

AstroBio 2015, ESO - Chile, Oct. 1st 2015

Reflected light from exoplanets via high resolution spectroscopy

Jorge Humberto Costa Martins

(ESO - Chile, IA/U. Porto - Portugal)

Nuno Santos (IA/U. Porto - Portugal)

The Design of th

Pedro Figueira (IA/U. Porto - Portugal)

Claudio Melo (ESO - Chile)

1616.00

Method

Results

Future

Why detect reflected light in the visible?

- In the optical, an exoplanet's signal is essentially reflected light
- It is essentially a copy of the star's spectrum

1010

It represents a direct detection of an exoplanet

Future

Why detect reflected light in the visible?

Permits a direct characterisation of the planet

10101041

Dynamics

Method

Future

Why detect reflected light in the visible?

Permits a direct characterisation of the planet

- Dynamics
 - ▶ inclination and real mass (e.g. Rodler et al. 2012)
 - ▶ rotation (e.g. Kawahara 2012)

1010100

▶ atmosphere physics (winds, e.g. Snellen et al. 2010)

Interiors

Method

Future

Why detect reflected light in the visible?

Permits a direct characterisation of the planet

- Dynamics
 - ▶ inclination and real mass (e.g. Rodler et al. 2012)
 - ▶ rotation (e.g. Kawahara 2012)
 - ▶ atmosphere physics (winds, e.g. Snellen et al. 2010)

Interiors

- ► Composition (H₂O, CH₄, e.g. Swain et al. 2008)
- ▶ geometric albedo (e.g. Demory 2014)

Method

Future

Why detect reflected light in the visible?

Permits a direct characterisation of the planet

- Dynamics
 - ▶ inclination and real mass (e.g. Rodler et al. 2012)
 - ▶ rotation (e.g. Kawahara 2012)
 - ▶ atmosphere physics (winds, e.g. Snellen et al. 2010)

Interiors

- ► Composition (H₂O, CH₄, e.g. Swain et al. 2008)
- **geometric albedo** (e.g. Demory 2014)

Method

THE REAL PROPERTY.

Results

Future

Why the albedo?

It is highly dependent of the composition of the planet's atmosphere

Method

1010100

Results

Future

Why the albedo?

It is highly dependent of the composition of the planet's atmosphere

High albedos are typically associated with high-altitude condensates

Method

1010

Results

Future

Why the albedo?

It is highly dependent of the composition of the planet's atmosphere

- High albedos are typically associated with high-altitude condensates
- Low albedos are caused by strong atomic/molecular gas absorption in cloud-poor atmospheres.

and an and a second second

The Method

Method

Results

Future

The Cross Correlation Function

THE REAL PROPERTY.

THE REAL PROPERTY.

.

THE REAL PROPERTY.

 ${\rm S}/{\rm N}_{\rm CCF}=\sqrt{n}\,{\rm S}/{\rm N}_{\rm spectrum}$

for a binary mask with 3600 lines, the S/N increases 60 times!!!

What can be done with this?

Method

Results

Future

The Data

▶ 51 Peg b;

HARPS@ESO's 3.6m;

1

.

THE REAL PROPERTY.

Introduction Method Results Future The Data

- ▶ 51 Peg b;
- HARPS@ESO's 3.6m;
- ▶ 90 spectra / \sim 12.5h ;

THE REAL PROPERTY.

.

Introduction Method Results Future The Data

- ▶ 51 Peg b;
- HARPS@ESO's 3.6m;
- ▶ 90 spectra / \sim 12.5h ;

THE REAL PROPERTY.

.

► ~ 20 spectra

Method

Results

Future

What we found:

Amplitude $6.0\pm0.4\times10^{-5}$ Significance $3.7\pm0.2\sigma_{noise}$

FWHM $22.6 \pm 3.6 \,\mathrm{km \ s^{-1}}$

THE REAL PROPERTY.

Method

Results

Future

What we found:

Amplitude $6.0\pm0.4\times10^{-5}$ Significance $3.7\pm0.2\sigma_{noise}$ FWHM $22.6\pm3.6\,\mathrm{km~s^{-1}}$ \downarrow \downarrow

Inflated hot Jupiter with high albedo!

The Future

1010104

Future

Next generation of Observing Facilities

Method

THE DOCUMENT

Results

Future

Next generation of Observing Facilities

water Brandin a

Martins et al 2015 - submitted to

Proceedings of "Habitability in the Universe: From the Early Earth to Exoplanets"

Method

Results

Future

Main ideas:

- The detection of reflected light at optical wavelengths from other planets is already possible
- We were able to recover the reflected visible light spectrum of 51Peg on its orbiting planet
- ▶ 51 Peg b is most likely an inflated hot Jupiter with a high albedo
- Next generation observing facilities should allow us to peek at habitable zones
- Missions like CHEOPS, TESS, PLATO should enable us to increase the number of available candidates.

Questions?