

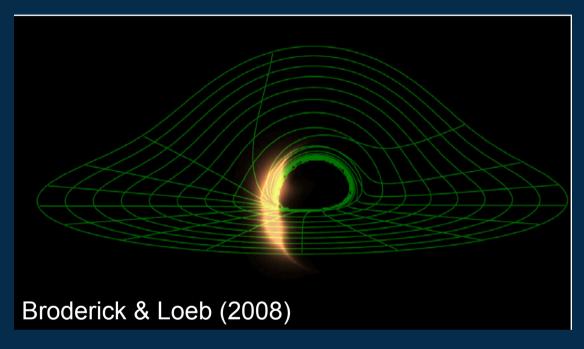
Eduardo Ros, Walter Alef, Helge Rottmann, et al.

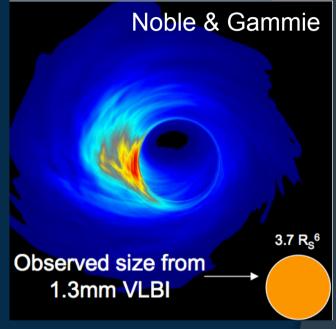
ALMA Developers Meeting
Göteborg, SE, May 26, 2016

VLBI WITH ALMA

Mex-Flanck-Institut für Radioastronomie

mm-VLBI science


The science


- Study of the immediate vicinity of the central engine in AGN
 - Schwarzschild-radius size imaging
 - Collimation and acceleration region in jets
- Spectral-line VLBI of absorbing systems for fundamental constant determination
- VLBI of masers in stellar objects and AGN
- Astrometry in the Milky Way and beyond

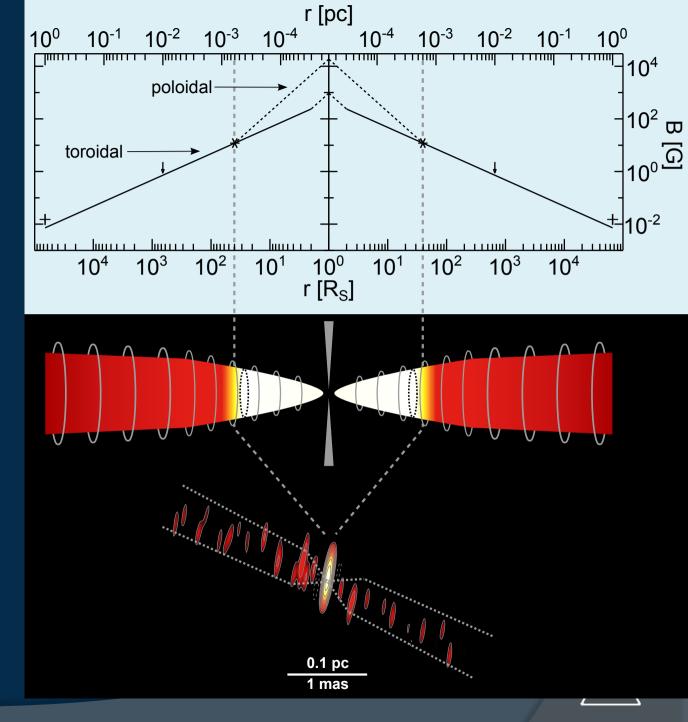
Below λ3mm: towards the BH shadow

Doeleman et al. Nature 455, 78-80 (2008)

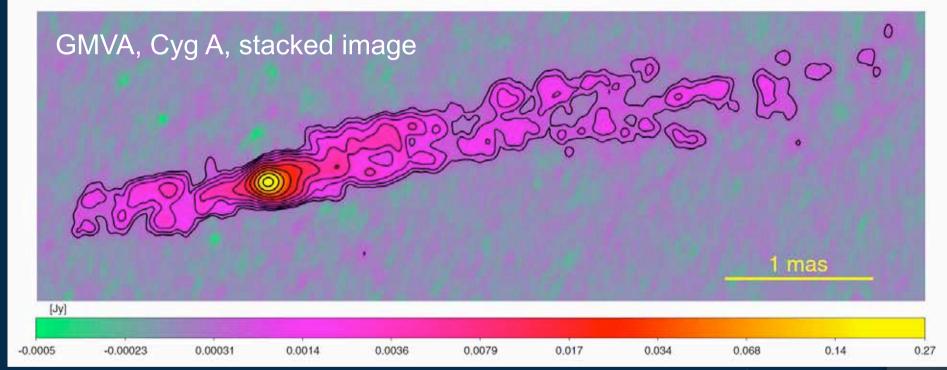
 $M_6 = \frac{0.1}{\Omega} \theta_{\mu as} D_{Kpc}$

Observed size: 43⁺¹⁴₋₈ µas

Deconvolved: 37 µas


Intrinsic: 3.7 R_s

Observed size smaller than expected size of ISCO or photon ring: Emission from hot spot or width of crescent shaped larger photon ring?


NGC1052 at 3mm: High magnetic fields

B_{Sc,1Rs} = 200-80000 G

Baczko et al. (in press, arXiv:1605.07100)

Jet ejection from accretion disk

Boccardi et al. A&A **588**, L9 (2016) Highlighted in Nature **532**, 150 (2016)

Jet base 100× wider than event horizon region. The disk is responsible for the jet ejection

Technique: present status

ALMA and VLBI

- ALMA did not include VLBI options to start, hooks for phasing included in the correlator
- Additions to make VLBI possible:
 - H-Maser
 - Phasing system & software
 - VLBI formatting, data transport & recorders
 - Briefing ALMA staff

Background

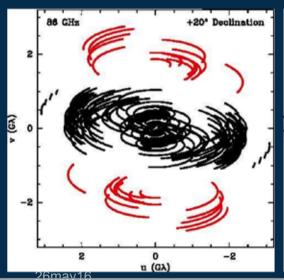
- ALMA upgraded by implementing a beamformer for phasing up ALMA for VLBI and PSR (feasibility under investigation) observations
- 2. Event Horizon Telescope assembles
- Preparing operation of ALMA in a VLBI network: GMVA proposed upgrade to ALMA
 - Procedures established, suggesting operational modus
- 4. Goal: joint observations ALMA with VLBI networks approved by board at bands 3&6

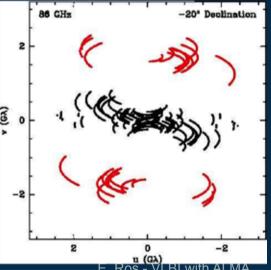
Activities

- ALMA Phasing Program
- Science case for ALMA beamformer (Fish et al. 2013, arXiv:1309.3519)
- White paper on implementation (Tilanus et al. 2014, arXiv:1406.4650)
- ERC granted a Synergy Proposal (BlackHoleCam) to several European partners to achieve scientific goals
- Definition of operations by upgrade study, board approved
- ALMA VLBI Coordination Committee grounded:
 - ALMA Cycle 4 call included VLBI option
 - Observations planned for April 2017 in Bands 3&6

Technical development: DBBC3, correlator

- State-of-the-art technology enabling cutting-edge science
- DBBC3:
 - Development by INAF-Noto, MPIfR & OSO
 - Production Hat-Lab
 - Flexible data rate up to 128
 Gbps, EHT target 64 Gbps
 - Supported by
- DiFX correlator:
 - New cluster Q1/2015
 1000-1500 computer cores
 - 6×Mark6 units




See http://www.hat-lab.com

ALMA Phasing Project (2011-15)

- Goal: Coherently add the signals from individual antennas to form a very sensitive single-dish mm/sub-mm instrument (PSR & VLBI)
- Resources: 25 FTE-yr, over 4 M\$ (NSF/ MRI + other partners)

uv-coverage including ALMA (3mm left, 1mm right)

ALMA Phasing Project

Oct 2009: International team assembled

Jan 2011: ALMA board endorses NSF proposal

Sep 2011: NSF Awards MRI grant and international funding secured

Dec 2011: Project kickoff meeting

Nov 2012: PDR passed

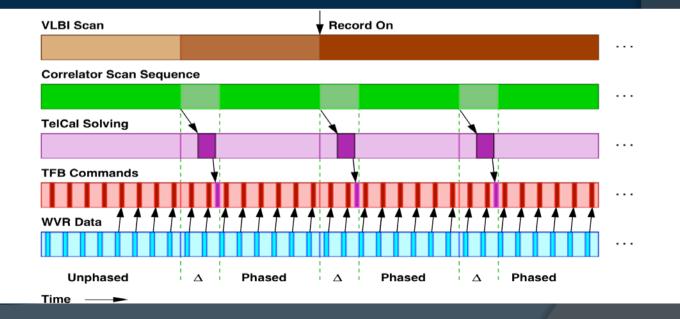
May 2013: CDR passed with minor issues to be solved.

Jul 2015: ALMA Acceptance Review passed

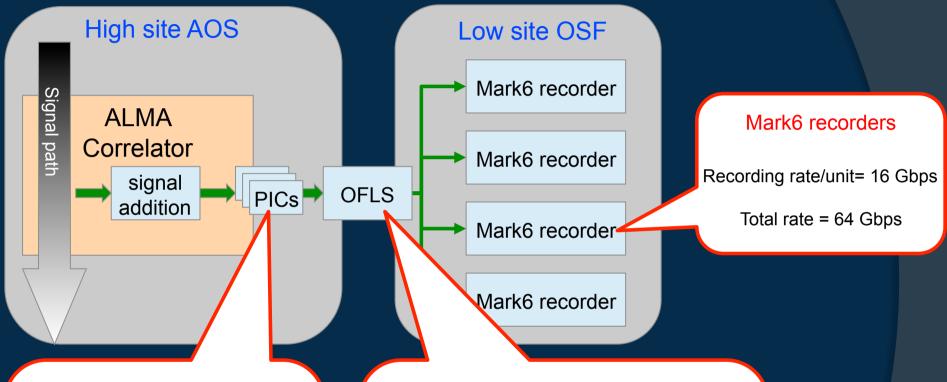
Aug 2015: ALMA Phasing Project ends; NSF grants prolongation

VLBI recent tests

Date	λ	Antennas	Purpose	Fringes?	Comments
2015/01	1.3	ALMA- APEX	Comm.	✓	1 st ALMA fringes
2015/01	1.3	SPT-APEX	Comm.	✓	1st SPT fringes
2015/03	1.3	ALMA -PV	Test	✓	1st ALMA intercont. frg.
2015/08	3.5	ALMA - VLBA-EB	Comm.	•	1 st ALMA 3mm fringes, DBBC2 mode failed
2015/10	3.5	Local	Test	×	DBBC mode improvements
2016/05	3.5	Local	Test	✓	DBBC2 ALMA mode works
2016/05	3.5	GMVA	Test	search	ALMA mode & 4 Gbps



Hardware & software in place


ALMA rubidium clock replaced by H-maser Installed and tested in 2014

Phasing loop timing Phase variations due to troposphere, WVR corrections applied

Signal transport, formatting & recording

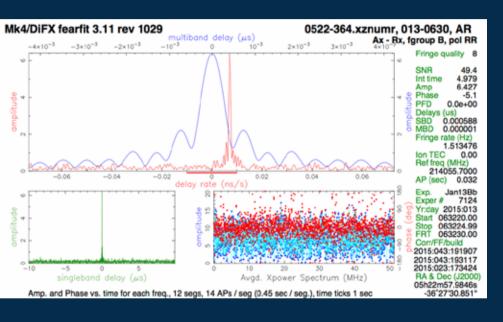
PIC = Phasing Interface Card

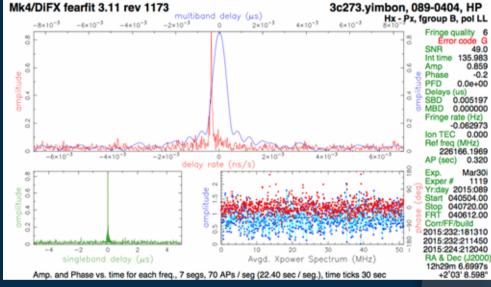
Delivers formatted data

- VDIF format
- -10GbE packetization
 - synchronization
- channelization (32 x 62.5MHz)
 - 2bit sampling

Total number of PICs: 8

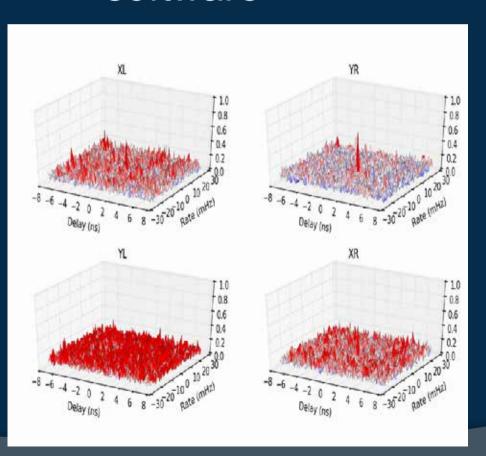
OFLS = Optical Fibre Line System

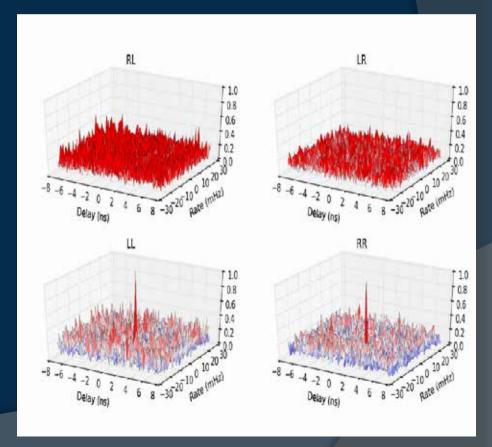

Transports the formatted signal from correlator (AOS high site) to recorder (OSF low site)


MUX/DEMUX over optical fibre

VLBI recorders cannot be operated at very high altitudes (hard disks)

1-mm VLBI with ALMA: successful tests


ALMA-APEX fringes, 230 GHz, Mar 2015


ALMA-PV fringes, 240 GHz, Aug 2015

ALMA polarisation

 Eb-On test at 86 GHz (On XY, Ef RCP/ LCP) – DiFX correlation – PolConvert software

ALMA network providers

- 3mm: GMVA
 - GMVA submission: February 1st
 - Forwarded to TACs of network partners
 - ALMA submission: April 21st
- 1.3mm: EHT
 - ALMA submission: April 21st
 - NRAO submission: April 28th
 - Technical and scientific review in progress

The GMVA

http://www.mpifr-bonn.mpg.de/div/vlbi/globalmm

- Complementary to EVN and VLBA, matching resolution with RadioAstron
- Open-sky policy
- Requires expertise for the common user
- At present:
 - 2 sessions per year (spring & fall), offsession observations possible
 - 3.5 mm (also 7 mm)

Image credit: T.P. Krichbaum (MPIfR)

GMVA sensitivities

Array	Stations	Base- line [mJy]	Array [mJy/hr]	SNR 12- hr map [× 10 ³]	Comment
VLBA 2 Gb/s	VLBA(8)	> 164	2.33	1.0	no HN, SC
GMVA 2 Gb/s	VLBA+Eb+Pb +Pv+On+Mh	> 33	0.86	2.8	68 mJy VLBA- IRAM
+Yb	GMVA+Yb	> 27	0.67	3.7	68 mJy VLBA-Yb
+Lm+Gb	GMVA+Yb+Lm +Gb	> 10	0.30	8.2	31 mJy VLBA-Gb
+ALMA37	GMVA+Yb +LMT+Gb +ALMA37	> 5	0.19	12.9	5 mJy ALMA-Gb

 Δv =512 MHz (2 Gb/s), t=20s, 7 σ fringe detection, 2-bit

- Western array

Event Horizon Telescope

- Mauna Kea, Hawaii:
 - SMA, JCMT (D_{eff}: 23m)
- Mount Graham, Arizona:
 - SMT (10-m)
- Inyo Mountains, California:
 - CARMA (D_{eff}: 27m)
- Sierra Negra, Mexico:
 - LMT (50-m)
- Atacama desert:
 - ALMA, (D_{eff}: 85-m)
 - APEX, (12-m)
- Pico Veleta (Sierra Nevada, Spain, 30m)
- Plateau de Bure/NOEMA (France, D_{eff}: 37-m)
- South Pole Telescope (10-m)
- Greenland Telescope (12-m)

Enhancement at λ1.3mm

	PdB	SMTO	APEX	ALMA
Pico Veleta	0.063	0.201	0.169	0.024
Plateau de Bure		0.153	0.129	0.019
SMTO			0.413	0.059
APEX				0.050

Baseline sensitivity (Jy) at 1.3mm for 10s integration time

Sensitivity increase > 3

Developments external to ALMA

- Continuous upgrades: e.g., APEX RX 1mm
- GLT being installed in Thule in Summer 2016, commissioning, observations
- Simultaneous multi-wavelength receivers (e.g. KVN)
- New antennas to enhance image fidelity (uvcoverage & sensitivity)
 - Europe: SRT at 3mm
 - Latin America & Africa: LLAMA project, studies
 - Asia & Australia: new dishes, Nobeyama/ATCA/ Mopra option
- Technical developments: data bit rate, correlator output

Summary: VLBI at ALMA

- Equipment in place (H-maser, recorders)
- Phasing completed
- Polarisation conversion completed
- APP lifetime
 extended to 2016 for
 completing features
- Cycle 4 call closed

- Present limitations
 - 3-hr on source for calibration
 - S > 0.5 Jy (phasing on program source)
- Pending:
 - Model source (extended structure) for phasing
 - Commissioning of weak sources for additional targets
 – phasing on calibrator (highsensitivity science)

Mex-Flanck-Institut für Radioastronomie

Thanks!