

D. Schleicher

A second generation of planets in post-commonenvelope systems?

Dominik Schleicher Departamento de Astronomía Universidad de Concepción

Collaborators:

Robi Banerjee (Hamburg), Stefan Dreizler (Göttingen), Rick Hessman (Göttingen), Tim Lichtenberg (Zürich), Ronald Mennickent (Concepción), Volker Perdelwitz (Hamburg), Jürgen Schmitt (Hamburg), Sonja Schuh (Göttingen), Marcel Völschow (Hamburg)

Santiago, 01.10.2015

Formation of compact evolved binary systems

unstable RLOF ---> dynamical mass transfer

common-envelope phase

short-period sdB binary with MS companion

Santiago, 01.10.2015

Planetary search through eclipsing time variations

CM

- Eclipsing binaries are oriented to the observer such that both stars regularly overlap.
- The overlap leads to periodic variations in the observed magnitude.
- In the presence of a planet the center of mass shifts towards the planet.
- Depending on the properties of the planetary orbit, a second signal with the period of the planetary orbit is modulated onto the eclipses.

The observed signal in NN Ser

Beuermann et al. (2010, 2013)

Santiago, 01.10.2015

The planets in NN Serpentis

• Inner planet:

I.7 Jupiter massesmajor axis: 3.4 AUorbital period: 7.7 years

- Outer planet:
 7.0 Jupiter masses
 major axis: 5.4 AU
 orbital period: 15.5 years
- moderate eccentricities

Beuermann et al. (2013)

Santiago, 01.10.2015

First generation scenario

- The planets in NN Ser have orbits with major axes of 3.4-5.4 AU.
- Before the formation of the common envelope, the system is expected to have a size of about I AU.

- Stable orbits require a separation of 3-4 times the binary radius.
- The mass loss during the common envelope phase should increase the orbits by a factor of ~3.
- The orbits should thus be wider than observed!

Völschow et al. (2014); see also Mustill et al. (2014)

Santiago, 01.10.2015

Second generation scenario

- Idea: Can planets form from the material which is ejected during the common-envelope phase?
- Approach:
 - Adopt Kashi & Soker (2011) model for CE phase; estimate of total ejected mass and ejected mass which remains bound to the system (~0.12 solar).
 - Apply model for self-gravitating disks assuming self-regulation (Toomre $Q \sim I$).
- Expected planetary masses consistent with observational results.

Schleicher & Dreizler (2015)

Santiago, 01.10.2015

Expected planetary masses

Schleicher & Dreizler (2014)

Santiago, 01.10.2015

Stabilization in the interior by radiation feedback

Schleicher & Dreizler (2014)

Santiago, 01.10.2015

Alternative interpretation: the Applegate mechanism

- The timescales of the planetary orbits are comparable to the timescales for the stellar dynamo.
- Idea: Can magnetic fields induce quasi-periodic changes in the stellar quadrupole moment, leading to the observed eclipsing time variations?
- Applegate (1992): Thin-shell model requires $\Delta Q = -\frac{\Delta P}{P} \cdot \frac{a_{bin}^2 M_{sec}}{9}$
- Change in angular momentum: $\Delta J = -\frac{GM^2}{R} \left(\frac{a}{R}\right)^2 \frac{\Delta P}{6\pi}$
- Energy to transfer the angular momentum:

$$\Delta E = \Omega_{\rm dr} \, \Delta J + \frac{(\Delta J)^2}{2I_{\rm eff}}$$

Santiago, 01.10.2015

Application to other systems

System	$E_{\rm sec}/{\rm erg}$	$\Delta E_{\min}/E_{sec}$	$\Delta E/E_{\rm sec}$	$\Delta E/E_{\rm sec}$	$\Delta E/E_{\rm sec}$	$\Delta E_{\min}/E_{sec}$	$\delta_{ m min}$
		Applegate (1992)	Tian et al. (2009)	This paper			
		(see eq. 5)	(see eq. 7)	Const.dens.	Two-zone	Full mo	el
HS 0705+6700	$2.2 \cdot 10^{39}$	7.2	7.3	3,300	138	140	0.731
HW Vir	$2.0 \cdot 10^{40}$	4.8	1.3	720	108	104	0.724
NN Ser	$2.7 \cdot 10^{39}$	3.2	3.3	1,100	64.0	64.0	0.732
NSVS14256825	$8.3 \cdot 10^{38}$	5.3	5.4	3,200	101	102	0.733
NY Vir	1.4 · 10 ³⁹	58	56	2,800	-	1970	0.694
HU Aqr	$1.4 \cdot 10^{40}$	0.10	0.10	240	1.87	1.94	0.732
QS Vir	$3.0 \cdot 10^{40}$	0.039	0.040	170	0.708	0.77	0.775
RR Cae	$5.2 \cdot 10^{39}$	2.8	2.9	560	59.5	59.2	0.725
UZ For	4.1 · 10 ³⁹	0.14	0.15	360	2.61	2.69	0.733
DP Leo	$2.9 \cdot 10^{39}$	0.021	0.021	150	0.378	0.383	0.736
V471 Tau	$2.0 \cdot 10^{42}$	0.014	0.014	12	0.263	0.258	0.84
RU Cnc	$1.4 \cdot 10^{43}$	0.074	0.076	1.7	-	-	-
AW Her	$8.5 \cdot 10^{42}$	608	618	270	-	-	-
HR 1099	$3.7 \cdot 10^{43}$	0.21	0.22	10	-	6.74	0.64
BX Dra	$3.5 \cdot 10^{43}$	0.00016	0.00016	0.92	0.00292	0.0565	0.52
SZ Psc	9.9 · 10 ⁴³	0.12	0.13	4.7	-	4.84	0.61

Völschow, Schleicher, Perdelwitz & Banerjee, submitted

Santiago, 01.10.2015

Summary

- The presence of planets has been proposed in post-commonenvelop systems to explain the observed eclipsing time variations.
- The first generation scenario appears unlikely in NN Ser, as the previous orbits would have been unstable before the mass loss.
- A second generation scenario where planets form from the ejecta during the common envelope phase may naturally explain the mass scale of the planets.
- The main alternative is the Applegate mechanism, suggesting quasiperiodic changes in the quadrupole moment of the secondary as a result of magnetic activity.
- With the finite-shell model by Brinkworth et al. (2006), we have shown that the Applegate mechanism is clearly ruled out in the majority of observed systems.

D. Schleicher

Santiago, 01.10.2015