Filippo Contenta

Collaborators: Mark Gieles Eduardo Balbinot

FAINT STELLAR SYSTEMS IN THE OUTER HALO OF THE MILKY WAY

Bechtol et al. (2015), Belokurov et al. (2015)

Bechtol et al. (2015), Belokurov et al. (2015)

Bechtol et al. (2015), Belokurov et al. (2015)

ESTIMATE OF THE NUMBER OF STAR CLUSTERS

ESTIMATE OF THE NUMBER OF STAR CLUSTERS

STAR CLUSTERS

 $\frac{r_{\rm h}}{r_{\rm J}} \sim 0.15 \qquad \text{Hénon (1961)}$ $r_{\rm J} = \left(\frac{GM}{2\Omega^2}\right)^{1/3}$

 $M \sim 300 \text{ M}_{\odot}, V_{\text{G}} = 200 \text{ km s}^{-1}, R_{\text{G}} = 40 \text{ kpc}$

$$r_{\rm J} \sim 30 \ {\rm pc} \Longrightarrow \ r_{\rm h} \sim 4 \ {\rm pc}$$

Can star clusters contribute to the extended FSSs population?

N-BODY SIMULATIONS

- NBODY6tt (Renaud & Gieles, 2015) (Nitadori & Aarseth, 2012)
- Collisional code
- $1000 \le N \le 20000 \ (N_{12 \text{ Gyr}} \sim 200 \text{ stars})$
- Plummer model (Plummer, 1911)
- $0.1 < \frac{M}{M_{\odot}} < 100$, Kroupa IMF (Kroupa, 2001)
- Roche filling $\left(\frac{r_{\rm h}}{r_{\rm J}}=0.1\right)$, underfilling $\left(\rho_{\rm h}=10^4\frac{\rm M_{\odot}}{\rm pc^3}\right)$
- $R_{\text{apo}} = (50, 100, 150) \text{ kpc}$, e = (0, 0.25, 0.5, 0.75)
- NFW potential $\phi_{\rm NFW} = -\frac{GM}{R_{\rm G}} \ln \left(1 + \frac{R_{\rm G}}{R_0}\right)$ (NFW, 1996)

ANALYSIS IN THE OBSERVATIONAL SPACE

- Consider only luminous stars (no remnants and $m > 0.5 M_{\odot}$) bound & unbound
- Study different points in the orbit (e.g. apo, peri)
- Add background stars (based on Galactic model, TRILEGAL 1.6) (Girardi et al., 2012)
- Maximum Likelihood fit on number density profile (Martin et al., 2008)
- Consider different lines of sight

LUMINOUS STARS (BOUND & UNBOUND)

EVOLUTION OF THE SIZE

EVOLUTION OF THE SIZE

BACKGROUND STARS

Can the background stars influence the observed r_h ?

EVOLUTION OF THE SIZE

DIFFERENT LOS

EVOLUTION OF THE SIZE

KINEMATICS WITHIN r_h

KINEMATICS WITHIN r_h INARIES 12 y_{b} v 10 8 $\sigma \, [\rm km \, s^{-1}]$ 0.5 6 • y ٠ Δ 0.4 2 $\sigma \, [{ m km \ s}^{-1}]$ 0.3 0 10000 11 t [Myr] 8000 9000 11000 12000 13000 0.2 0.16 bin frac 0.14 0.1 0.12 0.10 $N/{ m ^{0.08}}$ 0.0 9000 9500 11000 11500 12000 12500 10000 10500 $t \,[\mathrm{Myr}]$ 0.06 0.04 0.02 0.00 11000 8000 9000 10000 12000 13000 $t \, [\mathrm{Myr}]$

BINARIES - EVOLUTION OF THE SIZE

ROCHE-FILLING VS UNDERFILLING $R_{APO} = 150$ kpc, e = 0.25

ROCHE-FILLING VS UNDERFILLING $R_{APO} = 50$ kpc, e = 0.5

THE EFFECT OF CLUSTER ORBIT

THE EFFECT OF CLUSTER ORBIT

THE EFFECT OF CLUSTER ORBIT

CONCLUSION

The recipe to appear extended:

- mainly along y-axis (the least probable LOS)
- in apocentre
- easier if it was a Roche-filling cluster
- enough time spent within the scale radius of the galactic potential

It is very unlikely to observe extended star clusters!

