Damien Gratadour

- Adaptive Optics simulations
« Concept and model

-« The E-ELT scale and the need for massive parallelism

- YOGA_AO software platform
c YOGA : Yorick with GPU acceleration

-« AO extension : data structures and algorithms

- Features & performance

| - Future work

- Live demo ! (if time allows)

Adaptive optics systems

Light From
J_,Jalescnpa

i

~ 7
Adaptive ;’J Distorted
Mirror ¥ / Wavefront

> |

- | T

L | JV/--. . Beamsplitter
i o

Control | . § Corrected
System Ty Wavefront

High-resolution
Wavefront Camera
Sensor

"‘ | « ®‘ het
" . ‘. [] . . P o

AO systems simulations

E-ELT scale

. Fast AO simulation for 8m telescope
- Existing tools: YAO by Francois Rigaut : http://frigaut.github.com/yao/index.html

. 60 iteration/s , i.e. 10x slower than real-time control (500Hz)
. Dominated by wavefront sensing simulation

- E=ELT : 40m telescope
- Need to simulate very large phase screens (2k x 2k). Unrealistic to preload 20k x
20k screens

- 20 times more subapertures (5k) with sub-images 20x20 to 64x64

- 20 times more DM actuators (5k)

. Larger phase screens => larger FFTs to compute final images (4k x 4k)
- Evolved AO concepts

- LGS AO : larger sub-images for WFS (up to 128x128)

- Multiple DMs and WFSs (ATLAS : 6 LGS WFS, EAGLE : 9 WFS)

- Very large control matrix (up to 30k x 30k)

- Need a parallel platform to get realistic execution times (at least
few tens of iterations/s)

http://frigaut.github.com/yao/index.html

- Why GPUs ?
- Emergence of GPGPU (General Purpose Graphics Processing Units)

» Provides stream processing capabilities over a large number of processors (NVIDIA :
512)

» 2 solutions : NVIDIA + CUDA or ATI + Open-CL
- Cheap solution to build a massively parallel cluster
. Open-CL
- Open standard for parallel architectures
. Not yet a standard (several distribution and compilers)
. Few unified libraries available

. Portability issues : intrinsic hardware properties lead to profound choices in software
design (ATI : vector processors, NVIDIA / Intel : scalar processors)

- NVIDIA + CUDA
. Rich development environment + optimized hardware

- High-level maths library available free of charge

. Tesla series : few k€ versus GeForce series : few 100€ but no ECC, shorter
lifetime, larger form factor, larger power consumption

- Why Yorick ?
» Complex systems simulations benefit from the use of an interpreted language
(comprehensive interface to design / use the code)

» Yorick is an interpreted programming language for scientific simulations or
computations

» Written in ANSI-C and runs on most OS
» Compact syntax (C-like) + array operators + extensive graphics possibilities

- Easily expandable
» Dynamic linking of C libraries

- Spawned process and stdin/out interaction (ex : yorick-python, a.k.a pyk)

- Active community
- Developped by Dave Munro (@ Lawrence Livermore)

. Eric Thiébaut & Francgois Rigaut main contributors, many more ...
- Many plugins / extensions available (yeti, yao, spydr, etc..)

- Open-source, BSD licence
- Available on github : http://github.com/yorick/yorick.github.com/wiki

- Work on the GPU through Yorick
- Manipulate arrays on the GPU

» Launch intensive computations on these objects through an
interpreted environment

- Writting and debugging high-level GPU applications made easy
» Minimize impact of memcopy between host and device

- Dynamic linking of CUDA-C libraries
- Wrappers to optimized CUDA libraries

» Yorick object that points to an address on the GPU memory

- Two-sided implementation
- C++ API

© YO”Ck API YOrick with Gpu Acceleration
- Available on github

» https://github.com/yorick-yoga/yorick-yoga/wiki

- Adaptive Optics extension for YOGA
- Uses the yoga_object class for basic features

- Custom classes for atmosphere, optics, WFS, guide sources, etc

» Easy access to all parameters from within a Yorick session (useful for
debug / diagnosis + displays)

- Includes scripting capabilities + GUI

» Optimized template scripts for batch mode
o GUI using yorick-python binding + GTK

- Main AO features
» Multiple layers turbulence generation

» Shack-Hartmann wavefront sensor (NGS + LGS)
» Wavefront slopes computations using various algorithms

- Available on github :
« https://github.com/dgratadour/yoga_ao/wiki

Interpreter

CUDA-C libs

YoGA YoGA
C++/CUDA-C §= Yorick
= = API

Interpreter

(Template class
(yoga_obj)
host2dev = &d_data Yorick API

YoGAlibs | dev2host Object (yObj)

1 free Name
advanced print (ex :
functions = ... eval yoga_wfs)
CUDA-C libs - extract
ops ‘Wrappers |
Yorick
Standard API lib

YoGA
wrappers

Push / Pull on stack

YoGA_AO YoGA_AO
C++/CUDA-C §= Yorick
= API

4 Specialized class N

(ex : yoga_wfs)

YoGA_AO libs | advanced @ &data
. functions

(Template class
(yoga_obj)
host2dev = &d_data Yorick API

Interpreter

YoGAlibs | dev2host Object (yObj)

1 free Name
advanced print (ex :
functions = ... eval yoga_wfs)
CUDA-C libs - extract
ops ‘Wrappers |
Yorick
Standard API lib

YoGA_AO
wrappers

Push / Pull on stack

- General features
- On-the-fly atmospheric turbulence generation on multiple layers
at various altitude with various strength, speed, direction

» Optimized ray-tracing in a given direction for image computation
- Multiple targets
- Optimized Shack-Hartmann wavefront sensor model

- Laser guide star model

- Various centroiding algorithms (COG, thresholded, weighted,
correlation)

- Multiple WFS in multiple directions (LGS or NGS)
- Comprehensive interface through Yorick

- ... more to come ! (deformable mirror model, various
command algorithms, etc ..)

YoGA AO performance

Classical AO (black) vs Extreme AQ (red)

0075 tlhrverbrrrelboreeberorberoe berer b
e —

0.0zo
(RN TS

0.010

Execution time (s)
bbb e b b
I|I

N RN RN R RN RN
3 a 15 20 25 a0 35 40

Telescope diameter (m)

NGS AO (black) vs LGS AO (red)

0.20—
U.el—

=
on

Execution time (s)

NI R RN AR R N
10 15 2i 25 a0 a5 40

Telescope diameter (m)

YoGA AO performance

Execution time (s)

Classical AQ (black) vs MOAO 4 stars (red)

AT R RN R RN RN NN
a 15 20 25 a0 35 40

Telescope diameter (m)

YoGA AO performance

Centroiding Extreme AO

Centroiding classical AO
HDDd—fl""|"" Frrralororterorbrroelbrrnd

s Lrvvelborrrbererbererbrverberer b

n

0.001

— - —_—
w - 2L

- w
£ - £
= al =
S 10— — =
o - o
= = =
— —_ —
8] - [&)
@ Z @
> - P
L - Lui

AR AR AR RN N RN AR 000 T T 0
I 5 20 25 30 c o0 o

|
° 101 oa & . 5 1 15 20 25 30 35 40

Telescope diameter (m) Telescope diameter (m)

-Optimized AO simulation with a comprehensive interface
running on GPUs
.Few 1000 iterations/s are reached for XAO systems on a 8m
telescope : faster than « real-time » controlers for AO

.Few 100 iterations/s are reached for SCAO & XAO systems at the E-
ELT scale : realistic enough to start working

. Code takes full advantage of GPU architecture for core computations
. User-friendly interface to test various configurations

.Missing some components
., Deformable optics (trivial using existing libs)

., Control scheme : something that needs to be thought and optimized

. Future works

.Need to properly integrate a multi-GPU approach for evolved AO
concepts (multi-WFS systems)

.Define an interface to the outside world so that the code could be

Demo time !

