Physical quantities, measurement
sets and theories

ADASS, Paris Nov. 8 2011

F. Viallefond.

i

* i ////// %
vatoire - LERMA
de Paris é;,//ﬁ/ i

e du Rayonnement et de la Matiére en Astrophysique

Outline

. Dataset, Data Format, Data Model, Theory: what are these?

. Context

. Methodology:

e a trilogy

e math: the theory of categories:
object, morphism, functor, adjunction, cones, model, theory

e data models and information systems

. Methodology at work; two examples

e Physical quantities

e Measurement sets.

. Conclusions

Dataset

A dataset is an instance of a data model

Type «—— variable
Data model +«—— dataset

A data model represents concepts
Example: a dataset for a physical experiment:

Content: {meta-data, auxiliary data, main data} € dataset

Usage, for example an observatory:
A dataset contains every things needed to make the raw observational data

scientifically useful (science archive, off-line data reduction and analysis)

Data Model

A data model provides domain specific concepts
It characterizes a family of datasets
It is an instance of a meta-model, possibly a theory

Examples:
e the schema of a database
e a type declaring a variable,
e.g. MyClassName varname
e.g. MyEnumType myEnumerator

It is described with a language:
e.g. a XML schema, an UML diagram ... and/or
a programming language

It may be the application of a theory:
Examples:
map<string,float>
PQ<Pressure>
MS<SDM,ALMA>

Theory

A theory is an abstract data model

Examples:
vector, map, list, stack ... (STL containers, iterators etc...)
PQ (this talk)
RMDB, MSDB (containers, this talk)

A theory represents abstract concepts
Examples:
containers
physical quantities

A theory is expressed using a language (self-described)
Mathematics
XMLSchema, UML, generic programming (C++4),

There are data models with no theory.

Data Format
A data format is a data structure

A data format has no associated self-described language
Examples:

XML with no schema, html
FITS

Corollaries
It is not intended to represent types

No way to express constaints — semantics in form of documentation

Custom codes required at the interface to exchange data

Widely used for data exchange

Motivations to have Data Models

A measurement set is a set of concrete concepts at different levels,
a) words, e.g. physical quantities, measurements (Universal Concepts),
b) compositions of words defining relations (Domain Specific Concepts).

1) conciseness in terminology to avoid ambiguities

Common language & understanding for concepts (inter-operability).

2) expressiveness
3) robustness (type-safe)

4) efficiency (static typing, high performance calculi, ...)
(architecture (geometry): structure, factorization, localization, slicing, ...),

The model must be as rich as needed within a context evolving to-

wards more and more automated processing
(data volume, instrumental complexity, processing complexity ...)

From acquired EXxperiences to required Evolutions

Experiences:
The radioastronomy has accumulated knowledges and experiences for many years

Evolution from data formats to DMs
major step in 1995/2000 with MS (ref.: Cornwell, Kemball et al.)

Broader usages:

a) for persistence (archives),

b) for off-line data processing (software packages, pipelined processing, ...)

c) for on-line data acquisition (near real time telescope calibration, quick look, ...)

NB: transporting data is time consuming — data flows must be well thought

Instrumental evolution: begs for DM evolutions.
Example: aperture arrays like EMBRACE (proto for SKA)

Facts: the mathematicians:
a) have developped all the abstract constructs useful to us
b) give a methodology to define data models & theories (branch of categories)
NB:
a) formalism used in fundamental computer science.
b) matchs well with generic programming techniques.

' EMBRACE

62
124
186
248

beamlels data flow

93 MB/s

185 MB/s
278 MB/s
370 MB/s

Slorage capacily o record N beamlets (GByles ar Thyles)

10 min 1 hour 5 hours 10 hours
a4.2 325.5 1.6 3.2
108.5 657 3.2 6.4
162.8 976.4 4.8 9.6
217 1.3 6.4 12.8

|
"
¥
i
h

-1

What is a model?

A model is the composition of
a structure (mathematical logic) with algebra.

Example: the relational data model.

e [he semantic is captured through constraints.

e [he structure gives the meaning of things in a formal language.

Datasets must conform to a model

4 commutable triangles

Domain
¥
I MEANING
Structures
Language
— human

— code

Algebraic
Structures

To use a language for representing measurements

Examples of words (physical quantities):
e Length, Area, Angle, Solid angle, Aperture efficiency, Rotation measure
e Speed
e Angular rate
e Noise equivalent power
e FluxDensity (Jy which is not SI...)
° ...
Note that:
1. All these have units.
Dimensioned, dimensionless and mixed case units!

They may have units which uses powers of rational numbers!

R

Physical expressions are composition of such words

To use a language to put measurements in context

We assign domain specific meaning to sentences:
e Station
e Antenna
e Spectral window

Feed

Configuration description

Meta-model — meta-model instance < a DSL

Methodology:

A trilogy

Mathematics

topology data—types

Language

7N

Physics C'omputerScience

Formalization

Category

Functor

Natural transform

Product and coproduct:
example of diagrams, a cone (projections) and a cocone (inductions)

Direct Iimit

Monoids. 2-categories, ...

Sketches, Models and T heories

Category

Collection of objects:
XY, Z, T

Morphisms of objects:
f,g,h

o Identity:
¥ XeC Jdy €C
« Transitive composition:
X =Y 7
U
g of
o Associalivity:
I:ho g)of:ho [goﬂ

X

of
fl og Th
Y

T

Functor
FC =D

Two categories C and D

The morphism F. C—=D
is a functor if:

o ¥ CEC J FIC)ED
o F(ld,)=Id F(C)
o and the diagram

F(i)
FIC) —=F(C)

F(go f)

18 commutative

Data models and informations systems

Domain

gy lgebraic topology

@ Structure—— Meaning-—— Algebras &

booleamm exrpressions

Language
3.4,)}
static typing coherence type algebra
compiler compiler
query languages prgm languages

Discours

Two examples at work

alcu lus

metricSpace

Topology

alg. topology

&

top.
logic

setName

static typing
[states)

cocones
finductions)

cones
{projections)

Measure

cones
vectorSpace

Physical Quantities
Our language express a physical quantity by a simple structure, a pair:

do = qQuuyp €.9. v=12.3 km.s™ 1

The units are important but not foundamental:

v=12.3 km.s~ 1 = 12300 m.s !

The units and dimensionality are not sufficient to give the semantic:

Speed m.s—1 LiT-1
EnergyDensity J.m—3 L-IMIT 2
RadiantEnergyDensity J.m—3 L=IMIT—2
Pressure Pa=N.m2 L IMIT2
Radiance W.m—2.sr—1 MLIT-3
ApertureEfficiency %
SidebandRejection dB

Goal: be able to represent and use any kind of quantity.

Physical Quantities (continued)

Facts: physical quantities
are the name of equations
may have dimensionnal units e.g. a speed (m.s™1)
may be dimensionless e.g. an aperture efficiency (%)

may be partially dimensionless e.g. a radiance (W.m=2.sr—1)

Method:

A/ elaboration of a topology:
First axis: the 7 components of the SI system (NC)
Second axis: an axis of degenerescence (SC)

Physical Quantities (continued)

B/ Static view: define two categories whose objects monoids:

QT (Quantity Type): a typename & arrow pointing to its topological space
— Kleisli category

Ex.: typename = Speed — QT <Speed>

PQ (Physical Quantity): a product of categories,

PQ = vaunits QT

They are monoids on the addition because

QT <Speed>

QT <Speed> & QT <Speed>
PQ<Speed>

PQ<Speed> + PQ<Speed>

C/ Non-static view: define the algebraic topology
QT<Speed> = QT<Length> ® QT<InvTime>

They are the morphisms in QT.

Physical Quantities (continued)

Logical structure of PQ and its boundary

An algebraic type with a closure: SCI;’IS'C = Id{. Bool
Idj
Identity element: Id = -
jE J SC

PQ: an endofunctor

Co—end: the pure numbers NC PQ
N
PQ
Space Regions in the DSL

2D facette NC,PQ,Bool sub-category of the dimensionned PQ
2D facette SC,PQ,Bool sub-category of the dimensionless PQ
3D volume category PQ: general case

Physical Quantities (continued)
Equation of the product: a diagram of PQ

QVz QVz QVy
Rang, PQ
S
PQy PQzxz @ PQy
:RanTZPQ RanTyPQ
Ty i Ty
PQ& ——————— PQy
QI ®QTy
Nz | €x Uw,yiiex,y: Ez\' €y || My
Te®Ty .
Tx/,Tzi/ \Ty

value calculus at run-time

expressive equation in code

type calculus at compile-time

validation at compile time

language in physics

Examples of constructions for the categories PQ and PM

units construction category
m Q direct
rad \./ inductive PQ
rad/m \Q/ inductive @ direct
° rad + € /‘\ inductive @ projective
+ Q PM
° ™M I € / \ direct @& projective
o | rad/m=+e \Q/ inductive @ direct @ projective

Physical Quantities (continued)

summary:
PQ is a functor category, a singleton. It is a pure abstraction.

PQ is the set all the physical expressions

PQ is an endomorphism

PQ is a monad PQ(PQ()) = PQ(); 1pg x PQ = PQ == 3\ calculus

PQr is a monoid, a constructible functor with polymorphic representation
monomorphism: RantPQ and its dual, LantPQ, for polymorphism.

PQr is a cartesian closed category whose objects are physical quantity states
and the morphisms tensor products.

PQ is monadic (T-algebra) — type-safe

PQ has inductive cones

Physical Quantities (continued)

PQ at work:

Let
PQ<Length> len(100,km);
PQ< Time> time(3600);
The expression
PQ<Speed> v = len/time;
compiles and
cout<<"v="<<v.str(“km/h")<<endl;
gives “v=100km/h" at run-time.

On the other hand
PQ<Acceleration> g=len/time;
would not compile but
PQ<Acceleration> g=len/time/time;
would.

Physical Quantities (continued)

Functions bound to the topology

Likewise

PQ<Angle> a=asin(len/len);
would give a=n/2 but the statements

PQ<Angle> a=asin(len/time);
and

PQ<Angle> a=asin(time/time);
would not compile.

Similarily
PQ<LengthRatio> Ir=sin(a);
would give Ir=1 but the statement
PQ< TimeRatio> Ir=sin(a);

would not compile.

Physical Quantities (continued)

Polymorphisms with units, data representation:

Let
PQ<SpectralFluxDensity> Snu(1.2,mJy);
PQ<Spectrallrradiance> Fnu(3E-29);
then
PQ<Spectrallrradiance> SFnu=Fnu;
SFnu 4= Snu;
returns a Spectrallrradiance because arithmetique is performed in SI units.
Therefore
cout<<”"SFnu = “<<SFnu<<" =" <<SFnu.str()<<" =" <<SFnu.str("mJy")<<endl;
gives SFnu = 4.2E-29 = 4.2E-29 W.m-2.Hz-1 = 4.2 mJy.

Physical Quantities (continued)

Homotopy: epi-phenomena & equivalences

In case of homotopy, to pass from one fiber to an other looks like this:

PQ< Pressure> p(0.5,atm);
PQ<EnergyDensity> u(Epi<Pressure>(p));

On the other hand
PQ< RadiantEnergyDensity> ru(Epi<EnergyDensity>(p));

would not compile because RadiantEnergyDensity and EnergyDensity are not an
epi-phenomenon.
Being only an equivalence the coherent expression is:

PQ< RadiantEnergyDensity> ru(Equi<EnergyDensity>(p));

Measurement Set Data Model (MSDB)

outline

Domain specific concepts are build on normalized relations
(= keys) = sets

The measurement set is a set of concepts with relations between them

Some concepts require objects defined recursively
(== model not relational)

Concepts which have contexts are topos:
(== keys are ordered sequences of foreign keys)
(== model not relational)

The topology with 3 axes: aperture, frequency range and time range.

MSDB: a set of generic containers
The Relational Data Model (RDM) tables:

Example: a table with two keys:
K1 the primary key (a set of fields) and
K2 the secondary key (a set of fields)
NK the set of non-key attributes
{T, F}
logical struct.
K1 K> func. & ident.

™ / relation

NK

Relation Table< Antenna >

Ident

Primary key (meaning):

diray gc Dmﬂtl'y

Bool

Ident< Antenna >

a logical

antenna name structure

\

antenna position —= KI‘“;%KE

time

aperture size —= NK

Relation Table< Antenna »

Bool
Ident "a Ident< Ant
ntenna :
€n €NT< :’1{>J
a logical
structure

antenna name

N\

antenna position —= KI%HKZ

time
Use—case of APA (e.g. EMBRACE)
Antenna —==Antenna components NK
A recursive object, a projective limit
—|T Ident< Antenna >; PQ<Length>

i€l
aperture components aperture size

Topological space axis basis

Context nodes

T a I g T t
V
Ident< Antenna > Ident<SpectralWindow > QRange<Time >
dipole _ baseband execBlock
beamFormerChip subband scan
}}EXbDHl'd spectralWindow subscan
tile integration
tileset subintegration
station
antennaProcessor downConverter obsExecutor
polyPhaseFilter
tunableFilter e
correlator integrator

Processors

Direct limit = colimit
an inductive limit

X = lim Xj
a direct set <L é>
a direct system <Xi, fij>
adisjoin union X = lim Xj = ({ X/ ™~ diagram commutes v L]
1
£..
Xi : Xj

u: X— Y is unique v 1,

MSDB: a set of generic containers (continued)

CK A key identifying the context of the RDM objects: a direct limit
K1 Primary key: the set of fields of the relational objects

NK The set of non-key data object attributes

2 A subobject identifier — Topos

KS The key section of the table: KS=CK U2

data are glued with their context by a RDM = RDM#ZPM

This is a universal construction.

RDM RDMEDM

fij CK
Xi J Xj ‘

KS

™1 ‘ 12
Q
FK171 FK1,2
logical struct. ' \ /
K ident. K1
m relation m
NK NK

MSDB: a set of generic containers (continued)

There is a theory MSDB

map pair(x,y) STL map container
MSTable pair(CK,RDM(K,NK)) Measurement set container

e [ables are bundles of fibers

e [ables may be topos

e [ables may be classic RDMs

Application to an aperture phase array

V:L'j((sta V)

AY,

X aperture
station ™ picrar chy tzleset

multi-beam interferometry single-beam interferometry

Conclusions
. The theory of the measurement set has been mostly developed
. The standard relational model is only a sub-category

. Tables are sets containing a subset of their powersets, allow recursive definitions

. Tables are monoids for &

. The Datset is a monoid: e.g.: 4 MSDB < SDM, profile > such that
MSDB = MSDB ¢ MSDB

. The formalism allows to support complex instruments such as aperture phased
arrays

. Generic programming in C4+-4 allows to express this mathematical formalism
(propotype SDMVv2)

XMLSchema

O

genericC++

A calculus

Categories

O

UML

O

Closure
<8rc|lnst> @ = ContextKey ® = PQ name
1 1
1 1
1 1 \\ f' \ f
Top 1D+3D *\“ e <Inst|PM> !\ \ e Top 46D
| ® S
|
|
S%Dur:g:iiir «<—— abstract Q abstract
o & - ¢ — & —#
1 Lphe_sra%; type safe
monadic @—_ W o — @ monadic
spe safe rpe safe

