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Introduction
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Why detect reflected light in the visible?

I In the optical, an exoplanet’s signal is essentially reflected light

I It is essentially a copy of the star’s spectrum

I It represents a direct detection of an exoplanet
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Why detect reflected light in the visible?
Permits a direct characterisation of the planet

I Dynamics

I inclination and real mass (e.g. Rodler et al. 2012)

I rotation (e.g. Kawahara 2012)

I atmosphere physics (winds, e.g. Snellen et al. 2010)

I Interiors

I composition (H2O, CH4, e.g. Swain et al. 2008)

I geometric albedo (e.g. Demory 2014)
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Why the albedo?

It is highly dependent of the composition of the planet’s atmosphere

I High albedos are typically associated with high-altitude condensates

I Low albedos are caused by strong atomic/molecular gas absorption in

cloud-poor atmospheres.
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Problem
FPlanet
FStar

= Ag g(α)
( RP

a
)2

R = RJup, P = 2days, Ag = 0.3: FPlanet
FStar

≈ 6.8× 10−5



The Method
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The Cross Correlation Function

Wavelenght Radial Velocity

S/NCCF =
√
nS/Nspectrum

for a binary mask with 3600 lines, the S/N increases 60 times!!!
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The Cross Correlation Function
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Detecting the planetary signal
Planet+Star
Observations
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What can be done with this?
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The Data

I 51 Peg b;

I HARPS@ESO’s 3.6m;

I 90 spectra / ∼12.5h ;

I ∼ 20 spectra

(Mayor & Queloz 1995)
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What we found:

Amplitude 6.0±0.4×10−5

Significance 3.7±0.2σnoise

FWHM 22.6±3.6km s−1

⇓
Inflated hot Jupiter
with high albedo!
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Next generation of Observing Facilities
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Next generation of Observing Facilities
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Planets in HZs

from exoplanet.eu - Schneider et al. (2011)
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Planets in HZs

Martins et al 2015 - submitted to
Proceedings of “Habitability in the Universe: From the Early Earth to Exoplanets”
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Ultimate goal

Variation of Earth’s ground albedo over 24h

(from Garcìa Muñoz 2014)
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Main ideas:

I The detection of reflected light at optical wavelengths from other

planets is already possible

I We were able to recover the reflected visible light spectrum of 51Peg on

its orbiting planet

I 51 Peg b is most likely an inflated hot Jupiter with a high albedo

I Next generation observing facilities should allow us to peek at habitable

zones

I Missions like CHEOPS, TESS, PLATO should enable us to increase the

number of available candidates.



Questions?
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