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Goals & Methods 

• Goal: Constrain conditions for planet formation 

– Spatial distribution of gas and dust 

– Physical conditions: Temperature, velocity, magnetic field structure 

 

• Specific questions 

– Global disk structure = f(time) 

– Small-scale structure,                                                                                                                     
e.g., induced by planet-formation or planet-disk interaction 

 

• Approach 

– Multi-wavelength observations with spatial resolution of ~0.1AU – 100AU 

– Modeling 
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Overview 

1. General remarks 

a) Multi-wavelength observations 

b) Spatially resolved disk images 

 

2. Exemplary studies 

a) Protoplanetary / Transitional Disks 

b) Debris disks 

 

3. Tracing proto-planets (if time allows) 
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General remarks 
 

a) Potential of multi-wavelength observations 
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From dust to planets 

~ 

[Beckwith et al. 2000] 

log a 
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From dust to planets 

~ 

log a 
0.1 µm 1 mm 1 m 1 km 

Particle size  
 

Observing wavelength 

_ 

 

• Spectral Energy Distribution 
 

 

• Scattered light polarization  
 

 

• Dust emission/absorption features 
 

 

• Multi-wavelength imaging 
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From dust to planets 

~ 

log a 
0.1 µm 1 mm 1 m 1 km 

Particle size  
 

Observing wavelength 

_ 

“Save” parameters:                                        
Total dust mass and Grain size                                                                                                             
derived from the (sub)mm (slope)                     
of the SED:  Fn ~ kn ~ l-b 

Underlying                                                      
assumption:                                                         
Optically thin disk 

 

 
l 

lFl 

1mm 100mm 
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Low-resolution SED / Disk structure 

Warm 

Disk ”atmosphere” 

Cold inner disk region 

(high optical depth) 
[Beckwith, 1999] 

Flaring:   Star can illuminate / heat disk more efficiently 
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Contribution of a 
possibly remaining  
circumstellar envelope 
(Scattering, 
Reemission, 
Absorption) 

 

SED analysis: Ingredients 
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Contribution of a 
possibly remaining  
circumstellar envelope 
(Scattering, 
Reemission, 
Absorption) 

Significant foreground 
extinction + Interstellar 
polarization 
(wavelength-
dependent) 

 

 

SED analysis: Ingredients 

HH 494 

CB 26 IRS 

[ courtesy of R. Launhardt ] 
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Contribution of a 
possibly remaining  
circumstellar envelope 
(Scattering, 
Reemission, 
Absorption) 

Significant foreground 
extinction + Interstellar 
polarization 
(wavelength-
dependent) 

Dust characteristics 
(absorption/emission) 

SED analysis: Ingredients 

8-13micron spectra of 27 T Tauri stars 

based on surveys by Przygodda et al. (2003) and                                 
Kessler-Silacci et al. (2004) using TIMMI2/3.6m, LWS/Keck 

[Schegerer, Wolf, et al., 2006] 

Shape of feature =  

f(Chemical Composition, Crystallization degree) 

  Grain Evolution 

  Physical Conditions 

Prominent Example: ~10um Silicate Feature 
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Contribution of a 
possibly remaining  
circumstellar envelope 
(Scattering, 
Reemission, 
Absorption) 

Significant foreground 
extinction + Interstellar 
polarization 
(wavelength-
dependent) 

Dust characteristics 
(absorption/emission) 

Characteristics of the 
illuminating/heating 
sources (stellar 
photosphere, 
accretion, single star 
vs. binary) 

SED analysis: Ingredients 

8-13micron spectra of 27 T Tauri stars 

based on surveys by Przygodda et al. (2003) and                                 
Kessler-Silacci et al. (2004) using TIMMI2/3.6m, LWS/Keck 

[Schegerer, Wolf, et al., 2006] 

Shape of feature =  

f(Chemical Composition, Crystallization degree) 

  Grain Evolution 

  Physical Conditions 

Prominent Example: ~10um Silicate Feature 
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SED analysis: Conclusions 

Proper analysis of multi-wavelength observations require 

 

• Radiative Transfer Simulations 

– Detailed numerical modeling taking into account                                          
absorption / heating / reemission + scattering processes 

– Our approach: Monte-Carlo Method 

 

• Proper Fitting Techniques                                                                                                   
Our approaches 

– Database fitting 

– Simulated annealing (Kirkpatrick et al. 1983) 

• Modification of Metropolis-Hastings algorithm for optimization 

• Implementation independent of problem dimensionality 

• Local optima overcome inherently 
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SED analysis: Conclusions 

http://www.astrophysik.uni-kiel.de/~star 
[Wolf et al. 1999; Wolf 2003] 
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SED analysis: Conclusions 

 

but 

SEDs can be well reproduced, but not unambiguously 

 Information about spatial brightness distribution required: 

– Spatial disk structure                                                                                             
(e.g., inner/outer radius, radial scale height distribution) 

– Spatial distribution of Dust parameters (composition, size) and                           
Gas phase composition/excitation 

 

Note: 

Appearance of circumstellar disks determined by both,  

its Structure (density distribution) and Dust properties  
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General remarks 
 

b) Spatially resolved images 
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Requirements – HST, AO, Interferometry 

ALMA 

VLTI 

CARMA 

SMA 

IRAM 

Keck Interferometer 
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Optical/IR 
 

Wavelength-
dependence of the 
apparent vertical 
extent of the disk 

 
 Vertical opacity    

structure 
 

 Constraints on 
grain size in upper 

disk layers                          
(dust settling?) 

 
Approximate disk size 

(dust) 
 

Disk flaring 
 

Edge-on disks 

Cold interior 

Warm  
„atmosphere“ 

HK Tau 

IRAS 04302+2247 

IRAS 18059-3211 
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(Sub)mm 
 

Wavelength-
dependence of the 
radial brightness 

distribution 
 

 Radial disk 
structure 

  
 Radial distribution            

of dust grain 
properties; 

Abundance / 
Excitation of gas 

 
 Large inner gap? 

 
 Velocity structure 

(gas) 
 

Edge-on disks 

Cold interior 

Warm  
„atmosphere“ 

IRAS 04302+2247 

HH 30 

[Wolf et al. 2008] [Guilloteau et al. 2008] 
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Face-on disks 

Optical / IR 

Wavelength-dependence of the radial brightness distribution 

 Disk:  

 Flaring; Surface structure (local scale height variations) 

 Dust:   
 Scattering properties (scattering phase function) in different layers 
 Chemical composition = f (radial position); e.g., silicate annealing 

 

AB Aurigae - Spiral arm structure                                              
(Herbig Ae star; H band; Fukagawa, 2004) 

Cold interior 

Warm  
„atmosphere“ 
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Face-on disks 

(Sub)mm 

Radial/azimuthal disk structure 

 
  Asymmetries, Local density enhancements 
  Gaps, Inner dust-depleted regions 

 

Cold interior 

Warm  
„atmosphere“ 

[ Brown et al. 2009: 340GHz, continuum ] 

rin=40AU 

rin=27AU 

rin=37AU 
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Exemplary studies 
 

a) Protoplanetary / Transitional disks 
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• Wavelength-
dependence of 
the dust lane 
width 
 

• Relative change 
of the brightness 
distribution from 
1.1mm-2.05mm 
 

• Slight symmetry                      
of the brightest 
spots 

 

IRAS 04302+2247 („Butterfly star“) 

[Padgett et al. 1999] 
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• Wavelength-
dependence of 
the dust lane 
width 
 

• Relative change 
of the brightness 
distribution from 
1.1mm-2.05mm 
 

• Slight symmetry                      
of the brightest 
spots 

 

IRAS 04302+2247 („Butterfly star“) 

[Wolf et al. 2003] 

1.10 mm 

6.4” x 6.4” 
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• Wavelength-
dependence of 
the dust lane 
width 
 

• Relative change 
of the brightness 
distribution from 
1.1mm-2.05mm 
 

• Slight symmetry                      
of the brightest 
spots 

 

IRAS 04302+2247 („Butterfly star“) 

[Wolf et al. 2003] 

6.4” x 6.4” 

1.10 mm 

 

1.60 mm 
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• Wavelength-
dependence of 
the dust lane 
width 
 

• Relative change 
of the brightness 
distribution from 
1.1mm-2.05mm 
 

• Slight symmetry                      
of the brightest 
spots 

 

IRAS 04302+2247 („Butterfly star“) 

[Wolf et al. 2003] 

1.10 mm 

 

1.60 mm 

 

1.87 mm 

 

6.4” x 6.4” 



27 

• Wavelength-
dependence of 
the dust lane 
width 
 

• Relative change 
of the brightness 
distribution from 
1.1mm-2.05mm 
 

• Slight symmetry                      
of the brightest 
spots 

 

IRAS 04302+2247 („Butterfly star“) 

[Wolf et al. 2003] 

1.10 mm 

 

1.60 mm 

 

1.87 mm 

 

2.05 mm 

6.4” x 6.4” 
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J band polarization map:  

Linear Polarization: Up to 80% 

 

[Lucas & Roche 1997] 

 

• Conclusion:  

 Optically thin (upper) disk layers + 
 envelope dominated by ISM-type grains 

 

• Disk reemission 

– Constraints on disk interior 

– Early measurement with OVRO: 

IRAS 04302+2247 („Butterfly star“) 

1.3mm, 600AU x 600AU 

[Wolf et al. 2003] 

 

Confirmation of 
different dust evolution 
in the shell vs. disk 

Dust grains with radii               
up to ~100mm                            
in the circumstellar disk! 
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IRAS 04302+2247 („Butterfly star“) 

• Verification of the previous analysis 

1360mm 894mm 

[Wolf et al. 2003, 2008] 
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IRAS 04302+2247 („Butterfly star“) 

[Wolf et al. 2003, 2008] 

 

894mm 

IRAM / PdBI: 1.3mm, continuum 

 [Gräfe, Wolf, et al., in prep.] 
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IRAS 04302+2247 („Butterfly star“) 

894mm 

IRAM / PdBI: 1.3mm, continuum SMA: 0.89 mm, continuum 

+ HST/NICMOS 

[Wolf et al. 2008] 

 

 [Gräfe, Wolf, et al., in prep.] 
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IRAS 04302+2247 („Butterfly star“) 

• New observations – Reduction of Degeneracies – New Constraints 

 [Gräfe, Wolf, et al., in prep.] 
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IRAS 04302+2247 („Butterfly star“) 

• New observations –  

 Reduction of Degeneracies –  

 New Constraints 

 [Gräfe, Wolf, et al., in prep.] 
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IRAS 04302+2247 („Butterfly star“) 

• New observations –  

 Reduction of Degeneracies –  

 New Constraints 

0.89mm 

1.3mm 

 [Gräfe, Wolf, et al., in prep.] 
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IRAS 04302+2247 („Butterfly star“) 

 [Gräfe, Wolf, et al., in prep.] 
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Observations 
considered 
 
HST NICMOS NIR 
imaging 
 
Submm single-dish: 
SCUBA/JCMT,                   
IRAM 30m 
 
Interferometric mm 
cont. maps: 
SMA (1.1mm), OVRO 
(1.3/2.7mm) 
 
SED, including IRAS, 
ISO, Spitzer  

 

CB 26 

[Sauter, Wolf et al. 2009] 
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CB 26 

Main Conclusions 

• Dust  

– ISM dust grains in the envelope and „upper“ disk layers 

– Dust grains in the disk midplane only slightly larger than in the ISM  

• Disk 

– Inner disk radius: ~ 45 +/- 5 AU 

 
[Sauter, Wolf et al. 2009] 
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HH30 

Observation 
IRAM interferometer, 1.3mm,                    
beam size ∼0.4” 
 
Results 
Disk of HH30 is truncated at an inner 
radius 37 ± 4 AU 

 
 

Interpretation 
• Tidally truncated disk surrounding a 

binary system (two stars on a low 
eccentricity, 15 AU semi-major axis 
orbit) 
 

• Additional support for this 
interpretation: Jet wiggling due to 
orbital motion 
 

• The dust opacity index, β ≈ 0.4, 
indicates the presence of cm size 
grains (assuming that the disk is 
optically thin at 1.3mm) 

[Guilloteau et al. 2008] 
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HH30 

[uv coverage] 

Fitting of  
a) reconstructed map 
b) uv data 

[Madlener, Wolf, et al., subm.] 

Resulting inner radius: 50 +/- 10 AU 



40 

HH30 

HH 30 PSF Reference 

[based on observations published  
by Cotera et al. 2001] 
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HH30 

HH 30 PSF Reference 

[based on observations published  
by Cotera et al. 2001] 

[Madlener, Wolf, et al., subm.] 
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HH30 

Observations New Model 

[based on observations published  
by Cotera et al. 2001] 

[Madlener, Wolf, et al., subm.] 
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HH30 

Spatially resolved 
millimeter images reveal 
large inner hole 
 
but 
Combination with SED 
(and constraints from 
scattered ligt images) 
show that inner region               
is not entirely cleared 

[Madlener, Wolf, et al., subm.] 
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GM Aurigae 

Goal 

Direct imaging of                
the inner disk rim              
of transitional disks 

 

Technique 

VISIR (N band) imaging 

 

Targets 

GM Aur,                        
DH Tau,                              
DM Tau 

Observed flux residuals of GM Aur  

[Gräfe, Wolf, et al., 2011] 
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GM Aurigae 

Results 

• Transitional disk 
around GM Aur 
spatially resolved 

• Inner disk radius: 
20.5(+1.0,-0.5) AU 

 

• Disks around DH Tau 
and DM Tau not 
spatially resolved 
(consistent with 
literature values) 

– DH Tau  

      <15.5 (+9.0,-2.0) AU 

– DM Tau  

      <15.5 (+0.5,-0.5) 
Modeled flux residuals of GM Aur  

[Gräfe, Wolf, et al., 2011] 
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Inner disks – Open questions 

Hypotheses / Theoretical model to be tested 
– Accretion: Viscosity, Angular momentum transfer, Accretion geometry on star(s) 

– Snow-line (location / surface density profile) 

– Planets: Luminosity, induced gaps 

– Puffed-up inner rim and associated shadowed region 

– Gas within the inner rim 

– Gas-to-dust mass ratio; Empty(?) holes in transition disks 
 

The general context (exemplary questions): 
– How do inner and outer disk relate to each other? 

– Where and when do planets form? 

 

Required 
 Empirically-based input  to improve our general understanding and thus to better constrain 

planet formation / disk evolution models 

 

Approach 
Imaging the inner disk 
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Mid-IR Spectro-Interferometry 

• Goal 

– Spectrally resolved (R=30) N band visibilities for various T Tauri disks 

– MIDI: l/B  1AU @ 140pc with B ≤ 130m 

 
• Results 

– SED (global appearance of the disk) + spectrally  resolved visibilities can be 
fitted simultaneously 

– Best-fit achieved in most cases with an active accretion disk and/or envelope 
– Decompositional analysis of the 10mm feature confirms effect of Silicate 

Annealing in the inner disk (~ few AU) 
 

• References 
– Schegerer, Wolf, et al. 2008, A&A 478, 779   „The T Tauri star RY Tauri as a case 

study of the inner regions of circumstellar dust disks “ 
– Schegerer, Wolf, et al. 2009, A&A, 502, 367  „Tracing the potential planet-

forming region around seven pre-main sequence stars“ 
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Limitation of two-beam interferometers 

• Goal:                                                                  
True surface brightness profile                       
of circumstellar disks 

 

• Problem 
– Two-telescope interferometers: “Mean” 

disk size & approximate disk inclination 

– Assumption: Iso-brightness contours are 
centered on the location of the central star 

 

• Solution 
– MATISSE: Multi-AperTure Mid-Infrared 

SpectroScopic Experiment 

– Second generation VLTI beam combiner 

– L, M, N bands: ~ 3 – 13 mm 

– Spectral resolution: 30 / 100-300 / 500-
1000 

– Simultaneous observations in 2 spectral 
bands 

 

Simulated 10μm intensity map of the 
inner 30AU×30AU region of a circum-
stellar T Tauri disk at an assumed 
distance of 140 pc; inclination: 60◦.  
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MATISSE / Circumstellar disks 

[ Wolf et al. 2007 ] 

10mm image of a circumstellar disk                           
with an inner hole; radius 4AU                                

(inclination: 60°; distance 140pc;  
inner 60AU x 60AU) 
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MATISSE / Circumstellar disks 

[ Wolf et al. 2007 ] 

Hot Accretion Region            
around Proto-Planet 

inclination: 0° 
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Exemplary studies 
 

b) Debris disks 
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Problems with SEDs 

[ Kim et al. 2005 ] 

Weakly 
constrained 
dust 
properties 
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HD 107146 

• G2 V, 28.5pc 

• Spatially resolved maps 
– HST/ACS (F606W) 

– HST/NICMOS (F110W,F814W) 

– CARMA (1.3mm) 

• SED 
– 3.5mm - 3.1mm 

– in particular: Spitzer / IRS (7.6mm - 37mm) 

 

• Approach:                                                          
Simultaneous fitting of images and SED 

• Fitting tool: SAnD 
– Simulated annealing minimization scheme 

– Fast: finds fit among ~1011 models in ~70 hours 

– Large number of free parameters possible 

– Limited initial constraints on disk physics 

 

 

Observations 

 

 

 

 

 
 

 
Modeling 

[ Ertel, Wolf, et al. 2011 ] 
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HD 107146 

• Broad disk, not a narrow ring                                           

(surface density: FWHM = 91 AU,                                         

peak radius = 131 AU) 

 

• Radial density distribution: No simple power-law 

F606W 

Blue: Observation 

Solid:   Power-law 

Dashed line:  

   Density  ~  f(ra)  f(exp(r)) 

F606W F814W 

HST/ACS 

[ Ertel, Wolf, et al. 2011 ] 
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HD 107146 

• Consistent mass estimate from scattered light data and 

millimeter measurements (6.4+/-0.3 x 10-7 MSun) 

 

• Large lower grain size (5 x expected blow-out size), 

robust against uncertainties in model parameters 

 

F606W 

Blue: Observation 

Solid:   Power-law 

Dashed line:  

   Density  ~  f(ra)  f(exp(r)) 

F606W F814W 

HST/ACS 

[ Ertel, Wolf, et al. 2011 ] 
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HD 107146 

[Contours start at -1σ (white, dashed) and 1σ (black, solid) and have increments of 1σ, 
respectively, where 1σ = 0.35 mJy/beam] 

 
Model subtraction: In u-v domain 

 
Two peaks: Artefacts of image reconstruction 

 

CARMA, 1.3mm (Corder et al. 2009) (our) Model image Observation - Model 

[ Ertel, Wolf, et al. 2011 ] 
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Porous grains: Blow-out size 

Porous grains in 
the Solar system 

 

• T = 5777K, 
Astrosilicate 

 

• amin = 0.45 μm 

 

[Kirchschlager & Wolf, in prep.] 



58 

Porous grains: Blow-out size 

Porous grains in 
the Solar system 

 

• T = 5777K, 
Astrosilicate 

 

• amin = 0.45 μm 

 

But for  

• Hole size         
H = 1/100 

• amin = 0.74μm 
for P=0.5 

[Kirchschlager & Wolf, in prep.] 
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q1 Eri 

• Stellar parameters 
– Spectral type: F8 

– Distance : 17.4 pc 

– Age : ~ 2 Gyr 

 

• Planet                                                                                                                                    
(Mayor et al. 2003, Butler et al. 2006) 
– M sin i: 0.93 MJupiter 

– Semi-major axis: 2.03 AU 

– Eccentricity : 0.1 

 

• Dust ring 
– IRAS, ISO and Spitzer: cold dust; L ~ 1000 L(Kuiper Belt) 

– Sub-mm APEX/LABOCA images:                                                                                                   
Disk extent up to several tens of arcsec (Liseau et al. 2008) 

– HST images suggest a peak at 83 AU (4.8”, Stapelfeldt et al., in prep.) 

 

HERSCHEL/PACS 

[LISEAU et al. 2010] 
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q1 Eri 

• Herschel observations (Key project DUNES): 

 

 

 

 

 

 

 

 

 
– Disk spatially resolved at all PACS wavelengths 

– Disk marginally resolved along the minor axis: inclination > 55° 

 

• Detailed simultaneous modeling of the SED and PACS images required       
to unveil the disk structure, dust properties and dynamical history 
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q1 Eri 

No initial constraints on outer disk radius 

 

 

Best fit (cr
2 = 1.24): 

 

• Dust disk : 

– Mass : 0.05 MEarth 

– Surface density: r+0.9 

– Disk extent: 17-210 AU 

 

• Grain properties: 

– 50-50 silicate-ice mixture 

– Minimum grain size ~ 0.7 mm 

– Size distribution:  -3.3 power law index 

 

Fit to the SED 

Fit to the PACS 

Radial Profiles 
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q1 Eri 

Constraint:  

Fixed outer disk radius to large value (600AU) 

 

Best fit (cr
2 = 1.4): 

 

• Dust disk : 

– Mass : 0.055 MEarth 

– Surface density: r -2 

– Belt peak position: 75-80 AU 

 

• Grain properties: 

– 50-50 silicate-ice mixture 

– Minimum grain size ~ 0.4 mm 

– Size distribution:  -3.3 power law index 

 

Fit to the SED 

Fit to the PACS 

Radial Profiles 



63 

Tracing proto-planets 
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Tracing gaps with ALMA 

Jupiter  
in a 0.05 Msun disk 

around 
a solar-mass star 

as seen with ALMA 

d=140pc 

Baseline: 10km 

l=700mm, tint=4h 
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Local environment of proto-planets 

[ D’Angelo et al. 2002 ] 

[ Wolf & D’Angelo 2005 ] 

Density Structure 
 

Stellar heating  
 

Planetary heating  
 

Prediction of Observation 

Procedure 
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Tracing proto-planets with ALMA 

• Mplanet / Mstar   =   1MJup / 0.5 Msun 

 
• Orbital radius:   5 AU 

 
• Disk mass as in the circumstellar disk            

around the Butterfly Star in Taurus 
 

• Observing conditions 
– Maximum baseline: 10km 
– 900GHz 
– Integration time = 8h 
– Random pointing error during the 

observation: (max. 0.6”) 
– Amplitude error, “Anomalous” refraction 
– Continuous observations centered on the 

meridian transit 
– Zenith (opacity: 0.15); 30° phase noise 
– Bandwidth: 8 GHz 

 
 
 
 

50 pc 

100 pc 

[ Wolf & D’Angelo 2005 ] 
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Shocks & MRI 

• Strong spiral shocks near the 
planet are able to decouple 
the larger particles (>0.1mm) 
from  the gas 

 

• Formation of an annular gap                       
in the dust, even if there is 
no gap  in the gas density.  

 

[PaardeKooper & Mellema 2004] 

Gas Dust 

Log Density in MHD simulations after 100 planet orbits for planets 

with relative masses of q=1x10-3 and 5x10-3 [Winters et al. 2003] 

• MHD simulations - gaps are 
shallower and 
asymmetrically wider; rate of 
gap formation is slowed 

 

Observations of gaps will 

allow to constrain the 

physical conditions in 

circumstellar disks 
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Multi-wavelength search for disk structures 

 K band scattered light image (Jupiter/Sun + Disk) 
[Disk radius: 20AU] [Wolf, 2008] 
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Multi-wavelength search for disk structures 

 K band scattered light image (Jupiter/Sun + Disk) 
[Disk radius: 20AU] [Wolf, 2008] 

AB Aurigae 

Spiral arm structure: H band                                               

(Herbig Ae star; SUBARU) 

Distance: ~140 pc 

[Fukagawa et al. 2004] 
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 K band scattered light image (Jupiter/Sun + Disk) 
[Disk radius: 20AU] [Wolf, 2008] 

Multi-wavelength search for disk structures 

AB Aurigae  

Asymmetry (Color: 24.5mm, Contours: H Band)                                               

(Herbig Ae star; SUBARU) 

Distance: ~140 pc 

[Fujiwara et al. 2006] 
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 K band scattered light image (Jupiter/Sun + Disk) 
[Disk radius: 20AU] [Wolf, 2008] 

Multi-wavelength search for disk structures 

AB Aurigae  

Spiral (345 GHz, continuum)                                               

(Herbig Ae star; SMA) 

Distance: ~140 pc 

[Lin et al. 2006] 
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Gaps: The importance of multi-l observations 

[Sauter & Wolf 2011] 

N band 

Gaps as indicators for dust 
sedimentation height 
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Tracing planets in debris disks: Imaging required 

[ Moro-Martin, Wolf, & Malhotra 2005 ] 
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[ Moro-Martin, Wolf, & Malhotra 2005 ] 

First guess 
Planets of different mass 
at similar orbit 

Tracing planets in debris disks: Imaging required 
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[ Moro-Martin, Wolf, & Malhotra 2005 ] 

First guess 
Planets of different mass 
at similar orbit 

Solution 
Planets of same mass at 
different orbits 
 
Important: Influence of 
optical dust properties 

Tracing planets in debris disks: Imaging required 
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What comes next? 

• Multi-wavelength / Multi-scale intensity measurements 

– Inner (<10AU) disk structure: Test of disk / planet formation evolution models 

– Distribution of gas species 

 

• Polarimetry  

– High-contrast observing techniques 

– Break degeneracies, Magnetic field measurement 

 

• Near-future goal: Planet-disk interaction 

– Usually much larger in size than the planet 

– Specific structure depends on the evolutionary stage of the disk 

– High-resolution imaging performed with observational facilities                              
which are already available or will become available in the near future                       
will allow to trace these signatures. 
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What comes next? 

• Self-consistent modeling of dust / gas density & temperature distribution 

 

• Dust properties = f(r,z) 

 

• Additional, independent observables 

Examples: 

– Polarization: High-angular resolution 

– ALMA: High-angular resolution maps 

– ALMA: Submm-wavelengths 

– ALMA: Gas 
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And hopefully soon … 

Thank you. 

ALMA 


