Dissecting Galaxies Near and Far: High Resolution Views of Star Formation and the ISM

ESO - Santiago, Chile, March 25, 2015

Molecular gas at the center of the Galaxy

Anna Ciurlo T. Paumard, D. Rouan and Y. Clénet

thanks to OPTICON project – JRA4, EC FP7 grant agreement 312430 for supporting this contribution

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Outline

Introduction
 Regularized 3D fitting
 Gas distribution and dynamics
 Gas excitation
 Conclusion

Gas structure of the central parsec

Gas structure of the central parsec

Dataset

SPIFFI

VLT near-infrared integral field spectrograph

- VLT/SINFONI without adaptive optic
- 39"x29" central cavity mosaic
- Spectral resolution R=1500 (in H+K)
- Spectra for every pixel of the field

Analysis

H₂ analysis:

maps of each parameter of the Gaussian fit: intensity / velocity / width

Method

$$\varepsilon(a_1, ..., a_n) = \sum_{\alpha, \delta, \lambda} ((D - M_3) \cdot W)^2) + \sum_{i=1}^n R_i(a_i)$$

Estimator **x**2 Regularisation

L1L2 algorithm

$$\mathcal{J}_{L1L2}(O(x)) = \underbrace{\mu}_{x} \left[\frac{\Delta O(x)}{\delta} - \ln(1 + \frac{\Delta O(x)}{\delta}) \right]$$

Mugnier et al. 2004 (MISTRAL) and Gratadour (Yoda)

- low signal-to-noise pixels disfavoured
- Spectral resolution conserved
- No edge effects
- random variations of the maps disfavoured

Method

$$\varepsilon(a_1, ..., a_n) = \sum_{\alpha, \delta, \lambda} ((D - M_3) \cdot W)^2) + \sum_{i=1}^n R_i(a_i)$$

Estimator **x**2 Regularisation

L1L2 algorithm

$$\mathcal{J}_{L1L2}(O(x)) = \underbrace{\mu \sum_{x} \left[\frac{\Delta O(x)}{\delta} - \ln(1 + \frac{\Delta O(x)}{\delta})\right]}_{x}$$

Mugnier et al. 2004 (MISTRAL) and Gratadour (Yoda)

- hyper-parameters tuning
- no objective criteria
- individual spectra fitting
 error bars

1-0 S(1) line flux

1-0 S(1) line radial velocity

1-0 S(1) line radial velocity

1-0 S(1) line radial velocity

1-0 S(1) line radial velocity

1-0 S(1) line width

1-0 S(1) line width

7/15

Others lines maps with 3D method

1-0 S(1) λ = 2.1218 μm

1-0 S(3) λ = 1.9575 μm

1-0 Q(1) λ = 2.4075 μm

1-0 Q(3) λ = 2.4236 μm

H₂ lines

D 1-0 S(3) $\lambda = 1.9575 \mu m$ 1-0 S(1) $\lambda = 2.1217 \mu m$ 3-2 S(3) $\lambda = 2.2013 \mu m$ 2-1 S(1) $\lambda = 2.2477 \mu m$ 1-0 Q(1) $\lambda = 2.4065 \mu m$ 1-0 Q(2) $\lambda = 2.4133 \mu m$ 1-0 Q(3) $\lambda = 2.4236 \mu m$

Zone analysis

Column density of molecules in state [v, j] $N_{vj}/g_{vj} = 4\pi f/A\Omega$

for thermalized populations $\frac{N_{vj}}{N_{tot}} = \frac{g_{vj}e^{-E_{vj}/T_e}}{\sum_i g_i e^{-E_i/T_e}}$

Excitation diagram fitting function $\frac{N_{vj}/g_{vj}}{N_{13}/g_{13}} = Ae^{-(E_{vj}-E_{13})/T_e}$

thermalization is the rule

S(3)

E_{up} [K]

constraints on H₂ formation/excitation models !

11/15

8000

S(2)

1

0.1

6000

 $\mathsf{T}_{\mathsf{all}}$

= 1414 ± 304 K

7000

T_{ortho}= 1571 ± 305 K

 $T_{para} = 372 \pm 93 \text{ K}$

Zone analysis

Column density of molecules in state [v, j] $N_{vj}/g_{vj} = 4\pi f/A\Omega$

for thermalized populations $\frac{N_{vj}}{N_{tot}} = \frac{g_{vj}e^{-E_{vj}/T_e}}{\sum_i g_i e^{-E_i/T_e}}$

Excitation diagram fitting function $\frac{N_{vj}/g_{vj}}{N_{13}/g_{13}} = Ae^{-(E_{vj}-E_{13})/T_e}$

If thermodynamic equilibrium valid:

Regularized 3D fitting method High resolution picture of the central parsec Different components of the emission CND Inner cavity (bright and narrow line) (wide and weak line) **Multi-lines analysis** high T-->UV pumping as main excitation mechanism **CND:** hot H_2 in a thin layer (0.01 – 1%) at the surface of the CND (Le Bourlot, private communication) Central cavity: less dense, UV radiation penetrates and heats (higher T), more clouds on the line of sight (large velocity dispersion) Departure from thermodynamcal equilibrium :

recently formed H2, in a short timescale formation/destruction cycle

14/15

Regularized 3D fitting Distribution and dynamics Excitation Conclusion Introduction Perspectives

Thank you for your attention

Molecular gas in the center of the Galaxy A. Ciurlo | ESO Galaxies 25/03/15

in prep.

15/15

Uncertainties estimation

Uncertainties estimation

Pixel by pixel VS regularized 3D fitting

Pixel by pixel fitting

Regularised 3D fitting

Chi-squared maps

Le Bourlot simulation

