
OWL
W

or
kfl

ow
 M

an
ag

em
en

t
Sy

st
em

Batch Job Execution System

Workflow Management System

Local Cluster Cloud Resources

Template Engine Blackboard

Workflow Composer Workflow Runner

Operator GUIs

Condor DAGMan

Condor

OWL

Processing Hardware

Science Pipelines Science Software

Francesco Pierfederici, Mike Swam, Gretchen Greene, Mark Kyprianou, Niall Gaffney
Space Telescope Science Institute, Baltimore, USA

OWL
OWL is a Python layer on top of a grid middleware. OWL
supports Condor, Apple XGrid and simple Makefiles out of the
box. Adding support for another middleware involves writing a
single Python plugin.

OWL provides operator GUIs, workflow templates and a
blackboard architecture. The job scheduler provides the
interface to the compute hardware.

Both HST and JWST projects have chosen Condor as the
baseline job scheduler because of its wide adoption, history
and stability. They have chosen OWL as the workflow
management system.

Workflow Templates
Workflow templates allow customization of processing at run-
time, based on the characteristics of the data (i.e. some
pieces of data might not need to go through some processing
steps) and/or the environment (e.g. the availability of compute
resources such as GPUs, the version of the software being
used etc). They essentially make the mostly static Condor
workflows fully dynamic.

OWL includes a library of workflow templates which are
organized by observatory, telescope, instrument and
observing mode. Each template defines the steps of a
workflow, their requirements and dependency rules. Since
each workflow must ultimately be able to be mapped into a
DAG (a requirement imposed by the Condor DAGMan meta-
scheduler) loops are not allowed.

Workflow and step templates can include variables
pointing to Python objects. These variables can refer to a data
model for the data being processed (e.g. a MosaicImage
object composed of FocalPlaneArray objects) and/or the
environment (e.g. the path to the data, the version of the
pipeline being executed, the name of the current user, the
name of the execute machine etc).

Given a piece of data, OWL instantiates the appropriate
workflow templates producing an abstract workflow. Abstract
workflows are not tied to any particular grid middleware and
can be turned into Condor DAGs, Apple XGrid workflows or
simple Makefiles and then be executed.

Blackboard Architecture
Blackboards are data structures that hold both the
instantaneous and the historical state of the system. OWL
provides a process-centric blackboard and a dataset-centric
blackboard. These together allow access to critical
information such as:
• Which pieces of data are being processed by the system.
• The processing history of any given dataset.
• Statistics on the system performance and latency.
• The composition of the processing cluster.
• The resources (e.g. RAM, disk space, processing power)

available on any given processing machine.
This functionality is considered essential for JWST operations,
and has been reinforced by years of experience with HST
data processing on STScI OPUS blackboards.

Interfaces
The two interfaces that OWL offers developers and pipeline
operators are a web-based GUI and a set of command line
tools. The GUI allows users to inspect the blackboards,
submit workflows, monitor them and stop/restart them.
The command line tools are what the GUIs rely upon and
provide facilities to process data and suspend/restart running
workflows. These utilities have access to both the data to
process and optionally a rich data model which describe both
data and hardware resources.

Status and Availability
OWL is currently still a prototype but it is actively used in the
support of JWST data management system design. It has
been chosen as the JWST workflow manager and is being
developed as a replacement for HST OPUS. It is open source
and interested parties should feel free to contact the authors
to obtain a copy.

