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Abstract

The method of Lie-integration is a very effective algorithm for numerical solution of ordinary differential
equations. The principle of the algorithm is to compute the coefficients of the Taylor-series for the
solution involving recurrence relations. This approach also yields more possibilities for various types of
adaptive integration since not only the integration stepsize but simultaneously the polynomial order of
the power series expansion can also be altered. In addition, alternation of the stepsize does not yield a
loss in the (expensive) computing time. The “disadvantage” of the method is because of the recurrence
formulae: these set of equations depends on the particular problem itself and therefore had to be
derived in advance of the actual implementation. However, the method is definitely faster than the
classic known explicit methods (that do not depend on the right-hand side of the differential equation),
has better error propagation properties and the “side-effect” of knowing the analytic expansion of the
solution also allows us other kind of studies.

The Lie-integration

e The study of various astrophysical phenomena and problems requires the solution of ordinary
differential equations. Some of these are related to the (gravitational) N-body problem, thus
having an efficient method for computing the numerical solution of the underlying equations
can significantly aid the analysis of these astrophysical systems.

e In general, let us write the differential equation of our interest in the form of
T = fi(x)a
where X = (21,...) is an R — RY and f = (f1,...) is an RV — R smooth function.

e Let us also introduce the operators
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where the latter is known as the Lie-operator. L is a linear and a differential operator, i.e.
L(Aa+b) = AL(a) + L(b) L(ab) = aL(b) 4+ bL(a) for all a and b variables and \ constants.

e It can easily be proven (see [1] or [2]|) that the solution of the original equation, &; = f;(x) at
a given instance t + At is formally

x(t + At) = exp (At - L) x(t),

where
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e Lie-integration: it is the finite approximation of the above, up to the order M:
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e Although the above seems to be trivial, the actual computation of the terms LFx is not an
easy task. In practice, the computation of these derivatives are based on recurrence relations:
the terms L""1x are expressed as functions of L¥x where 0 < k < n. The cardinal problem
of Lie-integration is the derivation of these recurrence relations (thus, no explicit schemes are

The previously mentioned recurrence relations are known for the N-body problem, thus the dynamical
analysis of planetary systems could be made very effective. In this presentation we discuss the questions
and possibilities related to the implementation of the Lie-integration algorithm on GPU architectures.
We briefly summarize other advantages of this numerical method that makes particularly suitable on
GPU systems. For instance, how the fact that the computation of the recurrence relations (in the
case of the N-body problem) needs only evaluating additions, subtractions and multiplications can be
exploited on GPUs. Initial works show that studies related to exploration of the phase space (thus
as stability studies, where the similar dynamical system is investigated in the case of various initial
conditions) can be achieved rather efficiently. Such studies are in the focus of astronomical research in
the case of both the Solar System and extrasolar planetary systems as well.

The N-body problem

e Let us have N bodies of which motion are determined by the Newtonian gravitational law. Let
us denote the mth component of the coordinates and velocities of the ith body by x;, and v,
respectively (obviously, 1 <i < N and m =1, 2 or 3).

e Using the calculations of |2] and |4], the recurrence relations can be written as

Ln+1xim - anima
LnAijm = Lnxim_Lnxjm’
L"Bijm = L"0j — L"vj,
n
n _
L' g, = —szj Z(k)L%ijLn " Aijm | »
JjFi k=0
" n
L"Aij = Y (k)LkAiij”_kBijm,
k=0
n
L™ = pi7 > Fal™ FouLFAy,
k=0

where F, = (=3)(}) + (-2) (k-?—l) and we introduced p;;, which is the distance between the ith
and jth bodies and ¢;; = p;;°.

e In order to bootstrap these recurrence relations, we only have to use the fact that L°a = a, where
a can be any of the quantities appearing above.

e Note: these recurrence relations can also be written in relative coordinates, i.e. when one of the
bodies is fixed in the origin (that is useful for analysis of planetary systems or systems where one
of the bodies has significantly larger mass than the other ones), see also [4] for further details.

e It can easily be seen that with the exception of the computation of L0¢ij and p;;j, the recurrence
formulae have only addition, subtraction and multiplication operations. In addition, once the
Lie-derivatives L*z;,, and L*v;,, are known up to an order of k < M, the computation of the
numerical approximation of the Lie-exponent requires also purely addition and multiplication.

e Therefore, the complete integration method based on the Lie-series can effectively be implemented
on architectures which are optimized for these elementary arithmetic operations (addition, subtrac-
tion and multiplication). Since graphics processing units (GPUs) are designed to compute these
elementary operations in parallel, in the following we investigate the possibilities and properties

available like, e.g., for the Runge-Kutta method, see [3]). related to the implementation of Lie-integration on such architectures.

Computation needs and GPUs

e We can easily estimate the computing requirements of the Lie-integration of gravitational N-body systems. Basically, the computation of these terms are done in two steps:

— The first step is the bootstrap procedure when we initialize the variables L%a. Of course, the number of required operations in the bootstrap computations does not depend on the integration order. The
computation of the terms p;; require (3/2)N(N — 1) subtractions and N(N — 1)/2 multiplications and the same number of square root operations while the computation of pi_j2 and ¢;; = pi_j3 needs
N(N — 1) divisions additionally. All in all, these computation costs scale as O(N?) for large number of bodies.

— The second step is the evaluation of the recurrence relations. In a similar manner, one can obtain that (due to the presence of the summations in the expressions for v, and A;;) the computation time
scales as O(N2?M?). The most time-consuming part is the inner sum in the former one while the time needed by all of the other terms scales as O(N2M), O(NM?) or simply O(NM).

e In the scientific practice of planetary dynamics, the number of bodies can be so small that we are not interested in the asymptotic dependence of the computing time as the function of N. However, as it is
shown by [4] or [5], the optimal integration order can be as large as M = 20...25, depending on the actual problem and the desired precision. Therefore optimization is essential only for the terms of which
total computation time scales as O(M?). In other words, the number of complex operations (square root or division) is always negligible compared to the number of multiplications and additions.

e In addition, the recurrence relations does not need the actual value of p;;, in the set of the recurrence relations, only the terms ,oi_j2 and pi_j?’ appear. Therefore, if the time evolution of these pfj quantities are also
computed using the respective ordinary differential equations (and the respective Lie-series), one can also eliminate the need of computing square roots or performing divisions during the bootstrap procedure.
Similarly to the proof presented in [4], it can be shown that
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where Gflp) = (Z) +(-2) (kil) Thus, we can conclude that the whole numerical integration can be implemented with Lie-series by fully eliminating the square root and division operations. However, this
elimination has a computing cost that scales also as O(NM?), but does not significantly increase the total computing time.
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