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How common are Earth-like planets?

What do we mean by “Earth-like”?!
Mass, radius, temperature, atmosphere, water content?



Doppler Method

How Do We Detect Exoplanets?   

Movie credit: ESO
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!
Detected planets
Candidate planets
  (FAPs ~ 1-5%)
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1. Low-mass planets are common

2.  A diagonal “ridge” in high!
    planet occurrence:!
   " Msini=10-30 ME, P > !20 days
   " Msini=3-10 ME, P > !5 days

3. Low-mass planets: 
   No short-period pileup 

4.  Absence of hot Neptunes

!
Detected planets
Candidate planets
  (FAPs ~ 1-5%)
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!
Detected planets
Candidate planets
  (FAPs ~ 1-5%)

Graphic: T. Pyle (JPL)

Detected planets
Candidate planets
  (FAPs ~ 1-5%)
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ADD Comparison w/ 
Theory

Population Synthesis Model!
Mordasini et al. 2009

Fixes for Population Synthesis models:
Ida & Lin (2010, 2013)
Mordasini et al. (2012, 2014)
Paardekooper et al. (2011, 2013)
…

In Situ Formation:
Hansen & Murray (2012)
Chiang & Laughlin (2013)
Lee et al. (2014)
Chatterjee & Tan (2015)
…
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Doppler Spectroscopy
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HD 97658b

Formed in situ!
quickly

Formed > ~2 AU!
Migrated to 0.1 AU!
No violent heating

Formed > ~2 AU!
Migrated to 0.1 AU!

Lost H/He gas !
or formed late
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Figure 3: Model transmission spectra of plausible atmospheric scenarios (colored lines) compared to previous observations
(gray points) and simulated observations and transit depth uncertainties (black points). We provide a uniform sample of
transmission spectra with unprecedented precision covering visible to near-infrared wavelengths. For all five planets, we can
robustly distinguish between a high-metallicity atmospheres and hydrogen-dominated atmospheres. For HD 97658b and
GJ 436b, which show near-flat spectra in the WFC3 bandpass, our high-precision STIS observation provide sufficient leverage
to robustly distinguish between high-metallicity and hydrogen-rich scenarios with hazes. The Rayleigh scattering slope
provides unambiguous constraints on the scale height, even in the presence of small particle hazes (Lecavelier des Etangs
et al., 2008; Benneke & Seager, 2012; Huitson et al., 2012). The precision of the proposed measurements is sufficient to detect
high mean molecular mass atmospheres dominated by H2O or CH4 on GJ 3470 b, Kepler-138 c, HD 97658b, and 55 Cnc e.
The insets at the bottom right show simulated observations for water-dominated scenarios. We retrieve water absorption at
> 10� for GJ 3470b, ⇠ 4.5� for Kepler-138 c, and ⇠ 4� for HD 97658b, and 55 Cnc e when analyzing the simulated
observations at full spectra resolution in a Bayesian model comparison framework.
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Simulated Data - Hubble Space Telescope

Approved HST Large Program
B. Benneke, H. Knutson, I. Crossfield, A. Howard, et al.
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!
Detected planets
Candidate planets
  (FAPs ~ 1-5%)

Earth 2.0 = Difficult to Find



Gl 667C — Two clear planets + more?

Data from HARPS, Delfosse et al. (2013)



Gl 667C — Two clear planets + more?

Data from HARPS, Delfosse et al. (2013)

Gl 667C — Two clear planets + more?

Data from HARPS, Delfosse et al. (2013)





Kepler Space Telescope
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Kepler-10 Light Curve
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Period = 45.29 days

Kepler-10 Light Curve
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Period = 45.29 days

Kepler-10 Light Curve



Period = 45.29 days Kepler-10 Light Curve



Period = 0.84 days

Period = 45.29 days Kepler-10 Light Curve



Transit Depth: 
0.00015

Kepler-10b
Radius = 1.4 Rearth

Period = 0.83 days
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Super-Earths ! Earths
Circumbinary Planets

Multi-planet Systems

Lava Planets
Planets in the Habitable Zone
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Planet Occurrence from Kepler

Observed Planets Intrinsic Planet Distribution

     Correct for: • Inclined orbital planes
   • Photometric noise

         Assume: • 100% complete planet search to SNR threshold
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Howard et al. (2012; updated)
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Planet Mass Distribution
Eta-Earth Survey (Doppler)

Howard et al. 2012, ApJ, 330, 653

Planet Radius Distribution
Kepler
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prefer !
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Howard et al. 2012, ApJ, 330, 653

Occurrence vs. period: !
cut-off power law

Small planets!
are common
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How do we measure the !
prevalence of Earth Analogs?

    1. More photometry (4 yr; Q1-Q15)
NeptuneNeptune    2. Custom planet-detection pipeline (TERRA):

a. independent planet catalog
b. injection-and-recovery tests

 c. false positive vetting
d. spectroscopic follow-up

Erik Petigura & Andrew Howard



Red circles show planet size and stellar light intensity received by 603 detected 
planets (logarithmic scale). Color scale indicates pipeline completeness: the 
fraction of transiting planets detectable over stellar brightness fluctuations 
(noise). This fraction is highest for large, close-in planets. For Earth-size 
planets in the habitable zone, we find roughly 1 out every 5 that transit, the 
rest are overwhelmed by stellar variability.
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Planet Size and Incident Flux

Petigura, Howard, & Marcy (2013)
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The Occurrence of Warm, Earth-size Planets
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Uncertainties
How big is the #! Box?
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water is the most accessible, abundant, and com-
mon liquid in terms of planetary material (13).

For illustration and review, we consider water
on the terrestrial planets in our own solar system.
Earth is touted as the “Goldilocks planet”—not
too hot, not too cold, but just right for surface li-
quidwater (14). Venus, 30% closer to the Sun than
Earth and receiving 90% more radiation from the
Sun, may have had liquid water oceans billions
of years ago, as possibly implied by the elevated
deuterium/hydrogen (D/H) ratio in the venusian
atmosphere (15). Because ofwarm surface temper-
atures, water evaporated to saturate the upper at-
mosphere where solar extreme ultraviolet (EUV)
radiation photodissociated the H2O, enabling H
to escape to space. The increasing atmospheric wa-
ter vapor further warmed the surface, creating a
positive feedback loop that led to a “runaway green-
house effect,” which caused Venus to rapidly lose
its oceans [but compare (16)]. Mars, at 1.5 AU
from the Sun, is thought to have had at least epi-
sodic surface liquid water in the past, based pre-
dominantly on geomorphological features [e.g.,
(17)]. Mars was too small to hold onto a warming
atmosphere and is now so cold there is no place
on theMartian surface where water could be liquid.
The habitable zone for terrestrial-type exoplanets
with terrestrial-like atmospheres of various masses
and CO2 concentration are described in (10) and
result in a habitable zone of 0.99 to 1.7AU (Fig. 2).
The inner edge of the habitable zone is determined
by loss of water via the runaway greenhouse ef-
fect (18) and the outer edge by CO2 condensation.

For exoplanets, we cannot directly observe liq-
uid surface water (19). Atmospheric water vapor
may be used as a proxy; as long as a temperate
planet is small or of low enough mass, water va-
por should not be present because water will be
photodissociated with H escaping to space. At-
mospheric water vapor has been detected on hot
giant transiting exoplanets [e.g., (20)] and is high-
ly sought after for theminiNeptuneGJ 1214b [e.g.,
(21)]. Both of these types of planets are too hot
for surface liquid water [for a discussion of
GJ 1214b, see (22)]; notably, water vapor will be
naturally occurring on planets that are massive
enough or cold enough to hold on to water vapor
molecules. The detection of water vapor in the
atmosphere of smaller, more terrestrial-like planets
is currently out of reach.

Given the observational inaccessibility of
the key habitability indicator water vapor on
terrestrial-like exoplanets, the habitable zone
around a star is a powerful guide for astronomers
because it tells us where to focus future efforts
of exoplanet discovery. We must redefine the
habitable-zone concept, however, given the ex-
pected and observed diversity of exoplanets.

The Diversity of Exoplanets and the Controlling
Factors of Habitability
Taking surface liquid water as a requirement,
what types of planets are habitable? Water is in

the liquid phase for a range of temperatures and
pressures. Planets should also have a wide range
of surface temperatures and pressures, expected
from their diversity in mass and size and likely
atmospheres. If we could connect the liquid
water phase diagram with planet surface con-
ditions, broadly speaking, we would know to
first order which planets may be habitable.

The water phase diagram can be used as a
qualitative guide to show that pressures thousands
of times higher than Earth’s 1-bar surface pressure
can maintain liquid water at high temperatures
(23). A suitable temperature for life can be con-
sidered to be between the freezing point of water
and the upper temperature limits for life, about
395 K (24). A notable inaccuracy in the phase
diagram is that the water phase boundaries at
high pressures have not been studied for a variety
of gas mixtures relevant for exoplanets (25).

The surface temperature on an exoplanet is
governed by the atmosphere’s greenhouse gases
(or lack thereof ). Specifically, the greenhouse
gases absorb and reradiate energy from the host
star, in the form of upwelling infrared (IR) radi-
ation from the planet’s surface. Whereas on Earth
we are concernedwith, e.g., parts-per-million rise
in the greenhouse gas CO2 concentrations, for
potentially habitable exoplanets we do not know
a priori and cannot yet measure what gases are
in the atmosphere even to the tens of percent lev-
el. The atmospheric mass and composition of any
specific small exoplanet is not predictable (26).

Nevertheless, it is worth summarizing some

key factors controlling a planet atmosphere’s
greenhouse gas inventory. A planet’s atmosphere
forms from outgassing during planet formation or
is gravitationally captured from the surrounding
proto-planetary nebula. For terrestrial planets, the
primordial atmospheremay be completely changed
by escape of light gases to space, continuous
outgassing from an active young interior, and
bombardment by asteroids and comets. At a later
stage, the physical processes operating at the
top or bottom of the atmosphere still sculpt the
atmosphere. These physical processes are well
studied by exoplanet theorists but often with con-
troversy or no conclusion. For example, atmo-
spheric escape is induced by the host star’s EUV
flux and carried out by a number of thermal or
nonthermal escape mechanisms. But the star’s
past EUV flux, which of the escape mechanisms
was at play, and whether or not the planet has a
protective magnetic field are not known [e.g.,
(27)]. As a second example, at the bottom of
the atmosphere, plate tectonics and volcanic out-
gassing contribute to burial and recycling of at-
mospheric gases, but arguments as to whether
or not plate tectonics will occur in a super-Earth
planet more massive than Earth are still under
debate (28, 29). A long list of other surface and
interior processes affect the atmospheric com-
position, including but not limited to the ocean
fraction for dissolution of CO2 and for atmo-
spheric relative humidity, redox state of the plan-
etary surface and interior, acidity levels of the
oceans planetary albedo, and surface gravity [for
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Inner Edge: !
water loss by photolysis

Outer Edge: !
maximum CO2 greenhouseKasting et al. (1993)         0.95-1.37 AU 

Kopparapu et al. (2013)   0.99-1.70 AU



water is the most accessible, abundant, and com-
mon liquid in terms of planetary material (13).

For illustration and review, we consider water
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Earth is touted as the “Goldilocks planet”—not
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Earth and receiving 90% more radiation from the
Sun, may have had liquid water oceans billions
of years ago, as possibly implied by the elevated
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and CO2 concentration are described in (10) and
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the key habitability indicator water vapor on
terrestrial-like exoplanets, the habitable zone
around a star is a powerful guide for astronomers
because it tells us where to focus future efforts
of exoplanet discovery. We must redefine the
habitable-zone concept, however, given the ex-
pected and observed diversity of exoplanets.

The Diversity of Exoplanets and the Controlling
Factors of Habitability
Taking surface liquid water as a requirement,
what types of planets are habitable? Water is in

the liquid phase for a range of temperatures and
pressures. Planets should also have a wide range
of surface temperatures and pressures, expected
from their diversity in mass and size and likely
atmospheres. If we could connect the liquid
water phase diagram with planet surface con-
ditions, broadly speaking, we would know to
first order which planets may be habitable.
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qualitative guide to show that pressures thousands
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diagram is that the water phase boundaries at
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gases absorb and reradiate energy from the host
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flux and carried out by a number of thermal or
nonthermal escape mechanisms. But the star’s
past EUV flux, which of the escape mechanisms
was at play, and whether or not the planet has a
protective magnetic field are not known [e.g.,
(27)]. As a second example, at the bottom of
the atmosphere, plate tectonics and volcanic out-
gassing contribute to burial and recycling of at-
mospheric gases, but arguments as to whether
or not plate tectonics will occur in a super-Earth
planet more massive than Earth are still under
debate (28, 29). A long list of other surface and
interior processes affect the atmospheric com-
position, including but not limited to the ocean
fraction for dissolution of CO2 and for atmo-
spheric relative humidity, redox state of the plan-
etary surface and interior, acidity levels of the
oceans planetary albedo, and surface gravity [for
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Fig. 2. The habitable zone. The light blue region depicts the “conventional” habitable zone for
planets with N2-CO2-H2O atmospheres (9, 10). The yellow region shows the habitable zone as extended
inward for dry planets (36, 37), as dry as 1% relative humidity (37). The outer darker blue region shows
the outer extension of the habitable zone for hydrogen-rich atmospheres (34) and can extend even out
to free-floating planets with no host star (35). The solar system planets are shown with images. Known
exoplanets are shown with symbols [here, planets with a mass or minimum mass less than 10 Earth
masses or a radius less than 2.5 Earth radii taken from (66)].
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Inner Edge (0.38 AU): !
reduced greenhouse (1% humidity)!
increased albedo (reflectivity)

Zsom et al. (2013)  0.38 AU (inner edge)



water is the most accessible, abundant, and com-
mon liquid in terms of planetary material (13).

For illustration and review, we consider water
on the terrestrial planets in our own solar system.
Earth is touted as the “Goldilocks planet”—not
too hot, not too cold, but just right for surface li-
quidwater (14). Venus, 30% closer to the Sun than
Earth and receiving 90% more radiation from the
Sun, may have had liquid water oceans billions
of years ago, as possibly implied by the elevated
deuterium/hydrogen (D/H) ratio in the venusian
atmosphere (15). Because ofwarm surface temper-
atures, water evaporated to saturate the upper at-
mosphere where solar extreme ultraviolet (EUV)
radiation photodissociated the H2O, enabling H
to escape to space. The increasing atmospheric wa-
ter vapor further warmed the surface, creating a
positive feedback loop that led to a “runaway green-
house effect,” which caused Venus to rapidly lose
its oceans [but compare (16)]. Mars, at 1.5 AU
from the Sun, is thought to have had at least epi-
sodic surface liquid water in the past, based pre-
dominantly on geomorphological features [e.g.,
(17)]. Mars was too small to hold onto a warming
atmosphere and is now so cold there is no place
on theMartian surface where water could be liquid.
The habitable zone for terrestrial-type exoplanets
with terrestrial-like atmospheres of various masses
and CO2 concentration are described in (10) and
result in a habitable zone of 0.99 to 1.7AU (Fig. 2).
The inner edge of the habitable zone is determined
by loss of water via the runaway greenhouse ef-
fect (18) and the outer edge by CO2 condensation.

For exoplanets, we cannot directly observe liq-
uid surface water (19). Atmospheric water vapor
may be used as a proxy; as long as a temperate
planet is small or of low enough mass, water va-
por should not be present because water will be
photodissociated with H escaping to space. At-
mospheric water vapor has been detected on hot
giant transiting exoplanets [e.g., (20)] and is high-
ly sought after for theminiNeptuneGJ 1214b [e.g.,
(21)]. Both of these types of planets are too hot
for surface liquid water [for a discussion of
GJ 1214b, see (22)]; notably, water vapor will be
naturally occurring on planets that are massive
enough or cold enough to hold on to water vapor
molecules. The detection of water vapor in the
atmosphere of smaller, more terrestrial-like planets
is currently out of reach.

Given the observational inaccessibility of
the key habitability indicator water vapor on
terrestrial-like exoplanets, the habitable zone
around a star is a powerful guide for astronomers
because it tells us where to focus future efforts
of exoplanet discovery. We must redefine the
habitable-zone concept, however, given the ex-
pected and observed diversity of exoplanets.

The Diversity of Exoplanets and the Controlling
Factors of Habitability
Taking surface liquid water as a requirement,
what types of planets are habitable? Water is in

the liquid phase for a range of temperatures and
pressures. Planets should also have a wide range
of surface temperatures and pressures, expected
from their diversity in mass and size and likely
atmospheres. If we could connect the liquid
water phase diagram with planet surface con-
ditions, broadly speaking, we would know to
first order which planets may be habitable.

The water phase diagram can be used as a
qualitative guide to show that pressures thousands
of times higher than Earth’s 1-bar surface pressure
can maintain liquid water at high temperatures
(23). A suitable temperature for life can be con-
sidered to be between the freezing point of water
and the upper temperature limits for life, about
395 K (24). A notable inaccuracy in the phase
diagram is that the water phase boundaries at
high pressures have not been studied for a variety
of gas mixtures relevant for exoplanets (25).

The surface temperature on an exoplanet is
governed by the atmosphere’s greenhouse gases
(or lack thereof ). Specifically, the greenhouse
gases absorb and reradiate energy from the host
star, in the form of upwelling infrared (IR) radi-
ation from the planet’s surface. Whereas on Earth
we are concernedwith, e.g., parts-per-million rise
in the greenhouse gas CO2 concentrations, for
potentially habitable exoplanets we do not know
a priori and cannot yet measure what gases are
in the atmosphere even to the tens of percent lev-
el. The atmospheric mass and composition of any
specific small exoplanet is not predictable (26).

Nevertheless, it is worth summarizing some

key factors controlling a planet atmosphere’s
greenhouse gas inventory. A planet’s atmosphere
forms from outgassing during planet formation or
is gravitationally captured from the surrounding
proto-planetary nebula. For terrestrial planets, the
primordial atmospheremay be completely changed
by escape of light gases to space, continuous
outgassing from an active young interior, and
bombardment by asteroids and comets. At a later
stage, the physical processes operating at the
top or bottom of the atmosphere still sculpt the
atmosphere. These physical processes are well
studied by exoplanet theorists but often with con-
troversy or no conclusion. For example, atmo-
spheric escape is induced by the host star’s EUV
flux and carried out by a number of thermal or
nonthermal escape mechanisms. But the star’s
past EUV flux, which of the escape mechanisms
was at play, and whether or not the planet has a
protective magnetic field are not known [e.g.,
(27)]. As a second example, at the bottom of
the atmosphere, plate tectonics and volcanic out-
gassing contribute to burial and recycling of at-
mospheric gases, but arguments as to whether
or not plate tectonics will occur in a super-Earth
planet more massive than Earth are still under
debate (28, 29). A long list of other surface and
interior processes affect the atmospheric com-
position, including but not limited to the ocean
fraction for dissolution of CO2 and for atmo-
spheric relative humidity, redox state of the plan-
etary surface and interior, acidity levels of the
oceans planetary albedo, and surface gravity [for
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Fig. 2. The habitable zone. The light blue region depicts the “conventional” habitable zone for
planets with N2-CO2-H2O atmospheres (9, 10). The yellow region shows the habitable zone as extended
inward for dry planets (36, 37), as dry as 1% relative humidity (37). The outer darker blue region shows
the outer extension of the habitable zone for hydrogen-rich atmospheres (34) and can extend even out
to free-floating planets with no host star (35). The solar system planets are shown with images. Known
exoplanets are shown with symbols [here, planets with a mass or minimum mass less than 10 Earth
masses or a radius less than 2.5 Earth radii taken from (66)].
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Outer Edge (0.38 AU): !
heavy greenhouse from H2 
(collisionally-induced absorption)

Pierrehumbert & Gaidos (2011)  ~10 AU (outer edge)



Uncertainties
Mass-Radius Relationship!

What is an Earth?!
Where is the rocky/gas-rich transition?



Kepler-78b Transit Discovery!
Sanchis-Ojeda et al. (2013)
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Kepler Photometry
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Kepler-78b
Super-heated Earth-size Planet

!

What is it made of?

Artist Impression: D. Aguilar
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Photo: Ethan Tweedie

Photo:  Avet Harutyunyan

Keck/HIRES (10-m)

TNG/HARPS-N (3.6-m)



HIRES (Howard et al. 2013)
!

   Radius: 1.20 ± 0.09 R!!
!

      Mass: 1.69 ± 0.41 M!
!

  Density: !
!

Iron fraction:  0.20 ± 0.33

Known Planets - Masses and Radii

5.3+2.0
�1.6 g cm�3

HARPS-N (Pepe et al. 2013)
!

      Mass: !
!

  Density: !
!

5.6+3.0
�1.3 g cm�3

1.86+0.38
�0.25 M�



Masses and Radii of 52 Small Planets!
Kepler + Keck Observatory 

Marcy, Isaacson, Howard et al. (2014)
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Weiss & Marcy (2014)

Rock $ Gas Transition 

%

M/M

Lauren Weiss (Berkeley)

Weiss & Marcy (2014)
see also: Rogers (2015)

                       Dressing et al. (2015)



Weiss & Marcy (2014)
Lauren Weiss (Berkeley)

Peak Density!
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Rock $ Gas Transition 



Weiss & Marcy (2014)
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Rock $ Gas Transition 
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Weiss & Marcy (2014)

How to interpret 
low-density planets?

Kepler-138d



TESSK2Kepler

2009-2013 2014-2017?

Photo: Ethan Tweedie
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water is the most accessible, abundant, and com-
mon liquid in terms of planetary material (13).

For illustration and review, we consider water
on the terrestrial planets in our own solar system.
Earth is touted as the “Goldilocks planet”—not
too hot, not too cold, but just right for surface li-
quidwater (14). Venus, 30% closer to the Sun than
Earth and receiving 90% more radiation from the
Sun, may have had liquid water oceans billions
of years ago, as possibly implied by the elevated
deuterium/hydrogen (D/H) ratio in the venusian
atmosphere (15). Because ofwarm surface temper-
atures, water evaporated to saturate the upper at-
mosphere where solar extreme ultraviolet (EUV)
radiation photodissociated the H2O, enabling H
to escape to space. The increasing atmospheric wa-
ter vapor further warmed the surface, creating a
positive feedback loop that led to a “runaway green-
house effect,” which caused Venus to rapidly lose
its oceans [but compare (16)]. Mars, at 1.5 AU
from the Sun, is thought to have had at least epi-
sodic surface liquid water in the past, based pre-
dominantly on geomorphological features [e.g.,
(17)]. Mars was too small to hold onto a warming
atmosphere and is now so cold there is no place
on theMartian surface where water could be liquid.
The habitable zone for terrestrial-type exoplanets
with terrestrial-like atmospheres of various masses
and CO2 concentration are described in (10) and
result in a habitable zone of 0.99 to 1.7AU (Fig. 2).
The inner edge of the habitable zone is determined
by loss of water via the runaway greenhouse ef-
fect (18) and the outer edge by CO2 condensation.

For exoplanets, we cannot directly observe liq-
uid surface water (19). Atmospheric water vapor
may be used as a proxy; as long as a temperate
planet is small or of low enough mass, water va-
por should not be present because water will be
photodissociated with H escaping to space. At-
mospheric water vapor has been detected on hot
giant transiting exoplanets [e.g., (20)] and is high-
ly sought after for theminiNeptuneGJ 1214b [e.g.,
(21)]. Both of these types of planets are too hot
for surface liquid water [for a discussion of
GJ 1214b, see (22)]; notably, water vapor will be
naturally occurring on planets that are massive
enough or cold enough to hold on to water vapor
molecules. The detection of water vapor in the
atmosphere of smaller, more terrestrial-like planets
is currently out of reach.

Given the observational inaccessibility of
the key habitability indicator water vapor on
terrestrial-like exoplanets, the habitable zone
around a star is a powerful guide for astronomers
because it tells us where to focus future efforts
of exoplanet discovery. We must redefine the
habitable-zone concept, however, given the ex-
pected and observed diversity of exoplanets.

The Diversity of Exoplanets and the Controlling
Factors of Habitability
Taking surface liquid water as a requirement,
what types of planets are habitable? Water is in

the liquid phase for a range of temperatures and
pressures. Planets should also have a wide range
of surface temperatures and pressures, expected
from their diversity in mass and size and likely
atmospheres. If we could connect the liquid
water phase diagram with planet surface con-
ditions, broadly speaking, we would know to
first order which planets may be habitable.

The water phase diagram can be used as a
qualitative guide to show that pressures thousands
of times higher than Earth’s 1-bar surface pressure
can maintain liquid water at high temperatures
(23). A suitable temperature for life can be con-
sidered to be between the freezing point of water
and the upper temperature limits for life, about
395 K (24). A notable inaccuracy in the phase
diagram is that the water phase boundaries at
high pressures have not been studied for a variety
of gas mixtures relevant for exoplanets (25).

The surface temperature on an exoplanet is
governed by the atmosphere’s greenhouse gases
(or lack thereof ). Specifically, the greenhouse
gases absorb and reradiate energy from the host
star, in the form of upwelling infrared (IR) radi-
ation from the planet’s surface. Whereas on Earth
we are concernedwith, e.g., parts-per-million rise
in the greenhouse gas CO2 concentrations, for
potentially habitable exoplanets we do not know
a priori and cannot yet measure what gases are
in the atmosphere even to the tens of percent lev-
el. The atmospheric mass and composition of any
specific small exoplanet is not predictable (26).

Nevertheless, it is worth summarizing some

key factors controlling a planet atmosphere’s
greenhouse gas inventory. A planet’s atmosphere
forms from outgassing during planet formation or
is gravitationally captured from the surrounding
proto-planetary nebula. For terrestrial planets, the
primordial atmospheremay be completely changed
by escape of light gases to space, continuous
outgassing from an active young interior, and
bombardment by asteroids and comets. At a later
stage, the physical processes operating at the
top or bottom of the atmosphere still sculpt the
atmosphere. These physical processes are well
studied by exoplanet theorists but often with con-
troversy or no conclusion. For example, atmo-
spheric escape is induced by the host star’s EUV
flux and carried out by a number of thermal or
nonthermal escape mechanisms. But the star’s
past EUV flux, which of the escape mechanisms
was at play, and whether or not the planet has a
protective magnetic field are not known [e.g.,
(27)]. As a second example, at the bottom of
the atmosphere, plate tectonics and volcanic out-
gassing contribute to burial and recycling of at-
mospheric gases, but arguments as to whether
or not plate tectonics will occur in a super-Earth
planet more massive than Earth are still under
debate (28, 29). A long list of other surface and
interior processes affect the atmospheric com-
position, including but not limited to the ocean
fraction for dissolution of CO2 and for atmo-
spheric relative humidity, redox state of the plan-
etary surface and interior, acidity levels of the
oceans planetary albedo, and surface gravity [for
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Fig. 2. The habitable zone. The light blue region depicts the “conventional” habitable zone for
planets with N2-CO2-H2O atmospheres (9, 10). The yellow region shows the habitable zone as extended
inward for dry planets (36, 37), as dry as 1% relative humidity (37). The outer darker blue region shows
the outer extension of the habitable zone for hydrogen-rich atmospheres (34) and can extend even out
to free-floating planets with no host star (35). The solar system planets are shown with images. Known
exoplanets are shown with symbols [here, planets with a mass or minimum mass less than 10 Earth
masses or a radius less than 2.5 Earth radii taken from (66)].
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Questions?


