
CASA	HPC	
Intro,	Overview,	Future	 Sandra	Castro	

Justo	Gonzalez	

Julian	Taylor	

on	behalf	of	the	CASA	team	

25
 -

27
 M

ay
 2

01
6

A
LM

A
D

ev
el

op
er

's
 W

or
ks

ho
p

ESO	–	Pipeline	Systems	Group	

Overview	-	Topics	

Ê  Why	parallelise	CASA?	

Ê  HPC	project	scope	

Ê  Parallelisation	Concept	

Ê  Parallelisation	Implementation	

Ê  Performance	tests	

Ê  How	to	use	CASA	in	parallel?	-	Justo	

Ê  Future	

2 ALMA Developer's Workshop 25 - 27 May 2016

Why	parallelise	CASA?	

Ê  Many	tasks	require	traversing	the	entire	data	set	and	are	I/O	limited.	

	à	flagdata,	applycal,	time	averaging	

Ê  CASA	must	try	to	make	the	most	efficient	possible	use	of	whatever	
resources	are	available.	CASA	has	focused	on	2	standard	systems	

							Workstation	à	multi-core	system,	local	disk,	single	shared	memory	

							Cluster	à	many	multi-core	nodes,	high	performance	network		file	
system	(Lustre),	no	shared	memory	access	

3 ALMA Developer's Workshop 25 - 27 May 2016

CASA	HPC	Project	Scope	

Ê  Define	a	parallelisation	concept	

Ê  Implement	a	parallelization	framework	for	task	and	tool	
levels.	(Python	and	C++)		
	

Ê  Support	the	parallelisation	of	the	Pipeline		

Ê  Improve	performance	on	computing	clusters	and	desktops.	

Ê  Provide	documentation	to	users	and	developers	

4 ALMA Developer's Workshop 25 - 27 May 2016

Parallelisation	Concept	

Trivial	parallelisation	

	
Ê  Partition	the	MS	into	sub-MSs	(spw,	scan	axes)	

Ê  Run	a	CASA	instance	on	each	sub-MS	in	parallel	

à  partitioned	data	is	called	Multi-MS	or	MMS	

à  partition	task	is	the	front-end	to	create	a	Multi-MS	

5 ALMA Developer's Workshop 25 - 27 May 2016

also	possible	inside	
importasdm	

Trivial	Parallelisation	Principle	

Main	
process	

sub-process	1	 sub-process	2	 sub-process	3	 sub-process	4	

6

no	interaction	between	sub-processes	

Theory:	run-time	parallel	=	run-time	sequential	
																																																											#	sub-processes	

ALMA Developer's Workshop 25 - 27 May 2016

But….	the	MS	is	an	irregular	grid	

7

à Problem for a simple partition per spw or scan

ALMA Developer's Workshop 25 - 27 May 2016

Multi-MS	-	load	distribution	

	

8

Main	
process	

sub-process	1	 sub-process	2	 sub-process	3	 sub-process	4	

can	lead	to	
load	

imbalance	

ALMA Developer's Workshop 25 - 27 May 2016

Partition	-	equal	sized	chunks	

9

can	lead	to	
data	selection	
problems…	

ALMA Developer's Workshop 25 - 27 May 2016

Partition	-	data	selection	problem	

10

applycal(vis, spw=‘4’…)

ALMA Developer's Workshop 25 - 27 May 2016

Partition	-	balanced	mode	-	default	

Ê  Obtain	the	list	of	scan/DDI	pairs	

Ê  Calculate	the	total	number	of	visibilities	per	pair	and	sort	the	
list	in	descending	order.	

Ê  Each	pair	is	allocated	a	separate	Sub-MS	following	a	global	
merit	function	

•  RESULTS	in:	
Ø  each	Sub-MS	having	roughly	the	same	size	in	disk	
Ø  the	scan/spw	content	is	spread	in	all	Sub-MS	
Ø  results	in	a	better	work-load	for	each	parallel	engine	
Ø  tries	to	avoid	idle	engines	when	data	selection	is	required	

11 ALMA Developer's Workshop 25 - 27 May 2016

Implementation	-	framework	

Parallelisation	framework	
mpi4casa	à	Gonzalez	(2014)	

Ê  Uses	the	Message	Passing	Interface	(MPI)	
Ê  openMPI	-	MPI	3.0	standard	

Ê  Easy	launching	using	custom	mpicasa	script	

Ê  Control	of	the	number	of	processes	at	startup	time	

Ê  Provide	tools	and	documentation	for	developers	

Ê  Automated	tests	using	Jenkins	

12 ALMA Developer's Workshop 25 - 27 May 2016

Implementation	-	Tiers	

Ê  Tier-1	Parallelisation	
Ê  Internal	parallelisation	within	tasks	

à	partition,	split,	flagdata,	applycal,	setjy,	mstransform,	
à	will	work	in	parallel,	on	each	Sub-MS	separately	

Ê  Tier-0	Parallelisation	
Ê  Parallel	execution	of	not	internally	parallelised	tasks	

à	plotms,	gaincal	à	see	Multi-MS	as	a	monolithic	MS	

Ê  Tier-2	Parallelisation	(future)	
Ê  Parallel	execution	of	internally	parallelised	tasks	

à	running	several	flagdata	calls	in	parallel,	each	on	an	MMS	

13 ALMA Developer's Workshop 25 - 27 May 2016

Support	for	the	pipelines	

IF	and	SD	pipelines	

Ê  Tier-0	for	plotms	calls	

Ê  compression	of	online	flags	application	

Ê  spw-field	breakdown	in	flagdata	summary	

Ê  Tier-0	for	baseline	fitting	

Ê  baseline	axis	in	partition	

Ê  I/O	improvements	

14 ALMA Developer's Workshop 25 - 27 May 2016

ALMA	pipeline	-	performance	

15 ALMA Developer's Workshop 25 - 27 May 2016

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

serial	 parallel	4	 parallel	8	

!m
e	
(s
)	

wvrgcal	

tclean	

setjy	

plotms	

mstransform	

imregrid	

importasdm	

impbcor	

gencal	

gaincal	

fluxscale	

flagdata	

bandpass	

applycal	

3 EBs ~ 115GB total

not all steps are
parallelised

80+ calls to plotms
and gaincal

flagdata is ~6x faster

applycal and tclean
are ~ 3x faster

tclean parallel is still
under dev/test

EVLA	pipeline	-	initial	result	

16

0	
5	

10	
15	
20	
25	
30	
35	
40	
45	

4.
6.
10

5	

4.
6.
10

8	

4.
6.
11
2	

4.
6.
11
6	

4.
6.
12

9	

4.
6.
14

2	

4.
6.
16

7	

4.
7.
8	

4.
7.
14

	

4.
7.
17
	

K
ilo

-s
ec

on
ds

	

EVLA	Pipeline	Runtime		

Serial	 Parallel	

�  VLA	pipeline	run	in	serial	and	
parallel	modes	
¡  25	GB	SDM	
¡  Parallel	system	using	8	cores	

�  When	lustre	space	is	available	(~	
July)	will	begin	parallel	testing	on	
wide	sample	of	data	sets	

ALMA Developer's Workshop 25 - 27 May 2016

Parallelization	of	imaging	

Ê  Parallel	implementation	of	continuum	and	cube	clean	are	fully	integrated	in	
tclean.		

Ê  tclean	makes	use	of	the	MPI	framework	à	similar	to	calibration	tasks	

Ê  run	time	cost	of	imaging	comes	from	two	sources	

	data	I/O;	

	re-sampling	the	data	onto	a	grid	(gridding	and	de-gridding)	

Ê  the	run	time	reduces	from		many	days	to	a	few	hours	using	tens	of	processes	

	
17

source Bhatnagar et al. 2015

ALMA Developer's Workshop 25 - 27 May 2016

18 ALMA Developer's Workshop 25 - 27 May 2016

Performance	Considerations	

Ê  Ideally,	use	a	shared	high-performance	file	system	for	multi-
node	use	and	a	strong	I/O	system.	

Ê  The	type	of	processing	done	in	the	analysis.		

Ê  The	size	of	the	ASDM	in	order	to	decide	if	it	is	worth	
processing	it	in	parallel	or	not.		

Ê  The	size	of	the	image	and	algorithm	used	will	affect	the	
memory	consumption	of	tclean.		
channel	chunks	à	under	development	for	parallel	case	

19 ALMA Developer's Workshop 25 - 27 May 2016

Future	development	

Ê  tclean	parallelization	(IF),	imaging	steps	(SD)	

Ê  Tier-2	parallelisation	or	sub-clusters	to	process	multiple	EBs	

Ê  MPI	at	C++	level	to	support	gaincal/bandpass	in	selfcal	mode	

Ê  Resource	identification/management.	CASA	must	be	able	to	
identify	the	available	resources	in	the	system	and	use	them	
efficiently	at	run	time.	

20 ALMA Developer's Workshop 25 - 27 May 2016

HPC	Documentation	

Ê  Users	Documentation	
Ê  CASA	cookbook	4.5+	

Ê  Chapter	10	–	Parallel	Processing	in	CASA	
Ê  Chapter	4	–	Synthesis	Calibration	(mstransform)	

Ê  Example	script	on	how	to	run	in	parallel	
Ê  alma-m100-analysis-hpc-regression.py	

Ê  Developers	Documentation	
Ê  CASA	MPI	Framework	
Ê  Multi-MS	Structure	
Ê  Guide	to	running	tests	with	Multi-MSs	

21 ALMA Developer's Workshop 25 - 27 May 2016

Thank	you	

	

	

	

QUESTIONS?	

22 ALMA Developer's Workshop 25 - 27 May 2016

CASA	Parallelization	Tutorial	
Justo	Gonzalez	

	

Ê  Message	Passing	Interface	(MPI)	

Ê  How	to	run	CASA	in	parallel	mode	(mpicasa)	

Ê  Parallelization	Interface	(mpi4casa)	

Ê  Default	CASA	parallelization	

Ê  Calibration	

Ê  Imaging	

23 ALMA Developer's Workshop 25 - 27 May 2016

Message	Passing	Interface		
(MPI)	

	

Ê  MPI	is	a	standard	process	communication	interface	
Ø  Good	portability	to	several	platforms	/	OSs	

Ê  Supported	and	elaborated	by	governmental	programs		(NSF,	ARPA	
by	USA	and	Espirit	by	EU)	
Ø  Proper	maintenance,	good	long-term	choice	

24 ALMA Developer's Workshop 25 - 27 May 2016

How	to	run	CASA	in	parallel	mode	
(mpicasa)	

Ê  To	run	CASA	in	parallel	it	is	necessary	to	use	a	script	included	in	the	
CASA	distribution	called	mpicasa.	

Ê  mpicasa	 	 handles	 environment	 settings	 and	 spawns	 the	 required	
number	 of	 processes	 on	 the	 local	 host	machine	 and/or	 on	 remote	
machines.	

25 ALMA Developer's Workshop 25 - 27 May 2016

	

Master	node	
	(User	terminal)	

mpicasa	

Node-A	

Process	1		
(server	1)	

Process	2		
(server	2)	Process	0	

(client)	

Node-B	

Process	3		
(server	3)	

Process	4		
(server	4)	

Master	node	
	(User	terminal)	

mpicasa	

Process	1	
(server	1)	

Process	2		
(server	2)	

Process	0		
(client)	

Process	3		
(server	3)	

Process	4		
(server	4)	

How	to	run	CASA	in	parallel	mode	
(mpicasa)	

Ê  Deploy	processes	only	on	local	host	
Ø  mpicasa	-n	<number_of_processes>	path_to_casa/casa	<casa_options>	

Ê  number_of_processes:	Number	of	processes	to	deploy		

								(number	of	Servers	+	1	(client))	

Ê  casa_options:	CASA	options	such	as:		–nogui,	–log2term,	etc.	

	

Ê  Batch	mode:	-c	<script_name>	

Ê  Interactive	mode:	An	xterm	window	pop-ups,	necessary	to	log	in	with	
X11	forwarding	

26 ALMA Developer's Workshop 25 - 27 May 2016

	

mpicasa –n 5 casa –nogui –log2term –c “myscript.py”

mpicasa –n 5 casa

How	to	run	CASA	in	parallel	mode	
(mpicasa)	

Ê  Deploy	processes	only	on	local	host	
Ø  mpicasa	-n	<number_of_processes>	path_to_casa/casa	<casa_options>	

Ê  number_of_processes:	Number	of	processes	to	deploy	(number	of	servers	+	1	(client))	

Ê  casa_options:	CASA	options	such	as:		–nogui,	–log2term,	etc.	

Ê  Batch	mode:	-c	<script_name>	

Ê  Interactive	mode:	An	xterm	window	pop-ups,	necessary	to	log	in	with	X11	forwarding	

Ê  Deploy	processes	on	remote	machines	
Ø  mpicasa	-hostfile	<hostfile>	path_to_casa/casa	<casa_options>	

Ê  <hostfile>:	Text	file	with	one	line	per		node,	and	the	number	of	processes	to	be	deployed.	

	

27 ALMA Developer's Workshop 25 - 27 May 2016

	

This is an example hostfile
node-A.example.com slots=2
node-B.example.com slots=2

mpicasa –n 5 casa –nogui –log2term –c “myscript.py”

mpicasa –n 5 casa

CASA	Parallelization	interface	
(mpi4casa)	

	
Ê  MPI	firstly	introduced	in	CASA	at	the	python	level	with	the	mpi4casa	

package	(developed	by	Lisandro	Dalcin,	CIMEC)	
Ê  Supports	all	MPI	operations	
Ê  Allows	to	communicate	python	objects	
Ê  Low	overhead,	comparable	with	C	(15	microseconds)	

Ê  CASA	HPC	group	developed	a	layer	on	top	of	it	using	a	client-server	
model,	where:	
Ê  Client	is	the	master	process,	driving	user	interaction,	and	dispatching	

user	commands	to	the	servers	
Ê  Servers	are	all	the	other	process,	running	in	the	background,	waiting	for	

commands	sent	from	the	client	side	

28 ALMA Developer's Workshop 25 - 27 May 2016

CASA	Parallelization	interface	
(mpi4casa)	

Ê  Initialization	
Ê  Import	MPICommandClient	form	mpi4casa	module	

Ê  Create	an	instance	of	MPICommandClient	

Ê  Set	logging	policy	

Ê  Redirect:	Logging	from	all	servers	is	redirected	to	the	main	log	file	

Ê  Separated:	Logging	from	each	server	is	sent	to	a	separated	log	file	

Ê  Initialize	command	handling	services	
	

29 ALMA Developer's Workshop 25 - 27 May 2016

	

from mpi4casa.MPICommandClient import MPICommandClient

client.start_services()

client = MPICommandClient()

client.set_log_mode('redirect')

CASA	Parallelization	interface	
(mpi4casa)	

Ê  Syntax	to	send	a	command	request	
	

	

Ê  command:	String	containing	the	Python/CASA	command	to	be	executed.		The	command	
parameters	can	be	included	within	the	command	in	itself	also	as	strings.	

Ê  block:	Boolean	to	control	whether	command	request	is	executed	in	blocking	mode	(True)	
or	in	non-blocking	mode	(False).	Default	is	False	(non-blocking).	

Ê  	target_server:	List	of	integers	corresponding	to	the	server	ids	to	handle	the	command		
Ê  target_server=None:	The	command	will	be	executed	by	the	first	available	server	
Ê  target_server=2:	The	command	will	be	executed	by	the	server	n#2	as	soon	as	it	is	available	
Ê  target_server=[0,1]:	The	command	will	be	executed	by	the	servers	n	#2	and	#3		

Ê  parameters	(Optional):	Alternatively	the	command	parameters	can	be	specified	in	a	
separated	dictionary	using	their	native	types	instead	of	strings.	

Ê  ret	(Return	Variable):		
Ê  In	non-clocking	mode:	Integer	(command	id)	to	retrieve	the	command	response	at	a	later	stage.	
Ê  In	blocking	mode:	List	of	dictionaries,	containing	the	response	parameters.	

30 ALMA Developer's Workshop 25 - 27 May 2016

	
ret = client.push_command_request(command,block,target_server,parameters)

CASA	Parallelization	interface	
(mpi4casa)	

31 ALMA Developer's Workshop 25 - 27 May 2016

	
Ê  Syntax	to	receive	a	command	result	

	
Ê  command_request_id_list:	List	of	Ids	(integers)	corresponding	to	the	commands	whose	

result	is	to	be	retrieved.	

Ê  block:	Boolean	to	control	whether	to	block	until	all	command	results	have	been	received	

Ê  ret	(Return	Variable):	List	of	dictionaries,	containing	the	response	parameters.	The	
dictionary	elements	are	as	follows:	

Ê  ‘successful’	(Boolean):	indicates	whether	command	execution	was	successful	or	failed	

Ê  ‘traceback’	(String):	In	case	of	failure	contains	the	traceback	of	the	exception	thrown	

Ê  ‘ret’:	Contains	the	result	of	the	command	in	case	of	successful	execution	

ret = client.get_command_response(command_request_id_list,block)

CASA	Parallelization	interface	
(mpi4casa)	

32 ALMA Developer's Workshop 25 - 27 May 2016

	
Ê  Example	1	

Ê  Run	wvrgcal	in	2	different	measurement	sets	(for	instance	each	one	
corresponding	to	an	Execution	Block):	

Ê  target_server:	Is	not	specified	because	these	are	monolithic	state-less	commands,	
therefore	any	server	can	process	them	

	

	

Example of full command including parameters
cmd1 = “wvrgcal(vis=‘X54.ms',caltable=‘cal-wvr_X54’,spw=[1,3,5,7])”
cmdId1 = client.push_command_request(cmd1,block=False)

Example of command with separated parameter list
cmd2 = “wvrgcal()”
params2={vis=‘X54.ms',caltable=‘cal-wvr_X54’,spw=[1,3,5,7]}
cmdId2 = client.push_command_request(cmd2,block=False,parameters=params2)

Retrieve results
resultList = client.get_command_response([cmdId1, cmdId2],block=True)

CASA	Parallelization	interface	
(mpi4casa)	

33 ALMA Developer's Workshop 25 - 27 May 2016

	Ê  Example	2	
Ê  Use	the	CASA	ms	tool	to	get	the	data	from	2	EBs	and	apply	a	custom	median	filter:	

	
	

Ê  target_server:	Specified	as	each	command	depends	on	the	state	generated	by	previous	ones	
Ê  block:	Block	only	on	the	last	commands	as	all	the	others	will	be	executed	using	a	FIFO	queue	

	

	

Open MSs
client.push_command_request(“tb.open(‘x54.ms’)”,target_server=1)
client.push_command_request(“tb.open(‘x220.ms’)”,target_server=2)

Apply median filter
client.push_command_request(“data=ms.getcell(‘DATA’,1)”,target_server=[1,2])
client.push_command_request(“from scipy import signal”,target_server=[1,2])
client.push_command_request(“filt_data=signal.medfilt(data)”,target_server=[1,2])

Put filter data back in the MSs
client.push_command_request(“tb.putcell(‘DATA’,1,filt_data)”,target_server=[1,2])

Close MSs
client.push_command_request(“tb.close(),target_server=[1,2],block=True)

Default	CASA	parallelization	

34 ALMA Developer's Workshop 25 - 27 May 2016

	Ê  Calibration	
Ê  If	a	Measurement	Set	is	partitioned,	and	CASA	runs	in	parallel	mode,	the	following	

tasks	trigger	automatically	internal	parallelization:	
Ê  flagdata,	applycal,	setjy,	uvcontsub,		
Ê  mstransform,	split,	hanningsmooth,	cvel2,	clearcal,	delmod	

Ê  To	partition	a	Measurement	Set	there	are	two	options	(both	run	in	parallel)	
Ê  importasdm	with	option	createmms=True	
	
	

Ê  partition	(allows	to	specify	desired	data	column)	

Ê  Imaging	
Ê  If	CASA	runs	in	parallel	mode	tclean	resorts	to	parallelization	if	parallel=True	
Ê  It	can	work	with	normal	MSs	and	parted	MS,	so	there	is	no	need	to	part	the	data	

importasdm(asdm='uid_X54',vis='X54.ms',createmms=True, numsubms='auto')

partition(‘X54.ms,outputvis=‘X54.mms’,separationaxis='auto’)

