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… And here we are
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• H, He, Li were synthesized in the high-temperature phase of early 
universe (BB Nucleosynthesis, 3 to 20 min after BB)… 

• … but almost 100% of everything else was synthesized in stars. 

• Stellar nucleosynthesis products are reintroduced in ISM at the end 
of the star life. New stars will be then born enriched of the product 
of previous generations. 

• What matters is not what the star makes, but what it can eject. 

• Different elements produced by different processes, active in stars 
of different masses, thus enriching the ISM on different timescales. 

• Enrichment feeds back on itself: increasing heavy-elements content 
affects star formation, stellar evolution, and nucleosynthetic 
yields

General concepts: nucleosynthesis



• Stars mostly preserve the surface composition they were born 
with. 

• Stars are relatively simple, stable and constrained objects: 
their atmosphere can be modeled, its abundances determined.  

• Their evolution is also modeled, so we know their age: 
chemical evolution of stellar populations can be 
reconstructed… 

• … allowing to probe the environment in which the star was 
formed, at the time it was formed. 

• A 0.8 M⊙ star born right after the BB is still a dwarf now…

General concepts: abundance analysis



• Stellar (ISM / IGM) abundances bear the imprint of the chemical evolution in the 
environment and up to the birth time of the star. 

• They are dense in information: 25-30 elements (+isotopes) measurable, probing vastly 
different physical conditions and stellar masses 

• They constrain SF history & efficiency, SN rates, yield retention capability of the 
galaxy… 

• They constrain stellar astrophysics (SN physics, thermal pulse conditions, convection 
depth in giants…) and… 

• … they do it for objects no longer observable (zero-metal SN), or processes that leave 
no further trace (multiple populations in GC) 

• They allow chemical tagging, associating stellar populations on the basis of their 
chemical similarity 

• They couple with kinematics, allowing to detect and characterize the evolution of 
galaxies (radial disk migration, tidal accretion, secular bar formation…)

Putting them together…





Be & B: non stellar,  
cosmic ray spallation



CNO: hydrostatic burning, 
massive stars - SN II



α elements: 
hydrostatic & explosive, 

massive stars - SN II



light-odd elements: 
p-capture, massive 

stars (and AGB)



Fe-peak elements: 
statistical eq., explosive, 

SN II and SN 1a



n-capture elements: 
r-process - SN II/NSM 

s-process - AGB





• H, He, and Li are the 
o n l y e l e m e n t s 
synthes ized in BB 
nucleosynthesis. 

• lasts 3 to 20 minutes 
after the BB

Sic Mundus Creatus Est: BB Nucleosynthesis
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Cosmological Nucleosynthesis



“D Bottleneck”: 
all the subsequent 

synthesis depending  
on the equilibrium 

value of  
H(H,γ)D  

i.e. on the  
Baryon/Photon ratio η

Cosmological Nucleosynthesis



Lack of stable nuclei 
with 8 nucleons 
prevents the 
formation of nuclides 
from 9Be upwards

Cosmological nucleosynthesis



Nuclide tables (just in case…)



...as a consequence, all 
a b u n d a n c e s o f B B N 
products, if not altered 
afterwards, allow the 
measurement of the BB 
photon-baryon ratio!
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CNO: hydrostatic burning, 
massive stars - SN II 

low-mass (AGB)



• Almost all “metallicity” is in fact C+N+O:  
 
 
 
 

• Produced through hydrostatic He burning, through 
the “triple alpha” reaction, plus p-captures for N:
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The important stuff: C, N, O



• produced in almost every star reaching He-flash and 
core He burning (HB)... 

• ... but released in significant amounts by massive stars, 
and by low mass stars when produced in intershell 
burning (AGB) 

• C, N, O typically enhanced in the photospheres of low 
gravity giants due to dredge-up of processed material 

• Their origin in massive stars makes them among the 
earliest yields released in the primordial Universe… 

• … possibly allowing/facilitating low mass star 
formation, and organic chemistry
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α elements: 
hydrostatic & explosive, 

massive stars - SN II



• even-atomic-number elements 
between O and Ti (Z=8 to 22) are 
mostly produced by α-capture 

• Burning up to Ne is usually 
hydrostatic even in moderate mass 
stars... 

• ... but in fact most of the 
hydrostatic Ne is photodissociated 
during SN explosion and synthesized 
again as explosive product 

• a b o v e M g α - e l e m e n t s a r e 
essentially explosion products 

• released by massive, short lived 
stars, enrich ISM early in the 
hostory of the Universe

12C + 4He ! 16O + �
16O + 4He ! 20Ne+ �

20Ne+ 4He ! 24Mg + �
24Mg + 4He ! 28Si+ �

...

What you stand on: α-elements 





light-odd elements: 
p-capture, massive 

stars (and AGB)



• odd-atomic-number nuclei are (mostly) produced by 
capture of a proton on a lighter, even-atomic-number 
one.  

• p-captures happen every time sufficient (~106-107 K) 
temperatures are reached, the issue is the delivery 
to ISM 

• most light-odd elements likely come from SN II, but 
also AGB (intermediate mass?) production is likely 
(see globular clusters) 

• Lower odd-N nucleus stability and α-capture starting 
from higher abundance in even elements produce the 
even-odd effect.

Salt of Life: light p-capture elements





Fe-peak elements: 
statistical eq., explosive, 

SN II and SN 1a



• elements between Z=24 (Cr) and Z=30 (Zn) are usually called “iron 
peak” elements as a reference to the peak in the nuclear binding 
energy at 56Fe 

• no fusion reaction is exothermic past Fe, fissions become exothermic 
instead

• around the peak the 
a b u n d a n c e s a r e 
d e t e r m i n e d b y 
s t a t i s t i c a l 
equilibrium of n- and 
p- captures through 
“ n u c l e a r S a h a 
equations”

Heavy Metal:  Iron peak elements
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• Fe-peak elements are produced both by SN II and SN 1a. 
• Explosive environments are required due to the very high 

temperature (~3*109K) and (almost) endothermic nature of 
reactions 

• Again, delivery is important: Sn 1a are totally destroyed, thus 
efficiently delivering large fractions of Fe-peak to the ISM... 

• ... while SN II are producing most Fe-peak in the inner core, 
where i) they get photodisintegrated and ii) they remain under 
the fall-back, locked in the compact remain…  

• …but explosive nucleosynthesis dumps large amounts of energy 
into producing many solar masses of 56Ni, whose decay into 56Fe 
powers most of the SN light curve. 

• Having both prompt and delayed sources, Fe-peak elements 
show a complex interplay of abundance with α-elements

Iron peak elements



…that α-enhancement thing…



[Ca/Fe] ratio typical of Sn II yields

~ 1Gyr: 
type 1a SN begin to 

contribute Fe

Sn 1a / 2 mixed yield

…that α-enhancement thing…
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…that α-enhancement thing…





n-capture elements: 
r-process - SN II 
s-process - AGB



Godzilla stuff: n-capture elements 
(those that are either really expensive, or you hear about 

only when a nuclear plant blows off, or both) 

• Statistical equilibrium calculation foresee 
extremely low abundances for elements 
past Zn, so non-equilibrium mechanism is 
required 

• Due to insensitivity to Coulomb barrier, n-
capture is efficient also at low energies for 
heavy nuclei. 

• PROBLEM: you need a high density of 
neutrons, i.e. you need a neutron source.
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• Two domains,  divided by the ratio 
between the  timescale of n-capture vs. 
timescale of β-decays. 

• n-captures are faster: r-process (rapid), 
many neutron captures happen before any 
can β -decay: T>109K nn>1022cm-3. 
Timescale for capture is below the second. 

• β-decays are faster: s-process (slow), 
every n captured decays before another 
happens. Timescale of capture is years, 
T~3*108K, nn~3*108cm-3.

Godzilla stuff: n-capture elements 



Rapid capture: r-process

•r-process operates when 
neutron density is high 
enough that the time 
between n-captures is 
smaller than the lifetime 
against β decays
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r-process LIVE!!

https://archive.jinaweb.org/movies/rprocess_s240_rwind.mov
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r-process is cool...

• r-process forms isotopes “below” the “stability 
valley” that subsequently β-decay again into stable 
ones always coming from higher-A, lower-Z 

• most β-decay half life times ~hours, days: is a very 
fast process, instantaneous by astrophysical 
standards 

• very high neutron density is required 
• happens during SNII explosions, n produced by low-Z 

burnings… 
• … or (more likely?) NS-NS mergers
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... but it’s not enough: shielding.

• Some stable isotopes, such as 116Sn, cannot be 
produced by r-process because the β-decay path is 
blocked by a stable isotope (116Cd), and yet it is 
found in stars. 

•



• A process (a site?) is needed 
where the typical n-capture 
timescale is much longer than 
the β decay timescale

... but it’s not enough: shielding.



the slow neutron capture: s-process

• if neutron density is low enough, or neutron source is 
turned on and off periodically over timescales of 
~100-1000+ years, n-capture moves along the stability 
valley 

• SN explosions are too fast 
• Where can we imagine a neutron source that turns on 

and shuts off?

• Most likely, in AGB stars, 
where 13C mixed in the 
inter-pulse phase burns 
through

13
C (↵, n) 16O



All together now

The solar composition
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• Stellar nucleosynthesis is a complex network of processes 

• chemical patterns are the result of the interplay between 
stellar yields, environment, the timescales of galactic 
buildup, and its dynamical evolution 

• This produces broadly similar trends, but also a large 
amount of fine grained information… 

• … which is revealing as it is ambiguous. 

• Generalizations are necessary, but dangerous: blunt 
concepts (“metallicity”) have to be treated with caution.

Closing remarks



Thank you!


