t
#	or Low_gain_:	filtre_xxx.v	rolt		_			_	

# BRD_ID PERIPH_ID	LOW	HIGH	I	TOLERANCE	INIT_V	AL
BRD VIDBRD0 VID GAIN1 CHAN0		0	3	0		1
BRD VIDBRD0 VID GAIN1 CHAN1		0	3	0		1
BRD VIDBRD0 VID GAIN1 CHAN2		0	3	0		1
BRD_VIDBRD0 VID_GAIN1_CHAN3		0	3	0		1
BRD VIDBRD0 VID GAIN2 CHAN0		0	1	0		0
BRD VIDBRD0 VID GAIN2 CHAN1		0	1	0		0
BRD_VIDBRD0 VID_GAIN2_CHAN2		0	1	0		0
BRD_VIDBRD0 VID_GAIN2_CHAN3		0	1	0		0
BRD_VIDBRD0 VID_FILT_CHAN0		0	3	0		0
BRD_VIDBRD0 VID_FILT_CHAN1		0	3	0		0
BRD_VIDBRD0 VID_FILT_CHAN2		0	3	0		0
BRD_VIDBRD0 VID_FILT_CHAN3		0	3	0		0
BRD_VIDBRD0 VID_TESTVID_CHANC)	0	1	0		0
BRD_VIDBRD0 VID_TESTVID_CHAN1	-	0	1	0		0
BRD_VIDBRD0 VID_TESTVID_CHAN2	2	0	1	0		0
BRD_VIDBRD0 VID_TESTVID_CHAN3	3	0	1	0		0
#						
<pre># Video Offsets are in 0.001 #</pre>	volts					
# BRD_ID PERIPH_ID #	LOW	HIGH	I	TOLERANCE	INIT_V	AL
$\overset{"}{\#}$ Overridden by *volt files,	just	for INI	Т			
BRD VIDBRD0 VID OFFSET CHAN0	0	65535		6553	0	
BRD VIDBRD0 VID OFFSET CHAN1	0	65535		6553	0	
BRD VIDBRD0 VID OFFSET CHAN2	0	65535		6553	0	
BRD VIDBRD0 VID OFFSET CHAN3	0	65535		6553	0	

The current bias board installed is #35 (June 2001).

7 CCD system performance data

7.1 Gain and readout noise

The following table shows noise figure that have been measured in March 2002 (Garching HQ).

Mode	Readout speed [kHz]	Dynamic (ADC limited) [Ke-]	Readout port	Conversion factor [e ⁻ /ADU]	Readout noise [e ⁻]
1	50kpx_1x1_HG	41	Right	0.63 ± 0.05	2.03 ± 0.09
2	50kpx_1x2_HG	41	Right	0.63 ± 0.05	2.03 ± 0.09
3	225kpx_1x1_HG	41	Right	0.58 ± 0.05	3.15 ± 0.09
4	225kpx_1x2_HG	41	Right	0.58 ± 0.05	3.15 ± 0.09
5	225kpx_1x1_LG	142	Right	2.18 ± 0.05	4.14 ± 0.09
6	225kpx_1x2_LG	142	Right	2.18 ± 0.05	4.14 ± 0.09
7	625kpx_1x1_LG	142	Right	2.21 ± 0.05	4.67 ± 0.09

Mode	Readout speed [kHz]	Dynamic (ADC limited) [Ke-]	Readout port	Conversion factor [e ⁻ /ADU]	Readout noise [e⁻]
1	50kpx_1x1_HG	41	Right	0.63 ± 0.05	2.05 ± 0.09
2	50kpx_1x2_HG	41	Right	0.65 ± 0.05	2.10 ± 0.09
3	225kpx_1x1_HG	41	Right	0.61 ± 0.05	3.28 ± 0.09
4	225kpx_1x2_HG	41	Right	0.60 ± 0.05	3.34 ± 0.09
5	225kpx_1x1_LG	142	Right	2.25 ± 0.05	4.21 ± 0.09
6	225kpx_1x2_LG	142	Right	2.26 ± 0.05	4.17 ± 0.09
7	625kpx_1x1_LG	142	Right	2.30 ± 0.05	4.90 ± 0.09

The following table shows noise figure that have been measured in April 2002, at Paranal before COM1.

All the plots were recorded at ESO, HQ, Paranal plots after installation are similar (no noise pick-up).

Figure 7.1-1 Noise power spectrum at 50Kpx/sec, 512x512 window, nothing but white noise is visible.

Figure 7.1-2 Noise power spectrum at 225Kpx/sec High Gain, 512x512 window.

Figure 7.1-3 Noise power spectrum at 225Kpx/sec Low gain, 512x512 window.

Figure 7.1-4 Noise power spectrum at 625Kpx/sec, 512x512 windo.

7.2 The scientific CCD (BRUCE)

7.2.1 CCD specification

CCD serial number	:	7173-3-1
CCD alias name :	BRU	JCE
Туре	:	EEV CCD-44 Back Ill. AR coated
Number of pixels	:	[H] 2048 [V] 4102
Number of outputs	:	2
Pixel size	:	15x15 μm
Channel potential voltage	:	11.8V
Intrinsic pixel full-well	:	150Ke-

7.2.2 Cosmetic defects

	Cosmetic defects table				
Low level flat	t field				
			Mean number of electrons per pixel ≈ 3000		
Type of defect	Location (x,y)		Number of pixels affected		
Dork nivels	(451 2202) (1072	2025) (1297	Single nivel or eluster of 2x2		
Dark pixels	(431, 3893)- $(1972, 2127) = (1176, 153)$	(2933) = (1287, 1287)	Single pixel, of cluster of 5x5		
Hot nivels	(1170, 135)) = (380, 378)	3 columns starting from these locations : column		
riot pixels	410,1405		416,417 and 418		
Bias image					
			0 sec dark exposure		
12000 pixels a	above 5σ				
Type of	Location (x,y)		Number of pixels affected		
defect					
Hot pixels	Hot pixels 416,1463		3 columns starting from these locations : column		
			416,417 and 418		
Long exposure dark images					
			10 exp. of 1800 sec each		
13108 pixels a	above 5σ				
Kind of defect	t	Location X,Y	Number of pixels affected		
Hot pixels		416,1463	3 columns starting from these locations : column 416,417 and 418		
Hot spot		1840, 4098	Charge injection on top of the image (see figure 7-2-6)		
Horizontally aligned hot pixels		1839, 3833	5-10 pixels, aligned horizontally		
Horizontally aligned hot pixels		212, 3828	5-10 pixels, aligned horizontally		
Horizontally aligned hot pixels 1079,		1079, 3835	5-10 pixels, aligned horizontally		
Horizontally aligned hot pixels		385, 3827	5-10 pixels, aligned horizontally		
Horizontally a	ligned hot pixels	1929, 3832	5-10 pixels, aligned horizontally		
Single pixels	- .	-	Spread over the image		
			-		

The following images (Figures 7.2-1 to 7.2-5) show full frame images (2x4K) where X=1 and Y=1 are located at the bottom left of the image. Y is horizontal and increases when going towards right. X is vertical, increasing towards up. The right readout port of the CCD is located at X=2048 and Y=1.

Figure 7.2-1 Full frame bias image

Figure 7.2-2 Full frame Flat field image, 350 nm, 5nm bandwidth.

Figure 7.2-3 Full frame flat field image,600 nm, 5nm bandwidth

Figure 7.2-4 Full frame flat field image,900 nm, 5nm bandwidth.

Stitching and diamond pattern at lees than 350nm can be corrected by flat fielding. Fringing can be subtracted with sky night super flats.

Figure 7.2-5, 4x3600s dark exposure median stacked.

Glowing at the CCD top section is visible in exposures longer than 60s, and is related to charge injection by the CCD guard ring. This charge injection is caused by a manufacturing defect on the CCD and cannot be recovered. This effect is proportional to the exposure time and also exhibits a dependency on temperature. The figure 7.2-6 shows this effect on a 600x300 pixels sub window image where X and Y are Cartesian oriented. After installation at Paranal (April 2002), this effect seems to have disappeared (Figure 7.2-8). No explanation at that date.

Figure 7.2-6, 7200s, 0.58e-/ADU, top right glowing at X=1844,Y= 4096

Figure 7.2-7, 7200s dark exposure, vertical cross section ending where the glowing is the strongest.

Figure 7.2-8, 900s, 0.58e-/ADU, top right of the CCD at X=1844, Y= 4096.

A filamentary dust particle of 1 mm has settled over the CCD surface during transportation to Paranal (see next figure). This filament can disappear from a day to another, or after break of vacuum, but it could also remain for a long time. The only way to remove it would be to dismount and clean the whole top head section.

Figure 7.2-9, Dust particle, (flat field exposure), extending over a 47x67 pixel box at X=1922, Y=905.

7.2.3 Dark current

Mean dark current is less than 1.0 ± 0.2 e-/pixel/hour @ -120 °C. Ten 1800sec exposure frames were used.

7.2.4 Cosmic ray hit event

Cosmic hit event rate: 0.8 ± 0.4 events/min/cm²

7.2.5 Charge Transfer Efficiency

Vertical CTE to Port A/B	: 0.9999988 (six 9s)
Horizontal CTE to Port A/B	: 0.9999996 (six 9s)

The EPER method was used, at the ESO CCD testbench at -110C. Beware that a decrease in temperature has an immediate degrading effect on the horizontal CTE, see section related to CCD temperatures (5.1).

7.2.6 Linearity

Linearity for the Left output amplifier	:	+0.63/-0.47 %
Linearity for the Right output amplifier	:	+0.62/ -0.45 %

The linearity has been measured at the CCD Test bench Facility in Garching, with a gain of 2.2e- ADU (range was 130Ke-). At Paranal (figures 7.2-10 to 12), linearity measurements have been made (11th April 2002). Only readout modes 1, 3 and 5 have been measured because modes 1-2, 3-4 and 5-6 are identical. Several exposures leading to different light levels using the Giraffe spectrograph shutter have been used to compute the linearity. As a light source, the internal Giraffe flat screen and lamp where used.

Figure 7.2-10, Mode 1 Non linearity

Figure 7.2-11, Mode 3 Non linearity

Figure 7.2-12, Mode 5 Non linearity

7.2.7 Dynamic range vs readout modes

The 16 bit ADC provides 65335 ADU of dynamic range. The later has to be multiplied by the conversion factor for a given readout mode to get the dynamic range expressed in electrons. This gives a dynamic range of **145Ke-** with a gain of **2.2e-/ADUs** (readout modes 1 to 4) and **43Ke-** with a gain of **0.65e-/ADUs** (readout modes 5 to 7).

7.2.8 Overexposure

No eclipse⁴ or trailing effects due to over saturation have been observed. Counts are always going up to 65535 whatever the mode used. The overexposure has produced 150Ke-

Figure 7.2-13, 120sec exposure spectra calibration (Thorium Lamp) over exposed.

⁴ Eclipse effect means that at the center of an over-saturated star, all the values are clipped to zero instead of 65535. The effect looks like a star that has been eclipsed by a dark mask.

The next figures have been recorded in Garching, showing how the blooming extents according to photon per pixel. The CCD full well is 150Ke-. The changes within the central 9x9 pixels area are given with the next figures.

Figure 7.2-14, Different exposures showing the blooming extensions vs photon rate per pixel, spot size is 30x30 pixels.

7.2.9 Readout direction

Toward the right port for ALL modes

7.2.10 CCD flatness

The CCD flatness is reported into the next figure has been measured at Marconi Company. Peak to peak non-flatness is 20 microns, average is 10 microns.

Figure 7.2-15, CCD Top view including the deviations in microns from a reference.

7.2.11 Quantum efficiency (QE) and photo-response non uniformity (PRNU)

Figure 7.2-16, Quantum Efficiency curve

Quantum efficiency and PRNU table (F/3 incoming beam and 5nm bandwidth)

Wavelength	PRNU (%)	QE(%)	Error(%)
320	1.7	60.8	±1.7
330	1.5	67.5	±1.9
340	1.4	71.9	±1.4
350	1.4	74.0	±0.7
360	1.4	77.6	±0.7
370	1.3	82.0	±0.8
380	1.1	86.3	±0.8
390	1.0	90.3	±0.9
400	0.9	91.5	±0.9
420	0.8	92.2	±0.9
440	0.8	92.1	±0.9
460	0.7	90.4	±0.9
500	0.7	88.2	±0.8
540	0.7	85.7	±0.8
560	0.7	84.1	±0.8
600	0.7	81.9	±0.8
640	0.7	79.6	±0.7
660	0.7	77.5	±0.7
700	0.9	71.5	±0.6
740	1.0	65.2	±0.5
760	1.2	61.7	±0.5
800	1.6	54.3	±0.4
840	2.1	43.9	±0.3
900	2.5	26.6	±0.2
940	3.9	16.1	±0.12
1000	7.5	4.65	±0.03
1040	8.1	0.8	±0.005
1100	11.7	0.09	±0.0006

Figure 7.2-17, PRNU curve

The effective GIRAFFE bandwidth is 370 to 950 nm. This is limited by the Giraffe instrument optics transmission.

7.3 Opto-mechanical requirements for CCD's for GIRAFFE

The flatness tolerances are still based on a maximum allowable defocus blur of 10 μ m with a target of 5 μ m (note that the optics will deliver 80% of the energy within a circle of 15 - 20 μ m)

	Requirements	Measured results	
Item	detector	detector	
	(EEV 2K x 4K chip)	(Bruce)	
Optical field size	Ø68 mm	Fulfilled	
BFD ¹	$2^{+0.03}_{-0.03}$ mm	$1.98 {}^{+0.01}_{-0.01} mm$	
De-centering ²	< 0.5 mm	< 0.5 mm	
P-V flatness	$< 36 \ \mu m \ Goal : 18 \ \mu m^{3}$	X direction : 4 μ m (64mm width) ⁴	
		Y direction : $5 \mu m$ (32mm width)	

1. The distance of the average CCD surface to the reference flange (mounting surface of field lens holder)

2. The distance between the optical center of the chip (not taking into account possible overscan pixels) and the mechanical axis of the dewar.

3. The distance of two planes, parallel to the reference flange, between which the sensitive surface of the chip or mosaic is contained. Applies to optical field size only.

4. Measured tilt along X and Y axis of the CCD.

09:52:48

Figure 7.3-1, Optical path to the detector

8 Fiera housing, system design technical notes

These technical notes describe the basic design and performance of the FIERA Housing and Cooling system.

8.1 <u>Fiera housing</u>

The optical detector team has developed actively cooled housing for the controller and the power supply systems to meet the temperature specifications for the VLT.

8.2 <u>Fiera cooling system</u>

The FIERA active water-cooling system acts like a typical closed-loop liquid cooling system. In the system, cool water is supplied to the heat exchanger and (filtered) air is circulated between an electronic enclosure and a heat exchanger, which then transfers the heat to water flowing through the tubes. Our heat exchanger is placed inside the enclosure with cooled exit air blown directly through the FIERA boards and power supplies. This system permits closed-loop air-cooling and prevents entry of contaminated external on air.

System Design and size selection

Heat exchangers require some temperature difference between liquid and air entering the heat exchanger. In the VLT environment the incoming water temperature of the heat exchanger is regulated to be 8 degC below the ambient temperature. In order to dissipate the entire thermal energy produced, the thermal performance of the FIERA heat exchanger was specified as follows. To rate the thermal performance (TP) of our heat exchanger the following assumptions and equations were applied:

$$TP[Watts/^{\circ}C] = \frac{Q}{T_{air in} - T_{water in}} = \frac{thermal energy produced by the boards or power supplies}{air temperature into HX}$$

Figure 1 shows the FIERA heat exchanger mounted on the Rack unit. The heat exchanger is equipped with 4 slim-line low-noise fans to blow air through the complete area of the electronic boards. The fans are wired in parallel and operated with 24V DC voltages. The operating temperature range is from -10 degC to +70 degC. Additionally a temperature sensor (PT 100) is mounted on the rack on a cooling profile. This sensor monitors the air temperature inside the box and will give the reference value for the flow control unit.

Figure 8.2-1, FIERA heat exchanger unit located at the bottom of detector head box and power supply

It will dissipate 200 Watts as a maximum value with a fully equipped FIERA detector head (11 slots) or power supply box. With an initial temperature difference of 8 degC the heat exchanger must have a minimum thermal performance of 200 watts / 8 degC = 25 Watts/degC. The result from the custom made heat exchanger is a little bit better and has TP of 27 Watts/degC. Thus 200 Watts /27Watts per degC = 7.4 degC. This means that the heat exchanger will dissipate 200 Watts and require 7.4 degrees C difference between the incoming water and incoming air. If the incoming water temperature is constant at 10 degC, the incoming air will stabilize at 17.4 degC.

9 System Maintenance

For any questions or maintenance problems, please send your input to ODT thru its generic email address <u>odt@eso.org</u>. Before any attempt to modify this system, please consult with the ODT.

9.1 <u>Regular CCD performance checking</u>

9.1.1 CCD Contamination

CCD contamination must be checked regularly by using the flat field screen and light at 450nm. The Giraffe instrument has all the embedded hardware to perform this kind of tests. The recorded flat field must be compared to a reference flat field by subtracting their bias and by dividing the two flat field. A 5x5 binning should be applied. The method employed is extensively described in the VLT-TRE-ESO-13121-2008 document. This should be done once a week.

9.1.2 Noise and conversion factor

By acquiring a set of biases and flat field, it is possible to measure regularly the noise and conversion factor. The same procedures that have been implemented for UVES shall be also used for Giraffe. It consists in acquiring images with BOB and to process them with MIDAS. This should be done once a week.

9.2 <u>Electronic and detector head boxes</u>

Maintenance of detector head and power supply boxes consist in checking once a year that the 4 fans described in figure 8.2-1 are still running and that the heat exchanger is not leaking.

9.3 <u>SPARC Maintenance</u>

The SPARC requires, that, after every VLT software update installed, the entire content of its hard disk is copied bit by bit to another disk. The latter will be regarded as a backup disk. The hard disk is a 9Gb SCSI hard disk, that is installed inside a case than can be easily pull out. The SPARC does not have any output display, or a video board. If one wants to get the SPARC state directly, because for instance the SPARC does not reply over the Paranal ATM network, a direct physical connection to the SPARC must be undertaken.

To be connected physically to the SPARC, the serial cable on TTYA can be tied to a PC running the Hyperterminal software under Windows (settings are 9800-N-8-1). All the debugging messages from the SPARC EEPROM/BIOS software are displayed. Access to Unix prompt using the "fcdrun" account can be also achieved by the TTYA cable. Moreover, for easier control, a crossed Ethernet RJ45 cable can be attached to the Ethernet board of the SPARC at IP=134.171.5.158, on the other side to the Ethernet board of the laptop PC. This allows a point to point connection, which supports Xterminals that can be run from a laptop using any emulator like Xwin32 or Linux. This permits to take the control of the SPARC locally without going thru the ATM LAN, only for maintenance and debugging purposes.

Be aware, that the hardware release of this SPARC is a temporary one (called as intermediate prototype), and, at some point, a final hardware release, including a PCI board, will update the current configuration.

9.4 <u>Shutter</u>

The SESO shutter is a fragile component and from time to time failures to close have been reported before COM1. Attention and future action might be planned to overcome these problems.

10 System pictures

This paragraph includes system pictures that have been recorded in the Garching integration hall.

Figure 9.4-1, Preamp box and detector head

Figure 9.4-2, Power supply box, detector head box and PULPO+Shutter controller rack

Figure 9.4-3, Detector head attached to the spectrograph, at Paranal, the input ln2 transfer line has been rotated by 180 degrees.

Figure 9.4-4, Detector head FIERA Box cable feed thru

11 System cables

see drawings.

GIRAFFE CLOCK CABLE:

GIRAFFE BIAS CABLE:

GIRAFFE CCD VIDEO CABLE

PREAMPLIFIER SIDE

Extension one + case shild, 8 coaxial cables

CRYOSTAT SIDE

PULPO to cryostat CABLE

Giraffe CCD system design report VLT-TRE-ESO-13730-2765

37-pin Vacuum connector female

Do not populate pins 12,13,26,27 on vacuum connector

The wires for the connection of Board4 (1-10) should be available at the SUB-D connector, but NOT be connected !!!

12 Acknowledgement

The Author of this document would like to acknowledge all the people that have helped him to build up this system and to install it at Paranal Observatory. This includes C.Geimer, J.Reyes for hardware support and Fiera system delivery, B.Gaillard for CCD testing support, JL.Lizon for cryogenic support, S.Deiries for cryogenic tests and field lens mounting, J.Alonso, for integration in Garching and Paranal, C.Cumani, A.Ballestra for software issues. To make this document the best as possible, I would like to thank : H.Dekker and D.Baade.

This page is the last page of this document