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ATAbstratThe method of Lie-integration is a very e�etive algorithm for numerial solution of ordinary di�erentialequations. The priniple of the algorithm is to ompute the oe�ients of the Taylor-series for thesolution involving reurrene relations. This approah also yields more possibilities for various types ofadaptive integration sine not only the integration stepsize but simultaneously the polynomial order ofthe power series expansion an also be altered. In addition, alternation of the stepsize does not yield aloss in the (expensive) omputing time. The �disadvantage� of the method is beause of the reurreneformulae: these set of equations depends on the partiular problem itself and therefore had to bederived in advane of the atual implementation. However, the method is de�nitely faster than thelassi known expliit methods (that do not depend on the right-hand side of the di�erential equation),has better error propagation properties and the �side-e�et� of knowing the analyti expansion of thesolution also allows us other kind of studies.

The previously mentioned reurrene relations are known for the N -body problem, thus the dynamialanalysis of planetary systems ould be made very e�etive. In this presentation we disuss the questionsand possibilities related to the implementation of the Lie-integration algorithm on GPU arhitetures.We brie�y summarize other advantages of this numerial method that makes partiularly suitable onGPU systems. For instane, how the fat that the omputation of the reurrene relations (in thease of the N -body problem) needs only evaluating additions, subtrations and multipliations an beexploited on GPUs. Initial works show that studies related to exploration of the phase spae (thusas stability studies, where the similar dynamial system is investigated in the ase of various initialonditions) an be ahieved rather e�iently. Suh studies are in the fous of astronomial researh inthe ase of both the Solar System and extrasolar planetary systems as well.
The Lie-integration

• The study of various astrophysial phenomena and problems requires the solution of ordinarydi�erential equations. Some of these are related to the (gravitational) N -body problem, thushaving an e�ient method for omputing the numerial solution of the underlying equationsan signi�antly aid the analysis of these astrophysial systems.
• In general, let us write the di�erential equation of our interest in the form of

ẋi = fi(x),where x ≡ (x1, . . . ) is an R → R
N and f ≡ (f1, . . . ) is an R

N → R
N smooth funtion.

• Let us also introdue the operators
Di :=

∂
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N
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fiDiwhere the latter is known as the Lie-operator. L is a linear and a di�erential operator, i.e.
L(λa + b) = λL(a) + L(b) L(ab) = aL(b) + bL(a) for all a and b variables and λ onstants.

• It an easily be proven (see [1℄ or [2℄) that the solution of the original equation, ẋi = fi(x) ata given instane t + ∆t is formally
x(t + ∆t) = exp (∆t · L)x(t),where
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• Lie-integration: it is the �nite approximation of the above, up to the order M :
x(t + ∆t) ≈
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• Although the above seems to be trivial, the atual omputation of the terms Lk
x is not aneasy task. In pratie, the omputation of these derivatives are based on reurrene relations:the terms Ln+1

x are expressed as funtions of Lk
x where 0 ≤ k ≤ n. The ardinal problemof Lie-integration is the derivation of these reurrene relations (thus, no expliit shemes areavailable like, e.g., for the Runge-Kutta method, see [3℄).

The N-body problem
• Let us have N bodies of whih motion are determined by the Newtonian gravitational law. Letus denote the mth omponent of the oordinates and veloities of the ith body by xim and vim,respetively (obviously, 1 ≤ i ≤ N and m = 1, 2 or 3).
• Using the alulations of [2℄ and [4℄, the reurrene relations an be written as

Ln+1xim = Lnvim,

LnAijm = Lnxim − Lnxjm,

LnBijm = Lnvim − Lnvjm,

Ln+1vim = −G
∑
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LkAijmLn−kBijm,

Ln+1φij = ρ−2
ij

n
∑

k=0

FnkL
n−kφijL

kΛij ,where Fnk = (−3)
(

n
k

)

+ (−2)
(
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) and we introdued ρij , whih is the distane between the ithand jth bodies and φij = ρ−3
ij .

• In order to bootstrap these reurrene relations, we only have to use the fat that L0a = a, where
a an be any of the quantities appearing above.

• Note: these reurrene relations an also be written in relative oordinates, i.e. when one of thebodies is �xed in the origin (that is useful for analysis of planetary systems or systems where oneof the bodies has signi�antly larger mass than the other ones), see also [4℄ for further details.
• It an easily be seen that with the exeption of the omputation of L0φij and ρij , the reurreneformulae have only addition, subtration and multipliation operations. In addition, one theLie-derivatives Lkxim and Lkvim are known up to an order of k ≤ M , the omputation of thenumerial approximation of the Lie-exponent requires also purely addition and multipliation.
• Therefore, the omplete integration method based on the Lie-series an e�etively be implementedon arhitetures whih are optimized for these elementary arithmeti operations (addition, subtra-tion and multipliation). Sine graphis proessing units (GPUs) are designed to ompute theseelementary operations in parallel, in the following we investigate the possibilities and propertiesrelated to the implementation of Lie-integration on suh arhitetures.

Computation needs and GPUs
• We an easily estimate the omputing requirements of the Lie-integration of gravitational N -body systems. Basially, the omputation of these terms are done in two steps:� The �rst step is the bootstrap proedure when we initialize the variables L0a. Of ourse, the number of required operations in the bootstrap omputations does not depend on the integration order. Theomputation of the terms ρij require (3/2)N(N − 1) subtrations and N(N − 1)/2 multipliations and the same number of square root operations while the omputation of ρ−2

ij and φij = ρ−3
ij needs

N(N − 1) divisions additionally. All in all, these omputation osts sale as O(N2) for large number of bodies.� The seond step is the evaluation of the reurrene relations. In a similar manner, one an obtain that (due to the presene of the summations in the expressions for vim and Λij) the omputation timesales as O(N2M2). The most time-onsuming part is the inner sum in the former one while the time needed by all of the other terms sales as O(N2M), O(NM2) or simply O(NM).
• In the sienti� pratie of planetary dynamis, the number of bodies an be so small that we are not interested in the asymptoti dependene of the omputing time as the funtion of N . However, as it isshown by [4℄ or [5℄, the optimal integration order an be as large as M ≈ 20 . . . 25, depending on the atual problem and the desired preision. Therefore optimization is essential only for the terms of whihtotal omputation time sales as O(M2). In other words, the number of omplex operations (square root or division) is always negligible ompared to the number of multipliations and additions.
• In addition, the reurrene relations does not need the atual value of ρij , in the set of the reurrene relations, only the terms ρ−2

ij and ρ−3
ij appear. Therefore, if the time evolution of these ρp

ij quantities are alsoomputed using the respetive ordinary di�erential equations (and the respetive Lie-series), one an also eliminate the need of omputing square roots or performing divisions during the bootstrap proedure.Similarly to the proof presented in [4℄, it an be shown that
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). Thus, we an onlude that the whole numerial integration an be implemented with Lie-series by fully eliminating the square root and division operations. However, thiselimination has a omputing ost that sales also as O(NM2), but does not signi�antly inrease the total omputing time.
Conlusions

• The numerial integration based on Lie-series is a very e�ient and elegant way of analyzingthe gravitational N -body problem. Long-term stability investigations and haos detetion ofthe Solar System and other planetary systems require to solve the similar set of equations forthousands or millions of initial onditions.
• A full implementation of the Lie-integration of gravitational N -body problem is available from theaddress http://http://szofi.elte.hu/�apal/utils/astro/lieint/. The ore of this odean be ported to Nvidia's CUDA (GP)GPU arhiteture without any hanges.
• If the number of bodies, N is �xed and relatively small, all of the variables and arrays an bestored e�iently in the multiproessor registers.
• Analysis of independent initial onditions of the same problem (set of equations) an be done inparallel without any pratial need for thread synhronization.
• Although as of now, the full implementation on GPUs are in an initial stage, this method seemsto be a promising alternative for dynamial analysis.
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