Testing the formation of extended star clusters

Paolo Bianchini (MPIA, Heidelberg) Florent Renaud, Mark Gieles & Anna Lisa Varri

MNRAS 447, L40-L44 (2015)

INTERNATIONAL SUMMER INSTITUTE FOR MODELING IN ASTROPHYSICS

The zoo of small stellar systems

Origin of galactic GCs?

Leaman, VandenBerg & Mendel (2013)

GC or dwarf galaxy?

Laevens I / Crater

Laevens et al. 2014: - "most distant MW cluster"

Belokurov et al. 2014: - "dwarf galaxy with unusual properties"

Laevens et al. 2014

The zone of confusion

EXTENDED CLUSTERS

Pal 14, Pal 4, AM 1, Laev 1,
Arp 2, Terzan 8
more extended than "normal" GCs

Rh≈20pc vs. Rh≈3pc

- preferentially in the outer MW halo
- several other extragalactic extended clusters
 (e.g. Brodie & Larsen 2002, Huxor+)

HOW DID THEY FORM?

from Belokurov et al. 2014

The zone of confusion

EXTENDED CLUSTERS

Pal 14, Pal 4, AM 1, Laev 1,Arp 2, Terzan 8more extended than

"normal" GCs

Rh≈20pc vs. Rh≈3pc

- preferentially in the outer MW halo
- several other extragalactic extended clusters
 (e.g. Brodie & Larsen 2002, Huxor+)

HOW DID THEY FORM?

Belokurov et al. 2014

Formation of extended clusters

I) genuinly formed extended (Elmgreen 2008)

2) merging of 2 or more clusters (Fellahuer & Kroupa 2002)

3) formed compact and expanded because of peculiar evolution

e.g., Spitzer 1958; Mackey & Gilmore 2004

Formation of extended clusters

I) genuinly formed extended (Elmgreen 2008)

2) merging of 2 or more clusters (Fellahuer & Kroupa 2002)

3) formed compact and expanded because of peculiar evolution e.g., Spitzer 1958; Mackey & Gilmore 2004

accreted stellar systems (originally born in dwarf galaxies) We test the following idea:

- cluster is born "normal" in the core of dwarf galaxy
- it experiences COMPRESSIVE TIDES
- it is later accreted into the Milky Way and it expands

Compressive tides

Renaud 2010

FULLY COMPRESSIVE TIDES

(simple) analytical description

$$E_0 = \frac{1}{2}M\sigma^2 - \frac{GM^2}{2r_v} - \frac{1}{2}\lambda\alpha MR_t^2$$

dwarf galaxy

I)

(simple) analytical description

cluster: mass M, dispersion σ, characteristic radii R_t and r_v

$$E_0 = \frac{1}{2}M\sigma^2 - \frac{GM^2}{2r_v} - \frac{1}{2}\lambda\alpha MR_t^2$$

dwarf galaxy

2)

I)

compressive tides are turned off

$$E_1 = \frac{1}{2}M\sigma^2 - \frac{GM^2}{2r_v}$$

(simple) analytical description

cluster: mass M, dispersion σ, characteristic radii R_t and r_v

$$E_0 = \frac{1}{2}M\sigma^2 - \frac{GM^2}{2r_v} - \frac{1}{2}\lambda\alpha MR_t^2$$

compressive tides are turned off

I)

dwarf galaxy

2)

$$E_1 = \frac{1}{2}M\sigma^2 - \frac{GM^2}{2r_v}$$

3) system reaches new virial equilibrium
$$r'_v = r_v \left(\frac{1}{1 + \frac{2\lambda \alpha R_t^2 r_v}{GM}} \right)$$

The cluster experiences a drastic change in tidal field and expands

GC in the center of a Plummer potential with:

strong

intermediate

weak

Impulsive vs. adiabatic

Is the expansion enough?

Belokurov et al. 2014

Is the expansion enough?

Is the expansion enough?

We DO NOT obtain clusters with density profiles more extended than the corresponding isolated case

Conclusion

- we explored different initial conditions and configurations
- accreation process cannot explain extended clusters structure
- we tested an extreme case (compressive tides)
- our result is complementary and consistent with the finding of Miholics et al. (2014)

OPEN QUESTION: how did extended clusters form?

- extended clusters seem to be connected to dwarf galaxies (e.g. extended cluster found in a dwarf, Da Costa et al 2009)

supervirial state

Compressive tides

where do we find these tides? example:

$$\phi(r) = -\frac{GM}{\sqrt{r_0^2 + r^2}}$$

Plummer (1911) potential

$$T^{ij} = -GM \frac{\delta^{ij} \left(r_0^2 + r^2\right) - 3x_i x_j}{\left(r_0^2 + r^2\right)^{5/2}}$$

associated tidal tensor

Compressive

 $\lambda_1, \lambda_2, \lambda_3 < 0$ if

$$r < \frac{r_0}{\sqrt{2}}$$

mass loss

