Flber Dual Echelle Optical Spectrograph (FIDEOS): a stable high-resolution spectrograph.


> Matias Jones F.
> FONDECYT postdoctoral fellow

FIDEOS TEAM: Leonardo Vanzi ; Matias Jones ; Marcelo Tala ; Samuel Ropert; Mauricio Flores; Amokrane Berdja; Carlos Viscasillas; Holger Drass

## OUTLINE

- Scientific case
- Instrument specifications
- Optical elements
- Calibration unit and telescope interface
- The spectrograph
- Temperature control
- Summary


## SCIENCE CASE

## MAIN GOAL:

Precision RVs aimed at detecting exoplanets/BDs and follow-up of transiting planets (RV precision $\sim 5 \mathrm{~m} / \mathrm{s}$ )

## SECONDARY GOALS:

- Age determination for field stars in the Galaxy
- RV of eclipsing stars (binary systems)
- Circumstellar environments
- Monitoring of massive stars erupting phenomena
- Chemical abundances and stellar parameters


## INSTRUMENT SPECIFICATIONS

- Resolution R~42'000
- Wavelength coverage ~4000-7000 $\AA$
- Two fibres (simultaneous calibration fibre)
- Fibre scrambler (Constant illumination fibre output)
- Image slicer + telecentric system
- Mechanical stability (no moving parts)
- Thermal stability $\left(\Delta \mathrm{T}<0.1^{\circ} \mathrm{C}\right)$
- Iodine Cell (precise wavelength calibration)



## TELESCOPE INTERFACE @ UCN 1m telescope (La Silla)




## CALIBRATION UNIT



## CALIBRATION UNIT



## THE SPECTROGRAPH



## OPTICAL ELEMENTS

## Component Characteristics

2 Optical fibres
1 Optical fibre
Image slicer
Parabolic mirror
Echelle Grating
2 prisms
Objective
CCD Detector

$$
\begin{gathered}
\phi=50 \mu \mathrm{~m}, 10 \mathrm{~m} \text { length } \\
\phi=100 \mu \mathrm{~m}, 10 \mathrm{~m} \text { length } \\
\text { home-made } \\
f_{\text {col }}=762 \mathrm{~mm}, D=152.4 \mathrm{~mm} \\
\mathrm{G}=44.41 \mathrm{~mm}^{-1}, \theta=70^{\circ} \\
\text { Apex }=33^{\circ} \\
f_{\text {cam }}=300 \mathrm{~mm}, \mathrm{f} / 4 \\
\text { pixels: } 2048 \times 2048, \text { pixel size }=15 \mu \mathrm{~m}
\end{gathered}
$$





## TEMPERATURE CONTROL



## PRELIMINARY RESULTS



## PRELIMINARY RESULTS



## PRELIMINARY RESULTS

| Wavelengh Coverage | $\sim 4200-8200(\AA)$ |
| :---: | :---: |
| Mean Resolution (wfibibre slicer) | 42000 |
| Order number | $\mathrm{m}=50-101$ |
| Separation between orders (red) | 20 (pixels) |

## SUMMARY

- FIDEOS is a high-resolution stable spectrograph that is optimized for precision radial velocities
- The spectrograph is nearly ready, but we are still working on the details
- The telescope interface and thermal stabilization system are currently under development
- By the end of the year FIDEOS will be fully operational

Tao Aiuc high Resolution (D) Y band Spectrograph - TARdYS



## Scientific motivations

## Studying low mass stars with:

- high spectral resolution
- high RV precision

Wavelength-dependent S/N and RV Precision that can be Achieved from Data of this Quality

| Resolution | $\mathrm{S} / \mathrm{N}$ |  |  |  | RV precision $\left(\mathrm{m} \mathrm{s}^{-1}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $V$ | $\boldsymbol{Y}$ | $J$ | $H$ | $V$ | $\boldsymbol{Y}$ | $J$ | $H$ |


| Spectral-type M3 |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 60000 | 50 | 100 | 101 | 95 | 3.6 | 5.7 | 22.9 | 10.0 |
| 80000 | 43 | 86 | 87 | 82 | 2.9 | 4.4 | 18.1 | 8.4 |
| 100000 | 39 | 77 | 78 | 74 | 2.5 | 3.8 | 15.5 | 7.6 |
| Spectral-type M6 |  |  |  |  |  |  |  |  |
| 60000 | 20 | 100 | 114 | 107 | 4.7 | 3.8 | 11.2 | 9.7 |
| 80000 | 18 | 86 | 99 | 93 | 3.7 | 3.0 | 8.8 | 7.8 |
| 100000 | 16 | 77 | 88 | 83 | 3.2 | 2.6 | 7.5 | 6.9 |


| Spectral-type M9 |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 60000 | 12 | 100 | 134 | 128 | 8.0 | 2.2 | 4.6 |
| 80000 | 10 | 86 | 116 | 111 | 6.2 | 1.7 | 3.5 |
| 100000 | 9 | 77 | 104 | 99 | 5.3 | 1.5 | 2.9 |

Reiners et al. 2010



## OPTICAL ELEMENTS

|  |  |  | COST |
| :--- | :--- | :--- | :--- |
| Slicer | 2 x | Home md. | $<500$ |
| COLL. | EFL=444 / Q100 mm | Edmund | $<500$ |
| Echelle | R6, $13.33 \mathrm{gr} / \mathrm{mm}, 60 \times 150 \mathrm{~mm}$ | Richardson | 6.500 |
| CAM | EFL=200 / Q50 mm | Custom md. | 10.000 |
| Cross | $333 \mathrm{gr} / \mathrm{mm}, 30 \times 50 \mathrm{~mm}$ | Kayser | 15.000 |
| TOT Optics |  |  | $<\mathbf{3 2 . 5 0 0}$ |
| Detect | H1RG | Teledyne | 175.000 |
| Dewar | 12 " | IR-Lab | 30.000 |
| Electronics | Read-out | Leach | 10.000 |
|  |  |  | $\sim 250.000$ |

$\mathrm{F}_{\text {COL }}: 440 \mathrm{~mm} \rightarrow 550 \mathrm{~mm}$ custom md. Echelle $110 \times 220 \mathrm{~mm}, 13.000$ US\$ Beam: © $22 \mathrm{~mm} \rightarrow 28 \mathrm{~mm}$
R : $54.000 \rightarrow 66.000$
Samp: $2.5 \rightarrow 2$ pix


## $\mathrm{F}_{\mathrm{COL}}=444 \mathrm{~mm} \rightarrow \mathrm{R}=54.000$, spc sampling 2.5 pix



