Census of Habitable Exoplanets Andrew Howard
 Institute for Astronomy, University of Hawaii

With thanks to my friends and collaborators:
E. Sinukoff, B.J. Fulton, E. Petigura, G. Marcy, H. Isaacson, I. Crossfield, J. Schlieder, L.Weiss, and many more

Kepler 78b

How common are Earth-like planets?

What do we mean by "Earth-like"?
Mass, radius, temperature, atmosphere, water content?

How Do We Detect Exoplanets?

\section*{| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$| |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Doppler Method

HIRES Echelle Spectrum

lodine Absorption Cell

Howard et al. 20IO, Science, 330, 653

- Detected planets
\triangle Candidate planets (FAPs ~ I-5\%)

Minimum Mass (Msini / MEarth $)$

Howard et al. 20IO, Science, 330, 653

I. Low-mass planets are common
2. A diagonal "ridge" in high planet occurrence:

- Msini=10-30 ME, $P>\sim 20$ days
- Msini=3-I0 ME, $P>\sim 5$ days

3. Low-mass planets:

No short-period pileup
4. Absence of hot Neptunes

- Detected planets
\triangle Candidate planets (FAPs ~ I-5\%)

Howard et al. 2010, Science, 330, 653

Population Synthesis Model Mordasini et al. 2009

Fixes for Population Synthesis models:
Ida \& Lin (20I0, 2013)
Mordasini et al. $(2012,2014)$
Paardekooper et al. (201I, 2013)

In Situ Formation:
Hansen \& Murray (2012)
Chiang \& Laughlin (2013)
Lee et al. (2014)
Chatterjee \& Tan (2015)

Howard et al. 2010, Science, 330, 653

10
Orbital Perio

Howard et al. 2009, 20 I la,b

Spitzer Transit Photometry

Doppler Spectroscopy

98S9L6 OH

HD 97658b

HD 97658b

Howard et al. 20IO, Science, 330, 653

Earth 2.0 = Difficult to Find

- Detected planets
\triangle Candidate planets (FAPs ~ I-5\%)

GI 667C - Two clear planets + more?

Data from HARPS, Delfosse et al. (2013)

Gliese 667C c

hets + more?

Planet Parameters
Minimum Mass

Radius
Orbital Period
Orbital Distance
Orbital Eccentricity
Stellar Flux
Star Parameters
Mass
Spectral Type
Effective Temp.
Luminosity
Distance
4.54 Earth Masses unknown
28.2 days
0.123 AU
<0.27
0.905 Solar fluxes

CREUT: PHL @ UP
(c)
0.310 Solar Masses M1.5V
3700 K
0.0137 Solar luminosities
~ 6.8 parsecs

Gl 667C
Day: 1

(e)

Current Potential Habitable Exoplanets

Compared with Earth and Mars and Ranked in Order of Similarity to Earth

\#1	\#2	\#3 Earth Similarity Index	\#4	\#5	\#6
0.92	0.85	0.81	0.77	0.73	0.72
Gliese 581 g	Gliese 667C c	Kepler-22 b	HD 85512 b	Gliese 163 c	Gliese 581 d
Sep 2010	Nov 2011	Dec 2011	Sep 2011	Sep 2012	Apr 2007

Kepler Space Telescope

Kepler-10 Light Curve

Kepler-10 Light Curve

Period $=45.29$ days

Kepler-10 Light Curve

Period $=45.29$ days

Kepler-10 Light Curve

Kepler-10 Light Curve

Kepler-10 Light Curve

Super-Earths \leftrightarrows Earths

Multi-planet Systems

Lava Planets

Circumbinary Planets

Planets in the Habitable Zone

Kepler-452 System

Kepler-186 System

Kepler-452b

KEPLER-452b: EXOPLANET MOST LIKE EARTH

10\% LARGER
THAN SUN

ORBITS
IN HABITABLE ZONE OF G2-TYPE STAR
1.6 TIMES THE SIZE OF EARTH

Planet Occurrence from Kepler

Observed Planets

Correct for: • Inclined orbital planes

- Photometric noise Assume: • 100\% complete planet search to SNR threshold

Planet Occurrence $-d^{2} f /$ dlog $P /$ dlog R_{p}

Howard et al. (2012; updated)

Planet Mass Distribution Eta-Earth Survey (Doppler)

Howard et al. 2010, Science, 33, 653

Planet Radius Distribution

 KeplerHoward et al. 2012, ApJ, 330, 653

Key Planet Occurrence Trends for GK dwarfs stars from Kepler

Howard et al. 2012, ApJ, 330, 653

Occurrence vs. period: cut-off power law

Small planets prefer small stars

Kepler Planets

Planet Size and Incident Flux

Petigura, Howard, \& Marcy (2013)

The Occurrence of Warm, Earth-size Planets

Uncertainties

Table 1. Occurrence of small planets in the habitable zone

HZ definition	$a_{\text {inner }}$	$a_{\text {outer }}$	$F_{P, \text { inner }}$	$F_{P, \text { outer }}$	$f_{H Z}(\%)$
Simple	0.5	2	4	0.25	22
Kasting (1993)	0.95	1.37	1.11	0.53	5.8
Kopparapu et al. (2013)	0.99	1.70	1.02	0.35	8.6
Zsom et al. (2013)	0.38		6.92		26^{*}
Pierrehumbert and Gaidos (2011)		10		0.01	$\sim 50^{\dagger}$

Table 1. Occurrence of small planets in the habitable zone					
HZ definition	$a_{\text {inner }}$	$a_{\text {outer }}$	$F_{\text {P,inner }}$	$F_{P, \text { outer }}$	$f_{H Z}(\%)$
Simple	0.5	2	4	0.25	22
Kasting (1993)	0.95	1.37	1.11	0.53	5.8
Kopparapu et al. (2013)	0.99	1.70	1.02	0.35	8.6
Zsom et al. (2013)	0.38		6.92		26^{*}
Pierrehumbert and Gaidos (2011)		10		0.01	$\sim 50^{+}$

Outer Edge:

Kasting et al. (1993)
 0.95-1.37 AU Kopparapu et al. (2013) 0.99-1.70 AU

Inner Edge (0.38 AU):
reduced greenhouse (1\% humidity) increased albedo (reflectivity)

Zsom et al. (2013) 0.38 AU (inner edge)

Pierrehumbert \& Gaidos (2011) ~10 AU (outer edge)

Uncertainties

Mass-Radius Relationship
 What is an Earth? Where is the rocky/gas-rich transition?

Kepler-78b Transit Discovery Sanchis-Ojeda et al. (2013)

Kepler-78b

Super-heated Earth-size Planet

What is it made of?

Kepler-78b - Keck-HIRES Doppler Measurements

$$
\begin{aligned}
& \mathrm{l} .66 \pm 0.40 \mathrm{~m} / \mathrm{s} \\
& \mathrm{I} .69 \pm 0.4 \mathrm{I} \mathrm{M}
\end{aligned}
$$

Howard et al. (2013)

Known Planets - Masses and Radii

LETTER

A rocky composition for an Earth-sized exoplanet

Andrew W. Howard ${ }^{1}$, Roberto Sanchis-Ojeda ${ }^{2}$, Geoffrey W. Marcy ${ }^{3}$, John Asher Johnson ${ }^{4}$, Joshua N. Winn ${ }^{2}$, Howard Isaacson ${ }^{3}$, Debra A. Fischer ${ }^{5}$, Benjamin J. Fulton ${ }^{1}$, Evan Sinukoff ${ }^{1} \&$ Jonathan J. Fortney 6

Planets with sizes between that of Earth (with radius R_{\oplus}) and Neptune (about $4 R_{\oplus}$) are now known to be common around Sun-like stars ${ }^{1-3}$. Most such planets have been discovered through the transit technique, by which the planet's size can be determined from the fraction of starlight blocked by the planet as it passes in front of its star. Measuring the planet's mass-and hence its density, which is a clue to its composition-is more difficult. Planets of size $2-4 R_{\oplus}$ have proved to have a wide range of densities, implying a diversity of compositions ${ }^{4,5}$, but these measurements did not extend to planets as small as Earth. the Earth-sized planet Kepler-78b, which orbits its host star every 8.5 hours (ref. 6). Given a radius of $1.20 \pm 0.09 R_{\oplus}$ and a mass of $1.69 \pm 0.41 M_{\oplus}$, the planet's mean density of $5.3 \pm 1.8 \mathrm{~g} \mathrm{~cm}^{-3}$ is similar to Earth's, suggesting a composition of rock and iron.
$8 M_{\oplus}$ could be ruled out because the planet's gravity would have deformed the star and produced brightness variations that were not detected.
We measured the mass of Kepler-78b by tracking the line-of-sight component of the host star's motion (the radial velocity) that is due to the gravitational force of the planet. The radial-velocity analysis is challenging not only because the signal is expected to be small (about $1-3 \mathrm{~m} \mathrm{~s}$ but also because the apparent Doppler shifts due to rotating star spots are much larger (about $50 \mathrm{~m} \mathrm{~s}^{-1}$ peak-to-peak). Nevertheless the detection phase of Kepler-78b that cleanly separated the timescale of spot variations $\left(P_{\text {rot }} \approx 12.5\right.$ days) from the much shorter timescale of the planetary orbit ($P \approx 8.5$ hours). We adopted a strategy of intensive Doppler measurements spanning 6-8 hours per night, long enouch to cover nearly the entire , + , + Mrt

Keck/HIRES (10-m)

LETTER

An Earth-sized planet with an Earth-like density

Francesco Pepe ${ }^{1}$, Andrew Collier Cameron², David W. Latham ${ }^{3}$, Emilio Molinari ${ }^{4}{ }^{4,5}$, Stéphane Udry ${ }^{1}$, Aldo S. Bonomo ${ }^{6}$, Lars A. Buchhave ${ }^{3,7}$, David Charbonneau ${ }^{3}$, Rosario Cosentino ${ }^{4,8}$, Courtney D. Dressing ${ }^{3}$, Xavier Dumusque ${ }^{3}$, Pedro Figueira ${ }^{9}$, Aldo F. M. Fiorenzano ${ }^{4}$, Sara Gettel ${ }^{3}$, Avet Harutyunyan ${ }^{4}$, Raphaëlle D. Haywood ${ }^{2}$, Keith Horne ${ }^{2}$, Mercedes Lopez-Morales ${ }^{3}$, Christophe Lovis ${ }^{1}$, Luca Malavolta ${ }^{10,11}$, Michel Mayor ${ }^{1}$, Giusi Micela ${ }^{12}$, Fatemeh Motalebi ${ }^{1}$, Valerio Nascimbeni ${ }^{11}$, David Phillips ${ }^{3}$
 Giampaolo Piotto ${ }^{\text {Andrew }}$ Szentgyorgyi ${ }^{3}$ \& Christopher A. Watson ${ }^{16}$

TNG/HARPS-N (3.6-m)

Known Planets - Masses and Radii

HIRES (Howard et al. 2013)
Radius: $1.20 \pm 0.09 \mathrm{R}_{\oplus}$
Mass: $1.69 \pm 0.41 \mathrm{M}_{\oplus}$
Density: $5.3_{-1.6}^{+2.0} \mathrm{~g} \mathrm{~cm}^{-3}$
Iron fraction: 0.20 ± 0.33

HARPS-N (Pepe et al. 2013)
Mass: $1.86_{-0.25}^{+0.38} \mathrm{M}_{\oplus}$
Density: $5.6_{-1.3}^{+3.0} \mathrm{~g} \mathrm{~cm}^{-3}$

Masses and Radii of 52 Small Planets

 Kepler + Keck ObservatoryMarcy, Isaacson, Howard et al. (2014)

Rock \rightarrow Gas Transition

Weiss \& Marcy (2014)
see also: Rogers (2015)
Dressing et al. (2015)

Rock \rightarrow Gas Transition

I. Peak Density $\sim 1.5 R_{E}$

Lauren Weiss (Berkeley)

Rock \rightarrow Gas Transition

I. Peak density $\sim 1.5 R_{E}$
2. $\gtrsim 1.5 \mathrm{R}_{\mathrm{E}} \rightarrow$ smaller density add I-5\% H/He gas density $\rightarrow \mathrm{I} \mathrm{g} \mathrm{cm}{ }^{-3}$

Lauren Weiss (Berkeley)

Rock \rightarrow Gas Transition

I. Peak density $\sim 1.5 R_{E}$
2. $\gtrsim 1.5 \mathrm{R}_{\mathrm{E}} \rightarrow$ smaller density add $\mathrm{I}-5 \% \mathrm{H} / \mathrm{He}$ gas density $\rightarrow \mathrm{I} \mathrm{g} \mathrm{cm}{ }^{-3}$
3. $\lesssim 1.5 R_{\mathrm{E}} \rightarrow$ smaller density same rocky composition with reduced compression?

Lauren Weiss (Berkeley)

2009-2013

2014-2017?

2017+

2024+

2017-2020

2018+

Questions?

