Metallicity of solar-type stars with debris discs and planets (A&A in press, arXiv:1202.5884)

Jesús Maldonado, Carlos Eiroa, Eva Villaver

23/03/2012

OPSII - Santiago - 2012 March - Eiroa

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

Outline

- Introduction
- Motivation + Sample
- Bias?
- Data
- [Fe/H] distributions
- Dust luminosity versus [Fe/H] and planet eccent.
- Conclusions

Introduction

Debris discs around MS stars are, strictly speaking, the signatures of planetesimal systems

- they are produced by collisions from such solid bodies

Spitzer: ~16% of solar-type stars host a debris disc (e.g. Trilling et al.2008)

- Herschel: ≥ 25 % (DUNES FGK stellar sample)

Concerning planets (Mayor et al. 2011):

 $\begin{array}{rll} - 50\% \mbox{ of solar-type stars harbor at least one planet} & of any mass with periods up to ~ 100 days \\ - ~ 14\% \mbox{ of this type of stars have planets with} & M_P \gtrsim 50 \ M_\oplus & \mbox{ and } P < \ 10 \ years \end{array}$

HD 207129 as seen with Herschel, Marshall et al. (2011), Löhne et al. (2012)

Introduction

If planetesimals are the raw material to form debris discs and are needed to form planets ("building blocks"), it might be expected that their host stars have, somehow, similar properties

- e.g. it is well known the trend of higher [Fe/H] of stars hosting gas giant planets, but no for low mass planets (\leq 30-40 M_{\oplus}), what about stars with debris discs?

Introduction

Several works dealing with this issue:

-Incidence of debris discs not higher around stars with planets than around stars with no (detected) planets

-There is no apparent trend of the incidence of discs with the stellar metallicity or any other stellar property.

- But results based on a small number of stars with both discs and planets

> e.g. Kóspal et al. (2009) list 19 solar-type MS stars

23/03/2012

Motivation

We have re-visited the analysis of the properties of stars with discs and planets because:

- 29 solar-type stars are now known with both debris discs and planet(s)
 - > 50% increase wrt previous analysis
 - > in particular, stars hosting low-mass planets

(*) we do not include Herschel results

Sample

For the analysis, three categories of solar-type (F5-K3) stars are distinguished (selected from works dealing with IR excesses from IRAS, ISO and SPITZER):

- Stars with discs (SWDs) (no known planet): 107 stars
- Stars with planets (SWPs) (no known disc): 120 stars
- Stars with discs and planets (SWDPs): 29 stars

Control sample:

- Stars without discs and planets (SWODs): 145 stars
 - Discs with Ldust/Lstar < 10E-5 (~ Spitzer lower limit) could be included</p>
 - Planets not discovered yet

Bias?

First aim: metallicity distribution of our samples

In particular, need of checking the SWDs and SWODs sample because of different age and distance ranges

	SWDs			SWODs		
	Range	Mean	Median	Range	Mean	Median
Distance (pc)	3.6/134	32.0	24.6	5.8/53	24.1	20.6
log[Age (yr)]	7.2/9.9	9.0	9.0	7.6/9.9	9.2	9.6
SpType (%)	45.8 (F); 34.6 (G); 19.6 (K)			42.8 (F); 44.8 (G); 12.4 (K)		

- We do not find any significant chemical evolution (Fe enrichment of the ISM) due to Type I and II supernovae for the age range of both samples which can affect the [Fe/H] distribution
- We do not find any bias introduced by the distance

Spectroscopic Data

- High resolution spectra of stars up to 25 pc from Maldonado et al. (2010):

FOCES (2.2 m, Calar Alto), SARG (TNG, La Palma), FIES (NOT, La Palma) + S⁴N and ESO archives

- Stellar parameters using the code TVG (Takeda et al. 2002)
- Comparison with other works of our metallicity estimates to extend the analysis to the whole range of distances
- All metallicities values in the same metallicity scale

[Fe/H] distribution: SWDs versus SWODs

OPSII - Santiago - 2012 March - Eiroa

SDWPs: characteristics

- 29 solar-type SWDPS:	HD	SpType	[Fe/H] [†] (dex)	Ref [‡]	Planet'
	142	F7V	0.09 (b)	9:	gc
	1461	G0V	0.18 (b)	11	mlh
11 store (2001) hast multiplanet systems	10647	F8V	-0.09 (a)	3	gc
- IT Stars (38%) nost multiplanet systems	19994	F8V	0.19 (a)	8	gc
> 14% (maybe up to 28%) for all stars with planets	20794	G8V	-0.34 (a)	10	mlc
	22049	CAV.	-0.08 (a)	1	gc
(Wright et al. 2009)	38858	G4V	-0.27 (a)	4	1c
$\sim 70\%$ multiplanat systems in case of low mass	40979	F8	0.13 (b)	10:	gc
10% multiplanet systems in case of low-mass	45184	G2V	0.03 (b)	11	lh
planets, $M_{\rm p}$ < 30 M $_{\odot}$ (Mayor et al. 2011)	46375	K1IV	0.23 (b)	10:	gh
	50499	G1V	0.29 (b)	10:	gc
(in our case, 5 stars with low-mass multiplanet systems)	50554	F8	-0.09 (b)	8	gc
	52265	G0V	0.18 (b)	8	gc
	69830	KOV	0.00 (a)	2	mlh
- 22 stars host only das_diant planets	73520	GOV	0.22 (0)	10:	mgc
- 22 stars nost only gas-giant planets	104067	K2V	0.23 (0) 0.04 (b)	11	ac
 Most of them are cool Jupiters 	108874	G5	0.17 (b)	12	mgc
	115617	G5V	0.00 (a)	8	mlh
- 2 systems with a < 0.1 AU	117176	G5V	-0.03 (a)	8	gc
	128311	K0	0.04 (a)	8	mgc
- 5 systems with a < 0.5 AU	130322	KOV	-0.07 (b)	12	gh
7 store bost at loast one low mass planet	1/8911B	GOV	0.29 (6)	10:	gc
-7 stars nust at least une iuw=mass planet	102263	K2	-0.01 (a)	5	ge
- ΔII but 2 with a < 0.1 ΔII	202206	GOV	0.36 (b)	10	mgc
	215152	KO	-0.10 (c)	11	mlh
- All but one with [Fe/H] ≤ 0.0	216435	G3IV	0.24 (b)	10	gc
consistent with e.g. Mayor et al. 2011.					
Sousa et al. 2011					

SWDPs: [Fe/H] distribution

[Fe/H] distribution: Summary

- Transition toward higher metallicity from SWDOs to SWPS
- SWODs and SWDs similar [Fe/H] distribution, but a "deficit" of SWDs at low [Fe/H]
- SWDPs clearly distinct from SWDs but similar to SWPs
 - planets is the key ingredient conforming the [Fe/H] behaviour of the SWDPs

- Trends consistent with core-accretion models (e.g Pollack et al. 1996) and with the view that the mass of solids in proto-planetary discs is the main factor determining the formation of planets and planetesimals (e.g. Moro Martín et al. 2007, Greaves et al. 2007)

23/03/2012

Dust luminosity versus [Fe/H]

- SWDPs span ~ 2 orders of magnitude in L_{dust}/L_{star} and are well mixed with SWDs

-SWDPs hosting cool giant planets tend to have low L_{dust}/L_{star} (< 10⁻⁴)

>50% concentrated in the low L_{dust}/L_{star} - high [Fe/H] corner

Dust luminosity versus planet eccentricity

- There seems to be an anticorrelation between the (innermost) planet eccentricities and the luminosity of the debris discs

> (although with a large scatter)

Eccentricity

- No other correlation/trends between planets and debris discs are apparent

23/03/2012

L_{dust}/L_{star} – eccentricity

-Simulations of dynamical instabilities in a disc produced by eccentric giant planets, which clear out the inner and outer regions of the planetary discs, result in an anticorrelation between the disc luminosities and the planet eccentricities (Raymond et al. 2011)

 Such scenario is very attractive to explain the observed apparent behaviour between the disc luminosities versus both the stellar [Fe/H] and the planet eccentricities

23/03/2012

Conclusions

- We find a transition toward higher [Fe/H] from SWODs to SWPs
 - SWDs have similar [Fe/H] as SWDOs, but there might be a deficit of SWDs at low metallicities
 - SWDPs behave as SWPs, irrespective if the planets are low-mass or gas giants
- SWDPs show a high rate of multiplanet systems
- Most of the known SWDPs host cool Jupiters
 - (bias against low-mass planet detections?)
- SWDPs hosting cool giant planets tend to have low L_{dust}/L_{star}
- -There might exist an anticorrelation between the L_{dust}/L_{star} and the planet eccentricity

-These conclusions might change/be modulated by Herschel and further detections of planets

23/03/2012

Biases?

	SWDs			SWODs		
	Range	Mean	Median	Range	Mean	Median
Distance (pc)	3.6/134	32.0	24.6	5.8/53	24.1	20.6
log[Age (yr)]	7.2/9.9	9.0	<mark>9.</mark> 0	7.6/9.9	9.2	9.6
SpType (%)	45.8 (F); 34.6 (G); 19.6 (K)			42.8 (F); 44.8 (G); 12.4 (K)		

Fig. 2. [Fe/H] versus age for the stars in the SWODs (black crosses) and in the SWDs (blue asterisks) samples.

23/03/2012

19

OPSII - Santiago - 2012 March - Eiroa