

What can Kuiper belt analogs tell us about the underlying planetary systems ?

Julien Milli

ESO Santiago

In collaboration with A.M. Lagrange, D. Mouillet, D. Mawet, J.C. Augereau, C. Pinte

PansSTARRS (C/2014 Q1)

β Pictoris: a giant cometary reservoir

The β Pictoris debris disc

The signature of exocomets

First evidence of exocomets through absorption spectroscopy of β Pictoris (Vidal-Madjar et al. 1986)

And one giant planet inside the ring

Content

- I. The architecture of debris discs
- II. The dust properties
- Conclusions and perspectives

Debris discs: circumstellar material around a main-sequence star

Debris discs: circumstellar material around a main-sequence star

Debris discs: circumstellar material around a main-sequence star

They represent a common phenomenon (10-33% of AFGK stars, Matthews et al.2014).

Debris discs are primarily detected through the infrared excess of the star.

The architecture of debris discs

The power of direct imaging to constrain the underlying planetary system

0.5µm

HR4796: a very narrow ring with steep edges and center offset

Measuring the morphology of the ring

Binary component: no (Thebault et al. 2010) Presence of gas in the system ? (Lyra & Kouchner 2012) Inner / outer companion shaping the ring ? (Lagrange et al. 2012)

Measuring the morphology of the ring

The ring is eccentric

An eccentric ring

Eccentricity 10 times larger

The origin of eccentricity: where is the planet ?

Fake planets illustrating the sensitivity reached (believing evolutionary models)

I-2 M_{Jup} planets can still hide in the image and carve the inner edge of the ring.

II. The dust properties of debris discs

What can the phase function tell us on dust grains

The predicted peak of forward scattering is indeed there !

Size segregation in wider debris discs

Observations consistent with decreasing grain sizes with orbital radius, as expected for grains subject to radiation pressure.

The reflected spectra of dust from $0.95 \mu m$ to $1.3 \mu m$

Dust reflectance

The dust has a red color, as previously reported (Debes et al. 2008, Rodigas et al 2014), confirming the grains are large. Tentative confirmation of tholins, also present among solar system bodies

Reflectance spectroscopy of Kuiper belt dust: a new science area

Slightly blue to gray disc color, consistent with major Kuiper belt chemical constituents

Conclusion and perspectives

- High resolution direct imaging brings critical constraints for the architecture and dust properties of debris discs:
 - Morphology
 - Phase function
 - Reflected spectrum
- Comparison with solar system bodies is key to understand the diversity of systems
- Perspectives :

visible polarisation and sub-mm observations bring precious complementary information

Backup slides

The offset of the ring

The deprojection of the ring

Deprojected ellipse parameters: a = 77.6 au e = 0.06PA of ascending node $\Omega = 26.6^{\circ}$ Argument of pericenter $\theta = -73.1^{\circ}$ Inclination i=76.6°

Isotropic model

Constraints on planets

 5σ detection limit converted in Jupiter mass using AMES/Cond

Planets shaping the ring

