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Dataset

A dataset is an instance of a data model

Type ←→ variable
Data model ←→ dataset

A data model represents concepts

Example: a dataset for a physical experiment:

Content: {meta-data, auxiliary data, main data} ∈ dataset

Usage, for example an observatory:

A dataset contains every things needed to make the raw observational data

scientifically useful (science archive, off-line data reduction and analysis)
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Data Model

A data model provides domain specific concepts
It characterizes a family of datasets

It is an instance of a meta-model, possibly a theory

Examples:
• the schema of a database
• a type declaring a variable,

e.g. MyClassName varname
e.g. MyEnumType myEnumerator

It is described with a language:
e.g. a XML schema, an UML diagram ... and/or
a programming language

It may be the application of a theory:

Examples:

map<string,float>

PQ<Pressure>

MS<SDM,ALMA>
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Theory

A theory is an abstract data model

Examples:

vector, map, list, stack ... (STL containers, iterators etc...)

PQ (this talk)

RMDB, MSDB (containers, this talk)

A theory represents abstract concepts
Examples:

containers

physical quantities

A theory is expressed using a language (self-described)
Mathematics
XMLSchema, UML, generic programming (C++), ....

There are data models with no theory.
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Data Format

A data format is a data structure

A data format has no associated self-described language

Examples:

XML with no schema, html

FITS

Corollaries

It is not intended to represent types

No way to express constaints =⇒ semantics in form of documentation

Custom codes required at the interface to exchange data

Widely used for data exchange
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Motivations to have Data Models

A measurement set is a set of concrete concepts at different levels,

a) words, e.g. physical quantities, measurements (Universal Concepts),

b) compositions of words defining relations (Domain Specific Concepts).

1) conciseness in terminology to avoid ambiguities

Common language & understanding for concepts (inter-operability).

2) expressiveness

3) robustness (type-safe)

4) efficiency (static typing, high performance calculi, ...)

(architecture (geometry): structure, factorization, localization, slicing, ...),

The model must be as rich as needed within a context evolving to-

wards more and more automated processing

(data volume, instrumental complexity, processing complexity ...)
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From acquired Experiences to required Evolutions

Experiences:
The radioastronomy has accumulated knowledges and experiences for many years

Evolution from data formats to DMs
major step in 1995/2000 with MS (ref.: Cornwell, Kemball et al.)

Broader usages:
a) for persistence (archives),
b) for off-line data processing (software packages, pipelined processing, ...)
c) for on-line data acquisition (near real time telescope calibration, quick look, ...)

NB: transporting data is time consuming =⇒ data flows must be well thought

Instrumental evolution: begs for DM evolutions.
Example: aperture arrays like EMBRACE (proto for SKA)

Facts: the mathematicians:
a) have developped all the abstract constructs useful to us
b) give a methodology to define data models & theories (branch of categories)

NB:
a) formalism used in fundamental computer science.
b) matchs well with generic programming techniques.
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What is a model?

A model is the composition of

a structure (mathematical logic) with algebra.

Example: the relational data model.

• The semantic is captured through constraints.

• The structure gives the meaning of things in a formal language.

Datasets must conform to a model

10



4 commutable triangles
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To use a language for representing measurements

Examples of words (physical quantities):

• Length, Area, Angle, Solid angle, Aperture efficiency, Rotation measure

• Speed

• Angular rate

• Noise equivalent power

• FluxDensity (Jy which is not SI...)

• ...

Note that:

1. All these have units.

2. Dimensioned, dimensionless and mixed case units!

3. They may have units which uses powers of rational numbers!

4. Physical expressions are composition of such words
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To use a language to put measurements in context

We assign domain specific meaning to sentences:

• Station

• Antenna

• Spectral window

• Feed

• Configuration description

• ...

Meta-model → meta-model instance ← a DSL
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Methodology:

A trilogy
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Formalization

• Category

• Functor

• Natural transform

• Product and coproduct:
example of diagrams, a cone (projections) and a cocone (inductions)

• Direct limit

• Monoids. 2-categories, ...

• Sketches, Models and Theories
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Data models and informations systems
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Two examples at work
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Physical Quantities

Our language express a physical quantity by a simple structure, a pair:

qϕ = qvuϕ e.g. v = 12.3 km.s−1

The units are important but not foundamental:

v = 12.3 km.s−1 = 12300 m.s−1

The units and dimensionality are not sufficient to give the semantic:

Speed m.s−1 L1T−1

EnergyDensity J.m−3 L−1M1T−2

RadiantEnergyDensity J.m−3 L−1M1T−2

Pressure Pa=N.m−2 L−1M1T−2

Radiance W.m−2.sr−1 M1T−3

ApertureEfficiency %
SidebandRejection dB

Goal: be able to represent and use any kind of quantity.
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Physical Quantities (continued)

Facts: physical quantities

are the name of equations

may have dimensionnal units e.g. a speed (m.s−1)

may be dimensionless e.g. an aperture efficiency (%)

may be partially dimensionless e.g. a radiance (W.m−2.sr−1)

Method:

A/ elaboration of a topology:

First axis: the 7 components of the SI system (NC)

Second axis: an axis of degenerescence (SC)
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Physical Quantities (continued)

B/ Static view: define two categories whose objects monoids:

QT (Quantity Type): a typename & arrow pointing to its topological space
=⇒ Kleisli category
Ex.: typename = Speed =⇒ QT<Speed>

PQ (Physical Quantity): a product of categories,

PQ = QV×units QT

They are monoids on the addition because

QT<Speed> = QT<Speed> ⊕ QT<Speed>
PQ<Speed> = PQ<Speed> + PQ<Speed>

C/ Non-static view: define the algebraic topology

QT<Speed> = QT<Length> ⊗ QT<InvTime>

They are the morphisms in QT.
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Physical Quantities (continued)

Logical structure of PQ and its boundary
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Physical Quantities (continued)

Equation of the product: a diagram of PQ

value calculus at run-time

type calculus at compile-time

validation at compile time

expressive equation in code

language in physics
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Examples of constructions for the categories PQ and PM

units construction category

• m • �� direct

• rad •**TTTTTTTTTTTTTT

• ttjjjjjjjjjjjjjj

inductive PQ

• • rad/m ��•**TTTTTTTTTTTTTT

• ttjjjjjjjjjjjjjj

inductive ⊕ direct

• • rad± ε •**TTTTTTTTTTTTTT

• ttjjjjjjjjjjjjjj

•
ttjjjjjjjjjjjjjjj•

**TTTTTTTTTTTTTTT inductive ⊕ projective

• • m± ε • ��•
ttjjjjjjjjjjjjjjj•

**TTTTTTTTTTTTTTT direct ⊕ projective PM

• • • rad/m± ε •**TTTTTTTTTTTTTT

• ttjjjjjjjjjjjjjj

• ��•
ttjjjjjjjjjjjjjjj•

**TTTTTTTTTTTTTTT inductive ⊕ direct ⊕ projective
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Physical Quantities (continued)

summary:

• PQ is a functor category, a singleton. It is a pure abstraction.

• PQ is the set all the physical expressions

• PQ is an endomorphism

• PQ is a monad PQ(PQ()) = PQ(); 1PQ × PQ = PQ =⇒ ∃λ calculus

• PQT is a monoid, a constructible functor with polymorphic representation
monomorphism: RanTPQ and its dual, LanTPQ, for polymorphism.

• PQT is a cartesian closed category whose objects are physical quantity states
and the morphisms tensor products.

• PQ is monadic (T-algebra) =⇒ type-safe

• PQ has inductive cones
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Physical Quantities (continued)

PQ at work:

Let
PQ<Length> len(100,km);
PQ<Time> time(3600);

The expression
PQ<Speed> v = len/time;

compiles and
cout<<”v=“<<v.str(“km/h”)<<endl;

gives “v=100km/h” at run-time.

On the other hand
PQ<Acceleration> g=len/time;

would not compile but
PQ<Acceleration> g=len/time/time;

would.
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Physical Quantities (continued)

Functions bound to the topology

Likewise
PQ<Angle> a=asin(len/len);

would give a=π/2 but the statements
PQ<Angle> a=asin(len/time);

and
PQ<Angle> a=asin(time/time);

would not compile.

Similarily

PQ<LengthRatio> lr=sin(a);

would give lr=1 but the statement

PQ<TimeRatio> lr=sin(a);

would not compile.
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Physical Quantities (continued)

Polymorphisms with units, data representation:

Let

PQ<SpectralFluxDensity> Snu(1.2,mJy);

PQ<SpectralIrradiance> Fnu(3E-29);

then

PQ<SpectralIrradiance> SFnu=Fnu;

SFnu += Snu;

returns a SpectralIrradiance because arithmetique is performed in SI units.

Therefore

cout<<”SFnu = “<<SFnu<<” = ”<<SFnu.str()<<” = ”<<SFnu.str(“mJy”)<<endl;

gives SFnu = 4.2E-29 = 4.2E-29 W.m-2.Hz-1 = 4.2 mJy.
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Physical Quantities (continued)

Homotopy: epi-phenomena & equivalences

In case of homotopy, to pass from one fiber to an other looks like this:

PQ<Pressure> p(0.5,atm);
PQ<EnergyDensity> u(Epi<Pressure>(p));

On the other hand

PQ<RadiantEnergyDensity> ru(Epi<EnergyDensity>(p));

would not compile because RadiantEnergyDensity and EnergyDensity are not an
epi-phenomenon.
Being only an equivalence the coherent expression is:

PQ<RadiantEnergyDensity> ru(Equi<EnergyDensity>(p));
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Measurement Set Data Model (MSDB)

outline

• Domain specific concepts are build on normalized relations
(=⇒ keys) =⇒ sets

• The measurement set is a set of concepts with relations between them

• Some concepts require objects defined recursively
(=⇒ model not relational)

• Concepts which have contexts are topos:
(=⇒ keys are ordered sequences of foreign keys)
(=⇒ model not relational)

• The topology with 3 axes: aperture, frequency range and time range.
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MSDB: a set of generic containers

The Relational Data Model (RDM) tables:

Example: a table with two keys:
K1 the primary key (a set of fields) and
K2 the secondary key (a set of fields)
NK the set of non-key attributes

K1

NK

π1

��

K2

NK

π2

{{wwwwwwwwwwwwwwwwwww
K1 K2

// K2K1 ooK1

{T, F}
OO

K2

{T, F}
ccGGGGGGGGGGGGGGGGGG

logical struct.

func. & ident.

relation
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MSDB: a set of generic containers (continued)

CK A key identifying the context of the RDM objects: a direct limit
K1 Primary key: the set of fields of the relational objects
NK The set of non-key data object attributes
Ω A subobject identifier =⇒ Topos
KS The key section of the table: KS = CK ∪Ω
data are glued with their context by a RDM =⇒ RDMRDM

This is a universal construction.
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MSDB: a set of generic containers (continued)

There is a theory MSDB

map pair(x,y) STL map container
MSTable pair(CK,RDM(K,NK)) Measurement set container

• Tables are bundles of fibers

• Tables may be topos

• Tables may be classic RDMs
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Application to an aperture phase array

⊗ ⊗

Xstation Xtileset
aperture
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multi-beam interferometry single-beam interferometry
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Conclusions

1. The theory of the measurement set has been mostly developed

2. The standard relational model is only a sub-category

3. Tables are sets containing a subset of their powersets, allow recursive definitions

4. Tables are monoids for ]

5. The Datset is a monoid: e.g.: ∃ MSDB < SDM, profile > such that

MSDB = MSDB⊕MSDB

1. The formalism allows to support complex instruments such as aperture phased
arrays

2. Generic programming in C++ allows to express this mathematical formalism
(propotype SDMv2)
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