

The Mass of Dust in the Crab Nebula: RT Models with Smooth and Clumped Dust Distributions

DSLG2013 ESO Santiago Patrick J. Owen

Contents

- Introduction
- Herschel and Planck Observations of the Crab Nebula
- Issues with the dust mass calculations
- Developing a smooth model
- Extending the smooth model to different grain species
- What a difference a clump makes
- Conclusions

Introduction

- Sub-mm observations of high redshift galaxies have found vast amounts of dust
- Core Collapse Supernovae have been suggested as the source of dust
- Quantifying how much dust a supernova can produce is now very important
- Spitzer observations have been finding <10⁻³ M_☉ of warm dust; recent Herschel observations find 0.1 (Cas A)^[1] 0.5 M_☉ (SN1987A)^[2] of cold dust

[1] Barlow et al 2010 A&A [2] Matsuura et al 2011 Science

ESA Herschel and Planck Observations of the Crab Nebula

© ESA

4

Estimating the Dust Mass in the Crab

- Amorphous Carbon $0.11{\pm}0.01~M_{\odot}~^{[3]}$
- Silicates
 0.24±^{0.32}_{0.08} M_☉ ^[3]
- Previous estimates from Spitzer
 2.4x10⁻³ M_☉ of warm dust ^[4]

[3] Gomez et al 2012 ApJ [4] Temim et al 2012 ApJ

Issues with this estimate of the dust mass

- Fitted with only two temperature components
- Does not take into account grains of different sizes or the distribution of those sizes
- Assumes that the dust is uniformly distributed throughout the nebula

Building a radiative transfer model to estimate the dust mass using MOCASSIN^[5]

- Heats the dust radiatively rather than assuming temperature
- Varying grain size distribution
- Using different sets of optical properties
- Provides a diffuse photon source
- Using smooth, shell and clumpy density distributions

Ionisation in the Crab Nebula

- The Crab contains an inner pulsar wind nebula
- Photoionised rather than shock-ionised
- Diffuse photon source through the central 2/3 of the nebula
- Synchrotron spectrum from Hester 2006, modified to take in to account *Planck* sub-mm and mm observations

Geometry of the model

Determining Dust Mass Using MOCASSIN

Smooth models 0.1-0.3 M_☉ of amorphous carbon dust

Amorphous Carbon with Zubko 1^[7] optical constants

MRN77^[8] Standard Grain Size Distribution $a_{min} = 0.005 \ \mu m$ $a_{max} = 0.25 \ \mu m$ $n(a) \propto a^{-\alpha} (\alpha = 3.5)$ 0.11 M_o of dust

Fitting the Warm Dust Component - Varying amin

Grain Size Distribution $a_{min} = 0.07 \ \mu m$ a_{max} = 0.5 µm $\alpha = 3.5$ 0.18 M_{\odot} of dust Zubko 1 Amorphous Carbon optical constants

Fitting the Cold Dust Component - a_{max} and the power law of the grain size distribution

 $a_{min} = 0.07 \ \mu m$ $a_{max} = 1.0 \ \mu m$ $\alpha = 2.9$ $0.31 \ M_{\odot}$ of dust Zubko 1 Optical constants

Different Amorphous Carbon Optical Constants

Fitting with Amorphous Carbon with Zubko 2 optical constants

 $a_{min} = 0.07 \ \mu m$ $a_{max} = 0.2 \ \mu m$ $\alpha = 2.9$ $0.16 \ M_{\odot}$ of dust Zubko 2 Optical constants

Smooth Model Best Fit Results

	Amorphous Carbon			Silicate	Graphite
	Zubko 1	Zubko 2	Hanner		[9]
a _{min}	0.07 µm	0.07 µm	0.07 µm	0.07 µm	0.001µm
a _{max}	1.0 µm	0.2 µm	1.0 µm	1.0 µm	0.25 µm
α	2.9±0.1	2.9±0.1	2.9±0.1	3.5±0.1	3.0±0.1
dust	$0.31 \ M_{\odot}$	$0.16~M_{\odot}$	$0.30~M_{\odot}$	$0.46~M_{\odot}$	0.09 M⊙
mass	x ² =6.13	x ² =6.21	x ² =7.01	x ² =9.48	x ² =7.16

Different optical properties give very different dust masses

[9] Draine and Lee 1984 ApJ

Line Fluxes

- As well as fitting the SED, the model needs to fit the optical and IR emission line fluxes
- The smooth model (with $N_e = 50 \text{ cm}^{-3}$) fits H_β but not other lines
- Changing the density distribution will give a different ionisation structure

Shells: Smooth or Clumpy

All mass outside PVVN Photon sour $N_e = 50 \text{ cm}^{-3}$

Mass in clumps of radius 0.1 pc Filling factor of 0.1 Decreasing with r^2 N_e = 250 cm⁻³ 18

Results of Shell and Clumpy Models

	Amorphous Carbon			Silicate	Graphite
	Zubko 1	Zubko 2	Hanner		
Smooth	0.31 M⊙	0.16 M⊙	0.30 M⊙	0.46 M⊙	0.09 M⊙
	x ² = 6.13	x ² = 6.21	x ² = 7.01	x ² = 9.48	x ² = 7.16
Shell	0.27 M⊙	0.11 M⊙	0.27 M⊙	0.40 M⊙	0.08 M⊙
	x ² = 9.9	x ² = 9.7	x ² = 10.6	x ² = 11.3	x ² = 11.0
Clumpy	0.64 M⊙	0.48 M⊙	0.60 M⊙	1.5 M₀	0.4 M⊙
	x ² = 11.3	x ² = 11.5	x ² = 13.1	x ² = 14.4	x ² = 13.2

Different density distributions give very different dust masses

An Alternate View: Temim and Dwek 2013 arXiv:1302.5452

- Fitted a large number of modified black bodies for grain size/temperature distribution
- Central point source
- Zubko 2: 0.05 M $_{\odot}$ of dust with a distribution α = 3.5 over a range 0.001-1.0 µm

21

A MOCASSIN model with Temim and Dwek (2013) Parameters

Best Fit Results

Smooth models 0.1-0.3 M_o of amorphous carbon dust

Clumpy models 0.4-0.6 M_o of amorphous carbon dust

Conclusions

- Determining the dust mass using RT modelling gives higher dust masses than simple SED fits
- Different dust properties give very different dust masses
- Clumped dust density distributions give 2-3 times higher dust masses compared to smooth dust density distributions
- There is a large mass of dust in the Crab

Thank You

25

Silicates Best Fit - 0.46 M_{\odot}

Clumps Best Fits

