James S. Jenkins

Departamento de Astronomía Universidad de Chile

Talk Layout

□ What is an exo-Earth in the context of planet searches?

- Key criteria we must adhere to

- Where should we be looking?

Challenges to overcome in the detection of exo-Earths orbiting the nearest stars

- Radial velocity noise sources
- Instrumental issues
- Observational bands

D Potential for exo-Earth characterisation

Talk Layout

□ What is an exo-Earth in the context of planet searches?

- Key criteria we must adhere to

- Where should we be looking?

Challenges to overcome in the detection of exo-Earths orbiting the nearest stars

- Radial velocity noise sources
- Instrumental issues
- Observational bands

Potential for exo-Earth characterisation

Kopparapu et al. 2013, ApJ, 765, 131

Artistic representations. Earth, Mars, Jupiter, and Neptune for scale. ESI value is between brackets. Planet candidates indicated with asterisks.

CREDIT: PHL @ UPR Arecibo (phl.upr.edu) July 23, 2015

Earth Similarity Index:

$$ESI = \prod_{i=1}^{n} \left(1 - \left| \frac{x_i - x_{io}}{x_i + x_{io}} \right| \right)^{\frac{w_i}{n}}$$

SPACE

Earth 2.0: NASA finds planet that matches our own

Space agency's Kepler mission finds planet outside solar system that may have volcanoes, oceans and sunshine like Earth.

Earth 2.0: What we know about Kepler 452b, the most Earth-like planet ever discovered

Could Human Beings Ever Reach 'Earth 2.0'?

Are metal-rich stars good places to hunt?

Buchhave & Latham 2015, ApJ, 808, 187

1. Earth-mass planet discoveries

2. Planetary characterisation

Talk Layout

What is an exo-Earth in the context of planet searches?

- Key criteria we must adhere to

- What evidence is necessary for such a claim?
- Where should we be looking?

Challenges to overcome in the detection of exo-Earths orbiting the nearest stars

- Radial velocity noise sources
- Instrumental issues
- Observational bands

D Potential for exo-Earth characterisation

Radial Velocities

Optical Radial Velocities

Orbital Phase

S.G. Korzennik (CfA, 🛞 1997)

exo-Earth orbiting a solar-mass star exhibits a RV amplitude ~9cm/s!!

Radial Velocities & Magnetic Activity

NASA – Solar Dynamics Observatory (SDO)

Reiners et al. 2013, A&A, 552, 103

Granulation: 25 minutes Mesogranulation: few hours Supergranulation: ~1-1.5 days Dumusque et al. 2011, A&A, 525, 140

Averaging nightly Doppler velocities is the best strategy?

Impact of Correlated Noise on RVs

Activity Diagnostics

Boisse et al. 2009, A&A, 495, 959

Activity Cycles

Santos et al. 2010, A&A, 511, A54

Global+Correlated Noise Modeling

0

-1

-2

-3

-4

-5

0

-1

-2

-3

-4

-5

 P_c/P_b

1.4

Jenkins et al. 2013, ApJ, 771, 41

Reanalysis of HD41248

Santos et al. 2014, A&A, 556, 35

Reanalysis of HD41248

Conclusion

One signal at 25 days

Signal evolves with time

Due to an Active Longitude

Weakness?

Simple modeling approach!!

Re-reanalysis of HD41248

Re-reanalysis of HD41248

There are both red noise correlations and linear correlations

□ Correlations are not constant with time

Amplitude variations are not statistically significant ... correlated noise?

□ Two signals are still present and significant

Correlated noise modeling and global modeling can not be ignored if we want to discover the lowest-mass planets!!

Planetary signals Recovery		
https://rv-challenge.wikispaces.co	om/	6
Planets with K > 1 m/s	52/57 (91%)	50/57 (88%)
Planets with K < 1 m/s	4/35 (11%) (K=0.34, 0.6, 0.7, 0.8)	1/35 (3%) (K=0.6)
Mistake with K > 1 m/s	2 (1 because wrong Prot)	4
Mistake with K < 1 m/s	2	3

Alpha Centauri A

Dumusque et al. 2012, Nature, 491, 207

P = 0.7 days $Msin(i) = 8.6M_E$

McArthur et al. 2004, ApJ, 614, L81 Dawson & Fabrycky 2010, ApJ, 722, 937

55 Cancri e

Remember: RV amplitude of an exo-Earth orbiting a solar-mass star is only 9cm/s!!

Mode-locked laser comb – Dirac delta functions separated by the repetition rate

HARPS results reveal 2cm/s precision!!

Gains compared to HARPS

2 - 3.5 magnitudes in depth

4 telescope flexibility

~order of magnitude in RV precision ~0.1m/s (10cm/s)

Pepe et al. 2014, AN, 335, 10

ESPRESSO

Pasquini et al. 2010, Msngr, 140, 20

ELT - CODEX

Gains over ESPRESSO

Factor of 6 increase in collecting area $\sim 10^9$ objects

~order of magnitude in RV precision ~0.01m/s (1cm/s)

Near-IR....The Worlds of GJ667C

Possible 7 planet system with 4 rocky planets in the Habitable Zone!

Anglada-Escude et al. 2013, A&A, 556, 126

Fraction of Planets Orbiting M-dwarfs Tuomi et al. 2014, MNRAS, 441, 1545 100 80% Mass [Earth masses] 40% 10 0% 10^{4} 100 10 1000 P [days] $3-10M_{\rm E} \& 10-100 \ \rm d = 1.02 \ (0.69-1.48)$ $3-10M_{\rm F}$ in the HZ = 0.21 (0.18-0.26)

Setiawan et al. 2008, Nature, 451, 3

Figueira et al. 2010, A&A, 511, 55

Near-IR modal noise reduction

Multiple wavelength calibration units

~1m/s RV precision expected

Quirrenbach et al. 2014, SPIE, 9147, 1

RV Summary

- □ Stars seem to the limiting factor for detecting exo-Earths
- **Q** Radial velocity surveys are now detecting rocky planets
- Pathways towards the stability level necessary to reach exo-Earths orbiting Sun's are in place
- Optical and near-IR spectrographs can be used in conjunction to help alleviate false-positives

Talk Layout

□ What is an exo-Earth in the context of planet searches?

- Key criteria we must adhere to

- Where should we be looking?

Challenges to overcome in the detection of exo-Earths orbiting the nearest stars

- Radial velocity noise sources

- Instrumental issues
- Observational bands

Potential for exo-Earth characterisation

Mission to directly follow-up radial velocity detections to search for transits

Fortier et al. 2014, SPIE, 9143, 2

TESS Expected Yield

Sullivan et al. 2015, ApJ, 809, 77

10⁹ stars surveyed in the mission

80'000 masses and ages for stars – asteroseismology

 $4 \leq V \leq 11$ magnitudes for exo-Earths

3 year mission Rauer et al. 2014, ExA, 38, 249

- Transmission spectral characterisation of super-Earths
- Direct imaging of giant planets ~few x mass of Saturn
- MIRI λ /D ~ 5AU @ 10pc

Rieke et al. 2015, PASP, 127, 584

Beichman et al. 2010, lyot.confE, 47

Expected exo-Earth Contrast

- Simulated Earth-Sun system @13pc
- Contrasts $\sim 10^{-10}$ in near-IR intensity
- exo-Zodis shown for different telescope diameters
- ¹/_{10²} Kasting et al. 2009, arxiv:0911.2936

Population Simulations

- Simulated population of planets
- Contrasts ~10⁻¹⁰ in J-band with typical on-sky separations ~0.1"

Bonavita et al. 2012, A&A, 537, 67

- ~13 magnitudes @ 0.5"
- Active correction ≤ 1 "
- Young massive planets imaged

 \sim 4 more magnitudes of contrast are required for exo-Earths!!

 \neg

see Pantoja presentation

Science Verification SPHERE

• ESO-VLT UT3

- Instruments IRDIS, IFS, ZIMPOL
- Good AO Strehls in H $\sim 75\%$

Interferometry from Space

Terrestrial Planet Finder

- NASA led initiative
- Multiple tethered spacecraft
- Nulling interferometry
- Mission goal imaging and spectroscopy of the nearest Earth-like planets

Darwin

- ESA led initiative
- Multiple formation Aving space aft
- Nulling interferometry
- Mission goal imaging and spectroscopy of the nearest Earth-like planets

Jupiter Earth Venus

Apodized Pupil Lyot Coronographs Shaped Pupil Designs

Possibilities to reach 10⁻¹⁰ contrasts at low inner working angles

Proposed design for a 12m space telescope

Simulations suggest 13 detectable exo-Earths

Mamadou N'Diaye 2015 (STScI), priv. comm.

Simulation by L. Pueyo

$$CCF(v_{\rm R}) = \int S(\lambda) \cdot M(\lambda_{v_{\rm R}}) d\lambda$$

= $\int S(\lambda) \cdot \sum_{i} M_i(\lambda_{v_{\rm R}}) d\lambda$ Cross-Correlation RVs
= $\sum_{i} \int S(\lambda) M_i(\lambda_{v_{\rm R}}) d\lambda = \sum_{i} CCF_i(v_{\rm R})$

where

Baranne et al. 1996, A&AS, 119, 373

Radial Velocities $V_r(\nu) = K\left(\cos(\nu + \omega) + e\cos(\omega)\right)$ Celestial body True anomaly Argument of periapsis r v Longitude of ascending node Reference direction Plane of reference Inclination 2 Ascending node orbit $K = \frac{28.4}{\sqrt{1 - e^2}} \left(\frac{M_p \sin i}{M_L}\right) \left(\frac{M_{\star}}{M_{\odot}}\right)^{-1/2} \left(\frac{a}{AU}\right)^{-1/2}$