Census of Habitable Exoplanets Andrew Howard

Institute for Astronomy, University of Hawaii

With thanks to my friends and collaborators: E. Sinukoff, B.J. Fulton, E. Petigura, G. Marcy, H. Isaacson, I. Crossfield, J. Schlieder, L. Weiss, and many more

Kepler 78b

Karen Teramura, UH IfA

How common are Earth-like planets?

What do we mean by "Earth-like"? Mass, radius, temperature, atmosphere, water content?

How Do We Detect Exoplanets?

Movie credit: ESO

HIRES Echelle Spectrum

Iodine Absorption Cell

I. Low-mass planets are common

- 2. A diagonal "ridge" in high planet occurrence:
 - Msini=10-30 M_E, P > -20 days
 - Msini=3-10 M_E, P > -5 days
- 3. Low-mass planets: No short-period pileup
- 4. Absence of hot Neptunes

In Situ Formation: Hansen & Murray (2012) Chiang & Laughlin (2013) Lee et al. (2014) Chatterjee & Tan (2015)

•••

0.0

van Grootel et al. 2014 see also Dragomir et al. 2013

HD 97658b

Spitzer Transit Photometry

Howard et al. 2011b

HD 97658b

HD 97658b

GI 667C — Two clear planets + more?

Data from HARPS, Delfosse et al. (2013)

Gliese 667C c

Planet Parameters

Minimum Mass	4.54 Earth Masses				
Radius	unknown				
Orbital Period	28.2 days				
Orbital Distance	0.123 AU				
Orbital Eccentricity	<0.27				
Stellar Flux	0.905 Solar fluxes				

Star Parameters

0.310 Solar Masses 🛛 🚿
M1.5V
3700 K
0.0137 Solar luminosities
~6.8 parsecs

hets + more?

Current Potential Habitable Exoplanets

Compared with Earth and Mars and Ranked in Order of Similarity to Earth

#1	#2	#3	#4	#5	#6
0.92	0.85	0.81	0.77	0.73	0.72
Gliese 581 g	Gliese 667C c	Kepler-22 b	HD 85512 b	Gliese 163 c	Gliese 581 d
Sep 2010	Nov 2011	Dec 2011	Sep 2011	Sep 2012	Apr 2007

Last Update: August 29, 2012

CREDIT: The Habitable Exoplanets Catalog, PHL @ UPR Arecibo (phl.upr.edu)

Earth

1.00

Mars

0.66

Kepler Space Telescope

Kepler-10 Light Curve

Kepler-10 Light Curve

Period = 45.29 days

Kepler-10 Light Curve

Period = 45.29 days

Super-Earths + Earths

Multi-planet Systems

Lava Planets

Circumbinary Planets

Planets in the Habitable Zone

Artistic Concept

KEPLER-452b: EXOPLANET MOST LIKE EARTH

10% LARGER THAN SUN

IN A YEAR 385

1.6 TIMES THE SIZE OF EARTH

Planet Occurrence from Kepler

Observed Planets

Intrinsic Planet Distribution

- Correct for: Inclined orbital planes
 - Photometric noise

Assume: • 100% complete planet search to SNR threshold

Howard et al. (2012; updated)

Howard et al. 2010, Science, 33, 653

Planet Radius Distribution Kepler

Kepler Planets

100

50

How do we measure the prevalence of Earth Analogs?

I. More photometry (4 yr; QI-QI5)
2. Custom planet-detection pipeline (TERRA):

a. independent planet catalog
b. injection-and-recovery tests
c. false positive vetting
d. spectroscopic follow-up

Period [days]

5

10

Rowe et al. (2013)

Erik Petigura & Andrew Howard

Planet Size and Incident Flux

Petigura, Howard, & Marcy (2013)

The Occurrence of Warm, Earth-size Planets

Petigura, Howard, & Marcy (2013)

Petigura, Howard, & Marcy (2013)

Table 1. Occurrence of small planets in the habitable zone					
HZ definition	a inner	a outer	F _{P,inner}	F _{P,outer}	f _{HZ} (%)
Simple	0.5	2	4	0.25	22
Kasting (1993)	0.95	1.37	1.11	0.53	5.8
Kopparapu et al. (2013)	0.99	1.70	1.02	0.35	8.6
Zsom et al. (2013)	0.38		6.92		26*
Pierrehumbert and Gaidos (2011)		10		0.01	~50 [†]

Kasting et al. (199	03) 0	.95-1.37	AU
Kopparapu et al. (2013) 0	.99-1.70	AU

Table 1. Occurrence of small planets in the habitable zone					
HZ definition	a inner	a outer	F _{P,inner}	F _{P,outer}	f _{HZ} (%)
Simple	0.5	2	4	0.25	22
Kasting (1993)	0.95	1.37	1.11	0.53	5.8
Kopparapu et al. (2013)	0.99	1.70	1.02	0.35	8.6
Zsom et al. (2013)	0.38		6.92		26*
Pierrehumbert and Gaidos (2011)		10		0.01	~50 ⁺

Inner Edge (0.38 AU): reduced greenhouse (1% humidity) increased albedo (reflectivity)

Zsom et al. (2013) 0.38 AU (inner edge)

Table 1. Occurrence of small planets in the habitable zone					
HZ definition	a inner	a outer	F _{P,inner}	F _{P,outer}	f _{HZ} (%)
Simple	0.5	2	4	0.25	22
Kasting (1993)	0.95	1.37	1.11	0.53	5.8
Kopparapu et al. (2013)	0.99	1.70	1.02	0.35	8.6
Zsom et al. (2013)	0.38		6.92		26*
Pierrehumbert and Gaidos (2011)		10		0.01	~50 [†]

Pierrehumbert & Gaidos (2011) ~10 AU (outer edge)

Mass of star relative to Sun

Uncertainties

Mass-Radius Relationship

What is an Earth? Where is the rocky/gas-rich transition?

Kepler-78b Transit Discovery Sanchis-Ojeda et al. (2013)

Kepler-78b Super-heated Earth-size Planet

What is it made of?

Kepler-78b - Keck-HIRES Doppler Measurements

Known Planets - Masses and Radii

H''I''I'H'R

doi:10.1038/nature12767

A rocky composition for an Earth-sized exoplanet

Andrew W. Howard¹, Roberto Sanchis-Ojeda², Geoffrey W. Marcy³, John Asher Johnson⁴, Joshua N. Winn², Howard Isaacson³, Debra A. Fischer⁵, Benjamin J. Fulton¹, Evan Sinukoff¹ & Jonathan J. Fortney⁶

(about $4R_{\oplus}$) are now known to be common around Sun-like stars¹⁻³. Most such planets have been discovered through the transit technique, by which the planet's size can be determined from the fraction of starlight blocked by the planet as it passes in front of its star. Measuring the planet's mass-and hence its density, which is a clue to its composition—is more difficult. Planets of size $2-4R_{\oplus}$ have proved to have a wide range of densities, implying a diversity of compositions^{4,5}, but these measurements did not extend to planets as small as Earth. Here we report Doppler spectroscopic measurements of the mass of the Earth-sized planet Kepler-78b, which orbits its host star every 8.5 hours (ref. 6). Given a radius of $1.20 \pm 0.09R_{\oplus}$ and a mass of $1.69 \pm 0.41 M_{\oplus}$, the planet's mean density of $5.3 \pm 1.8 \,\mathrm{g \, cm^{-3}}$ is similar to Earth's, suggesting a composition of rock and iron. hose bright

Planets with sizes between that of Earth (with radius R_{\oplus} **) and Neptune** $8M_{\oplus}$ could be ruled out because the planet's gravity would have deformed the star and produced brightness variations that were not detected.

We measured the mass of Kepler-78b by tracking the line-of-sight component of the host star's motion (the radial velocity) that is due to the gravitational force of the planet. The radial-velocity analysis is challenging not only because the signal is expected to be small (about $1-3 \text{ m s}^{-1}$) but also because the apparent Doppler shifts due to rotating star spots are much larger (about 50 m s⁻¹ peak-to-peak). Nevertheless the detection proved to be possible, thanks to the precisely known orbital period and phase of Kepler-78b that cleanly separated the timescale of spot variations $(P_{rot} \approx 12.5 \text{ days})$ from the much shorter timescale of the planetary orbit $(P \approx 8.5 \text{ hours})$. We adopted a strategy of intensive Doppler measurements spanning 6-8 hours per night, long enough to cover nearly the entire hort en

Keck/HIRES (10-m)

Ή.

doi:10.1038/nature12768

An Earth-sized planet with an Earth-like density

Francesco Pepe¹, Andrew Collier Cameron², David W. Latham³, Emilio Molinari^{4,5}, Stéphane Udry¹, Aldo S. Bonomo⁶, Lars A. Buchhave^{3,7}, David Charbonneau³, Rosario Cosentino^{4,8}, Courtney D. Dressing³, Xavier Dumusque³, Pedro Figueira⁹, Aldo F. M. Fiorenzard⁴, Sara Gettel³, Avet Harutyunyan⁴, Raphaëlle D. Haywod², Keith Horne², Mercedes Lopez-Morales³, Christophe Lovis¹, Luca Malavolta^{10,11}, Michel Mayor¹, Giusi Micela¹², Fatemeh Motalebi¹, Valerio Nascimbeni¹¹, David Phillips³, Giampaolo Piotto^{10,11}, Don Pollacco¹³, Didier Queloz^{1,14}, Ken Rice¹⁵, Dimitar Sasselov³, Damien Ségransan¹, Alessandro Sozzetti⁶, Andrew Szentgyorgyi³ & Christopher A. Watson¹⁶

Recent analyses¹⁻⁴ of data from the NASA Kepler spacecraft⁵ have established that planets with radii within 25 per cent of the Earth's (R_{\oplus}) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars¹. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains for the masses have been

observing campaign (Methods) of Kepler-78 ($m_v = 11.72$) in May 2013, acquiring HARPS-N spectra of 30-min exposure time and an average signal-to-noise ratio of 45 per extracted pixel at 550 nm (wavelength bin of 0.00145 nm). From these high-quality spectra, we estimated^{12,13} the stellar parameters of Kepler-78 (Methods and Extended whether these Earth-sized planets are indeed similar to the Earth in Data Table 1). Our estimate of the stellar radius, $R_{=} = 0.737^{+0.047}_{-0.042} R_{\odot}$, is managements than a

TNG/HARPS-N (3.6-m)

Known Planets - Masses and Radii

HIRES (Howard et al. 2013) Radius: $1.20 \pm 0.09 \ R_{\oplus}$ Mass: $1.69 \pm 0.41 \ M_{\oplus}$ Density: $5.3^{+2.0}_{-1.6} \ g \ cm^{-3}$ Iron fraction: 0.20 ± 0.33

HARPS-N (Pepe et al. 2013) Mass: $1.86^{+0.38}_{-0.25}$ M $_{\oplus}$ Density: $5.6^{+3.0}_{-1.3}$ g cm⁻³

Masses and Radii of 52 Small Planets Kepler + Keck Observatory

Marcy, Isaacson, Howard et al. (2014)

Weiss & Marcy (2014) see also: Rogers (2015) Dressing et al. (2015)

 Peak density ~1.5 R_E
 ≈ 1.5 R_E → smaller density add 1-5% H/He gas density → 1 g cm⁻³

I. Peak density ~I.5 R_E

- 2. ≈ 1.5 R_E → smaller density add 1-5% H/He gas density → 1 g cm⁻³
- 3. \approx 1.5 R_E \rightarrow smaller density same rocky composition with reduced compression?

Photo: Ethan Tweedie

2017+

2014-2017?

2009-2013

2017-2020

Questions?

