Dissecting Molecular Gas and Star Formation in the Strongly Lensed z~2 Galaxy SDSS $10901+1814$

Chelsea E. Sharon
Cornell University
Rutgers: Andrew Baker, Jesus Rivera, Charles R. Keeton, Manchester: Amitpal Tagore

Motivation:

- Where do high-z starbursts fall on the Schmidt-Kenicutt relation?
- In what ways does differential lensing affect unresolved characterizations of strongly lensed galaxies?
- How well do global line ratios capture gas physical conditions within high-z galaxies?

CO Excitation and the SchmidtKennicutt Relation

- Choice in molecular gas tracer affects the Schmidt-Kenicutt relation in two ways: the index and the normalization
- Index: Different excitation tracers are sensitive to different densities, making observed index dependent on gas conditions
- Normalization: Many high-z observations are of mid-J CO

Narayanan et al. 2011 lines; must assume excitation to get total molecular gas mass

SDSS $10901+|8| 4$

- Discovered in a systematic search for strongly-lensed star-forming galaxies in SDSS (Diehl et al. 2009)
- Bright in both rest-UV and dust emission
- Magnification ~ 12
- z=2.26 main sequence galaxy based on SFRFIR vs. M_{\star} (Saintonge et al. 2013)
- Contains an AGN, but it is not significant at long wavelengths (Fadely et al. 2010)

SDSS $\mathfrak{0} 0901+|8| 4$

- Discovered in a systematic search for strongly-lensed star-forming galaxies in SDSS (Diehl et al. 2009)
- Bright in both rest-UV and dust emission
- Magnification ~ 12
- z=2.26 main sequence galaxy based on SFRFIR vs. M_{\star} (Saintonge et al. 2013)
- Contains an AGN, but it is not significant at long wavelengths
 (Fadely et al. 2010)

Observations

- VLA observations of $\mathrm{CO}(\mathrm{I}-0)$
- VLT/SINFONI observations including H α and NiI
- PdBI observations of CO(3-2)
- ALMA observations (just ACA se far 12 m array Monday!) of $\left.\mathrm{CO}(7-6), \mathrm{Cl}_{\left(3 \mathrm{P}_{2}-3 \mathrm{P}_{1}\right)}\right)$ and 1.3 mm continuum
- Photometry from optical through infrared

SDSS J090 I + I 814 ,

new ALMA $V_{\text {rest }}=232 \mathrm{GHz}$

- VLA c
- VLT/S

; t ACA
ly!) of includ
- PdBI observations of CO(3-2)
- Photometry from optical through infrared

Observations

- VLA observations of $\mathrm{CO}(\mathrm{I}-0)$
- VLT/SINFONI observations including H α and NiI
- PdBI observations of CO(3-2)
- ALMA observations (just ACA se far 12 m array Monday!) of $\left.\mathrm{CO}(7-6), \mathrm{Cl}_{\left(3 \mathrm{P}_{2}-3 \mathrm{P}_{1}\right)}\right)$ and 1.3 mm continuum
- Photometry from optical through infrared

Strong Lensing and Line Profiles

Herschel/HIFI spectra of CII

Differences in the relative line profiles of the two transitions for each image imply differential lensing

Strong Lensing and Line Profiles cont'd

Center (J2000) RA 09 ${ }^{\mathrm{h}} 01^{\mathrm{m}} 22.28^{\mathrm{s}}$ DEC $+18^{\circ} 14^{\prime} 31.6^{\prime \prime}$

- J090I crosses caustic \rightarrow all of J090I is doubly imaged (southern and western images), part of J090I is quadruply imaged (northern image)
- Southern image has additional perturber \rightarrow Western spectra likely most representative of true line profile

Resolved Schmidt-Kennicutt Relation

- Index measured using a Monte Carlo technique (Blanc et al. 2009; Leroy et al. 2013) that avoids biases due to surface brightness cuts (2σ shown)
- $\mathrm{CO}(\mathrm{I}-0)$ and $\mathrm{CO}(3-2)$ indices are borderline inconsistent

Lensing-corrected

- $\mathrm{CO}(\mathrm{I}-0)$ index consistent with before; $\mathrm{CO}(3-2)$ is a poor fit
- Offset consistent with global (uv-matched) excitation of $r_{3,1}=0.7 \mathrm{I} \pm 0.1$ I

Comparisons to Other Galaxies

- All indices are \sim consistent with $\mathrm{N}=$ I
- Accounting for both obscured and unobscured star formation is critical! (see also Genzel et al. 2013)

Comparisons to Other Galaxies

- All indices are \sim consistent with $\mathrm{N}=$]
- Accounting for both obscured and unobscured star formation is critical! (see also Genzel et al. 2013)

Comparisons to Other Galaxies

- All indices are \sim consistent with $\mathrm{N}=$ I
- Accounting for both obscured and unobscured star formation is critical! (see also Genzel et al. 2013)

Spatially Resolved Metallicity Maps

- Image plane: clipped at 2σ in $\mathrm{H} \alpha$, De-lensed: clipped at 2σ in Nı
- Clear metallicity gradient
- Central region affected by AGN (too high Nı/H α)

Spatially Resolved CO Excitation Maps

- Evidence for an excitation gradient (but not near the central AGN?)
- De-lensed image looks most similar to leastdisturbed western image

Summary

- For Schmidt-Kennicutt at high-z, beware conversion factors and extinction corrections
- Star formation efficiency does appear higher for at least some high-z galaxies
- Beware interpreting integrated properties of strongly lensed galaxies
- Tentative confirmation of spatially varying CO excitation

Bonus material!

Reconstructed Maps

ALMA Observations

