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How does a typical sequence of phenotypic changes,

or evolutionary trajectory, look like?

How micro-evolutionary processes generate macro-

evolutionary patterns known from fossil record, such

as “punctuated equilibria”?

Does species diversity saturate over evolutionary

time in a given environment?
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• Traditional paradigms of evolution: “survival of

the fittest”, static fitness landscape, frequency

dependence

• Ecological interactions as evolutionary feedbacks

and drivers of complexity

• Logistic model

• Adaptive dynamics, trajectories in phenotype

space

• Individual-based and PDE models

• Diversification

• Evolutionary speed and stability
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Wind back the tape of life to the early days of the

Burgess Shale; let it play again from an identical

starting point, and the chance becomes vanishingly

small that anything like human intelligence would

grace the replay.

Stephen Jay Gould, 1989.
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“SURVIVAL OF THE FITTEST”

“Traditional” concepts:

• evolution optimizes simple, scalar phenotypes

such as body size, age and size at maturity, fe-

cundity, stress tolerance, antibiotic resistance,

etc.

• The “fittest” type wins, and hence evolution

is often envisioned as a dynamical system that

converges to an equilibrium in phenotype space,

representing the optimally adapted type.

• Non-stationarity of evolution at large time scales

is usually attributed to long-term changes in

the external environment causing shifts in evo-

lutionary optima.
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Ecological interactions

Competition, symbiosis, predation, etc, lead to

Frequency-dependent selection,

in which the current phenotypic composition of a

population determines whether a particular

phenotype is advantageous or not.

Frequency-dependent selection
generates an

Evolutionary feedback loop,

because selection pressures, which cause

evolutionary change, change themselves as a

population’s phenotype distribution evolves.
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MULTIDIMENSIONAL PHENOTYPES

• Individual birth and death rates are determined

by ecological interactions, which, in their turn,

depend in a complex way on many phenotypic

properties or dimensions.

• Phenotypic dimensions could be as diverse as

the molecular efficiency of photosynthesis, abil-

ity to retain water, and the height of trees.

• Even for single species, it is natural to study

evolutionary dynamics in high-dimensional phe-

notype spaces, where it is a fitness maximiza-

tion process but in a dynamic landscape.
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LOGISTIC MODEL

A simple evolutionary model for the simplest eco-

logical interaction, competition for resources,

∂N(x, t)

∂t
=rN(x, t)

1−
∫
α(x, y)N(y, t)dy

K(x)


+D∇2N(x, t).

N(x, t) is the density of individuals of d-dimensional

phenotype x ∈ Rd at time t, and K(x) is the carrying

capacity of a monomorphic population consisting

entirely of x-individuals.

The competitive impact of individual with pheno-

type y on individual with phenotypes x is given

by the competition kernel α(x, y), so that an x-

individual experiences an effective density∫
α(x, y)N(y, t)dy.
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Intuitive approximation: ADAPTIVE DY-
NAMICS

Consider a resident population that is monomor-

phic for trait x, which is at its ecological equilib-

rium K(x). The invasion fitness f(x, y) of a rare

mutant y is its per capita growth rate in the resi-

dent population x,

f(x, y) = 1−
α(y, x)K(x)

K(y)
.

The selection gradient s(x) = (s1(x), . . . , sd(x)) is

derived from the invasion fitness as

si(x) =
∂f(x, y)

∂yi

∣∣∣∣∣
y=x

= −
∂α(y, x)

∂yi

∣∣∣∣∣
y=x

+
∂K(x)

∂xi

1

K(x)
.
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We assume that the complexity of the interactions

between phenotypic components is contained in the

competition kernel α(x, y).

For example, it has linear and quadratic terms,

∂α(y, x)

∂yi

∣∣∣∣∣
y=x

= −
d∑

j=1

bijxj −
d∑

j,k=1

aijkxjxk

For the carrying capacity, we assume a simple sym-

metric form: K(x) = exp(−
∑
i x

4
i /4)

With these assumptions, the adaptive dynamics,

describing the evolution of the multidimensional

phenotype x, becomes

dxi
dt

=
d∑

j=1

bijxj +
d∑

j,k=1

aijkxjxk − x3
i , i = 1, . . . , d.
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CLASSES OF TRAJECTORIES
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PROBABILITY OF CHAOS
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UBIQUITY OF CHAOS

Trajectories of a generic non-linear confined system

become mostly chaotic for sufficiently large d (d ∼
10− 100)

I. Ispolatov, V. Madhok, S. Allende, and M. Doe-

beli, Chaos in high-dimensional dissipative dynam-

ical systems, Sci. Rep. 5, 12506, (2015), doi:

10.1038/srep12506.

Hence, for complex multidimensional phenotypes,

we expect even the simplest single-species evolu-

tionary trajectories to be chaotic.
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DIRECT SOLUTION OF LOGISTIC EQUA-
TION

Reconstructing the competition kernel from the se-

lection gradient

α(y,x) =

exp

 d∑
i,j=1

bijxj(xi − yi) +
d∑

i,j,k=1

aijkxjxk(xi − yi)

 ,

yields a single-species (monomorphic) evolutionary

dynamics similar to adaptive dynamics.

14



-1 -0.5 0 0.5

X
1

-0.5

0.0

0.5

1.0

X
2

-1 -0.5 0 0.5

X
1

-0.5

0.0

0.5

1.0

X
2

-1 -0.5 0 0.5

X
1

-0.5

0.0

0.5

1.0

X
2

15


video2.mov
Media File (video/quicktime)


video5.mov
Media File (video/quicktime)



ADAPTIVE DIVERSIFICATION

Adding a Gaussian term to the competition kernel

α(y,x) = exp

 d∑
i,j=1

bij(xi − yi)xj −
d∑

i=1

(xi − yi)2

2σ2
i

 ,
does not change the single-species adaptive

dynamics.

However, it leads to diversification, modeling

Sympatric speciation.
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MULTICLUSTER ADAPTIVE DYNAMICS

The ecological dynamics of the m clusters are given

by

dNr(t)

dt
= Nr(t)

(
1−

∑m
s=1α(xr,xs)Ns(t)

K(xr)

)
.

Selection gradient

sri =
∑
s
N∗s

− 1

K(xr)

∂α(xr′,xs)

∂x′ri

∣∣∣∣∣
x′r=xr

+

α(xr,xs)

K2(xr)

∂K(xr)

∂xri

)
.

Equations of motion

dxri
dt

= N∗r sri, i = 1, . . . , d, r = 1, . . . ,m.
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SIMULATION PROCEDURE

1. A system is initiated with randomly generated

coefficients for the competition kernel and ini-

tial clusters.

2. The ecological dynamics is integrated to get

new populations N∗r , r = 1, ...,m, small-population

clusters are eliminated.

3. The adaptive dynamics of the phenotypes of

clusters is advanced.

4. Nearby clusters are merged.

5. If the current number of clusters is below the

target one, a randomly chosen cluster is split

into halves, which are slightly offset from each

other.
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EQUILIBRIUM DIVERSITY

Increases exponentially with the phenotype dimen-

sion
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MONITORING EVOLUTIONARY SPEED

We defined average per capita evolutionary speed,

v =
m∑
r=1

Nr
√∑d

i=1(dxri/dt)
2∑m

r=1Nr
.

and averaged it over several time units.

• Stationary v < 10−5

• Non-stationary v > 10−5
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PROBABILITY OF NON-EQUILIBRIUM
DYNAMICS VS. NUMBER OF CLUSTERS
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AVERAGE EVOLUTIONARY SPEED VS.
NUMBER OF CLUSTERS
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EVOLUTIONARY SPEED VS. NUMBER
OF CLUSTERS FOR A SINGLE SYSTEM

For competition kernel width σ = 0.5 and dimen-

sions d = 3,4. Both systems exhibit non-stationary

single-cluster dynamics.
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EXAMPLES FOR σ = 0.5 and d = 3
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clusters_short500.mov
Media File (video/quicktime)


clusters_long2000.mov
Media File (video/quicktime)


fullIB.mov
Media File (video/quicktime)
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CONCLUSIONS

• Frequency-dependent ecological interactions can

generate complicated evolutionary trajectories

for multidimensional phenotypes that visit all

feasible regions of phenotype space in the long

run even if the external environment (given by

system parameters) is constant.

• Deterministically-chaotic evolutionary trajecto-

ries are intrinsically unpredictable on top of the

fundamental, quantum-mechanical stochastic-

ity of mutations.

• Saturated diversity exponentially grows with the

complexity (dimensionality) of phenotype

• Non-stationarity of evolution exhibits a hump-

like dependence on diversity: it first increases,

then drops.

• Punctuated equilibrium can be understood as

cycles of mutations (gene duplications), open-

ing up new dimensions, followed by repeated

periods of slow-fast-slow diversification.
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EAST LANSING, MICHIGAN—When most 

biologists want to understand how evolu-

tion unfolds, they look for clues in the fossil 

record or the natural world. Richard Lenski 

simply walks across his Michigan State Uni-

versity lab to his freezers. There, stored in 

4000 vials, are bacteria dating back to 1988. 

That was the year Lenski started a simple 

but radical experiment. He put samples of 

Escherichia coli into a sugar solution, stop-

pered the flasks, and waited to see what 

would happen. It was a study with no defi ned 

endpoint, so risky that he didn’t try very hard 

to get outside funding for it. 

After 25 years and 58,000 bacterial 

generations, Lenski’s bacteria are still 

growing, mutating, and evolving. They 

are proving as critical to understanding 

the workings of evolution as classic 

paleontology studies such as Stephen Jay 

Gould’s research on the pace of change in 

mollusks. Lenski’s humble E. coli have 

shown, among other things, how multiple 

small mutations can prepare the ground for 

a major change; how new species can arise 

and diverge; and that Gould was mistaken 

when he claimed that, given a second 

chance, evolution would likely take a 

completely different course. Most recently, 

the colonies have demonstrated that, 

contrary to what many biologists thought, 

evolution never comes to a stop, even in an 

unchanging environment. The work is “an 

absolutely magnifi cent achievement,” says 

Douglas Futuyma, an evolutionary biologist 

at Stony Brook University in New York. 

Other researchers have done experimental 

evolution, setting up populations of insects, 

yeast, and even f ish in the lab and in 

controlled fi eld conditions, and subjecting 

the organisms to a particular environmental 

stress for relatively short periods. But 

Lenski’s long-term experiment “is just orders 

of magnitude beyond what anyone else has 

done,” Futuyma says. 

The project’s quarter-century has 

witnessed the rise of bioinformatics and 

the birth of whole-genome sequencing, 

and Lenski has taken advantage of both 

technologies to glean new insights. 

Generations of students have tended and 

analyzed the microbes, and the project 

sparked a memorable conflict between 

Lenski and creationists. Fifteen years ago, 

he almost abandoned it for digital models 

of evolution, then reconsidered—and was 

vindicated when his bacteria took one of 

their most dramatic evolutionary leaps. As 

Time traveler. To turn back evolution’s clock, 
Richard Lenski dips into his freezer. 

The Man Who 

Bottled Evolution
Richard Lenski’s 25-year experiment in bacterial evolution 
shows no signs of running out of surprises about how 
mutation and selection shape living things

NEWSFOCUS

Published by AAAS
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