

FIber Dual Echelle Optical Spectrograph (FIDEOS):

a stable high-resolution spectrograph.

Matias Jones F. FONDECYT postdoctoral fellow

FIDEOS TEAM: Leonardo Vanzi ; Matias Jones ; Marcelo Tala ; Samuel Ropert; Mauricio Flores; Amokrane Berdja; Carlos Viscasillas; Holger Drass

OUTLINE

- Scientific case
- Instrument specifications
- Optical elements
- Calibration unit and telescope interface
- The spectrograph
- Temperature control
- Summary

SCIENCE CASE

MAIN GOAL:

Precision RVs aimed at detecting exoplanets/BDs and follow-up of transiting planets (RV precision ~5 m/s)

SECONDARY GOALS:

- Age determination for field stars in the Galaxy
- RV of eclipsing stars (binary systems)
- Circumstellar environments
- Monitoring of massive stars erupting phenomena
- Chemical abundances and stellar parameters

INSTRUMENT SPECIFICATIONS

- Resolution R~42'000
- Wavelength coverage ~4000-7000 Å
- Two fibres (simultaneous calibration fibre)
- Fibre scrambler (Constant illumination fibre output)
- Image slicer + telecentric system
- Mechanical stability (no moving parts)
- Thermal stability ($\Delta T < 0.1$ °C)
- Iodine Cell (precise wavelength calibration)

TELESCOPE INTERFACE @ UCN 1m telescope (La Silla)

CALIBRATION UNIT

CALIBRATION UNIT

THE SPECTROGRAPH

OPTICAL ELEMENTS

Component	Characteristics
2 Optical fibres	$\phi = 50 \mu m$, $10m$ length
1 Optical fibre	$\phi = 100 \mu m$, $10m$ length
Image slicer	home-made
Parabolic mirror	$f_{col} = 762mm, D = 152.4mm$
Echelle Grating	$G=44.41mm^{-1}, \theta=70^{\circ}$
2 prisms	Apex=33°
Objective	$f_{cam} = 300mm, f/4$
CCD Detector	pixels: 2048×2048 , pixel size= $15\mu m$

TEMPERATURE CONTROL

HAT Control – B20 (15V / 150W) – long-term temperature stabilisation of sensor platform – 18.08.-02.09.2011

time [h]

PRELIMINARY RESULTS

PRELIMINARY RESULTS

PRELIMINARY RESULTS

Wavelength Coverage	~ 4200-8200 (Å)		
Mean Resolution (w/fibre slicer)	42'000		
Order number	m = 50 - 101		
Separation between orders (red)	20 (pixels)		

SUMMARY

- FIDEOS is a high-resolution stable spectrograph that is optimized for precision radial velocities
- The spectrograph is nearly ready, but we are still working on the details
- The telescope interface and thermal stabilization system are currently under development
- By the end of the year FIDEOS will be fully operational

Tao Aiuc high Resolution (D) Y band Spectrograph - TARdYS

Scientific motivations

Studying low mass stars with:

- high spectral resolution
- high RV precision

Wavelength-dependent S/N and RV Precision that can be Achieved from Data of this Quality

Resolution	S/N				RV precision (m s ⁻¹)			
	V	Y	J	H	V	Y	J	H
Spectral-type M3								
60000	50	100	101	95	3.6	5.7	22.9	10.0
80000	43	86	87	82	2.9	4.4	18.1	8.4
100000	39	77	78	74	2.5	3.8	15.5	7.6
Spectral-type M6								
60000	20	100	114	107	4.7	3.8	11.2	9.7
80000	18	86	99	93	3.7	3.0	8.8	7.8
100000	16	77	88	83	3.2	2.6	7.5	6.9
Spectral-type M9	34.50.25		20000					
60000	12	100	134	128	8.0	2.2	4.6	4.0
80000	10	86	116	111	6.2	1.7	3.5	3.5
100000	9	77	104	99	5.3	1.5	2.9	3.3

Reiners et al. 2010

OPTICAL ELEMENTS

			COST	
Slicer	2 x	Home md.	< 500	
COLL.	EFL=444 / ○100 mm	Edmund	<500	
Echelle	R6, 13.33 gr/mm, 60x150 mm	Richardson	6.500	
CAM	EFL=200 / ⊗50 mm	Custom md.	10.000	
Cross	333 gr/mm, 30x50 mm	Kayser	15.000	
TOT Optics			<32.500	
Detect	H1RG	Teledyne	175.000	
Dewar	12 "	IR-Lab	30.000	
Electronics	Read-out	Leach	10.000	
			~250.000	

 F_{COL} : 440 mm \rightarrow 550 mm custom md. Echelle 110 x 220 mm, 13.000 US\$

Beam:

○ 22 mm → 28 mm

R : 54.000 → 66.000

Samp: 2.5 → 2 pix

F_{COL} = 444 mm \rightarrow R=54.000, spc sampling 2.5 pix

