

Statistical decoupling of viewing angle
 Sebastián López \& James S. Jenkins
 DAS, Universidad de Chile
 slopez@das.uchile.cl

1. Contribution

We present a method to statistically decouple the effects of unknown inclination angles on the mass distribution of exoplanets that have been discovered using radial-velocity (RV) techniques. The method can be used in two directions:

1. from the observed mass distribution recover the true-mass distribution, or
2. assume a true-mass distribution and recover a prediction for the observed distribution

2. Background

The planetary mass distribution is a key aspect needed to understand the origin of exoplanets. Currently, RV detections (e.g. [5, 1, 3]) have provided the largest sample of unconstrained systems. However, the RV technique does not provide planet masses directly, but 'minimum' masses, $M_{\text {obs }}=M_{\mathrm{T}} \sin i$, where i, the line-of-sight inclination angle, and M_{T}, the 'true' planet mass, are not known a priori.

3. The problem...

Given an analytical model of the empirical minimum-mass distribution constructed from observation, is it possible to recover the true mass distribution by assuming a random distribution of inclination angles?

4. ...and our concept

Since one is after mass distributions, we have developed a formalism that treats the above quantities as continuous random variables and works on their probability density functions (PDF). Let X, Y, and Z be random variables, such that

- $X=\left\{M_{\text {obs }}\right\}$ represents the ensemble of observed masses,
- $Y=\left\{(\sin i)^{-1}\right\}$ represents the ensemble of correction factors, and
- $Z=X Y$ describes an ensemble of corrected masses.

Let also f_{X}, f_{Y}, and f_{Z} be their respective PDF. We wish to obtain f_{Z} (the distribution of true masses), given that both f_{X} (the fit to the observed minimum-mass distribution) and f_{Y} (the distribution of correction factors) are known [4].

References

[1] Butler, R. P. et al. 1996, PASP, 108, 500
[2] Glen, A. G. et al. 2004. "Computing the distribution of the product of two continuous random variables," Computational Statistics \& Data Analysis, Elsevier, vol. 44(3), pages 451-464.
[3] Jones, Hugh R. A. et al. 2010, MNRAS, 403, 1703
[4] Lopez, S. \& Jenkins, J. S. 2012, submitted
[5] Mayor, M. et al. 1983, A\&AS, 54, 495

5. Solution

Using the formalism in [2], the PDF of the product of X and $Y, f_{Z}(z)$, can be expressed as

$$
f_{Z}(z)= \begin{cases}\int_{m_{\min }}^{z} f_{Y}\left(\frac{z}{u}\right) f_{X}(u) \frac{1}{u} d u, & m_{\min }<z<m_{\min } / \sin i_{\min } \tag{1}\\ \int_{z \sin _{i_{\min }}}^{m_{\max }} f_{Y}\left(\frac{z}{u}\right) f_{X}(u) \frac{1}{u} d u, & m_{\min } / \sin i_{\min }<z<m_{\max } \\ \int_{z \sin } f_{Y}\left(\frac{z}{u}\right) f_{X}(u) \frac{1}{u} d u, & m_{\max }<z<m_{\max } / \sin i_{\min }\end{cases}
$$

provided that $m_{\min } / \sin i_{\min }<m_{\max }$. This condition is the equivalent of setting a lower limit on i, such that pole-on orbits, producing very large corrections, are excluded from the observed sample.

If f_{X} is a power-law, the solution of Eq. 1 is shown [4] to be proportional to ${ }_{2} F_{1}$, the first hypergeometric function. More complex functions require numerical integration.
6. True-mass recovery

- Data points: simulated distribution of true masses drawn from $f\left(M_{\mathrm{obs}}\right) \propto M_{\text {obs }}^{-1}$ with $m_{\min }=1$ and $m_{\max }=20$, where the individual masses have been corrected randomly for inclination angle.
- Smooth line: true-mass distribution according to Eq. 1 and using $1<y<\left(\sin 10^{\circ}\right)^{-1}$.
- This kind of models is prone to comparison with current formation/evolution models.

7. Minimum angle

The shape of the predicted distributions is sensitive to the minimum angle considered: nearpole inclinations produce larger corrections, but these are rarer than near face-on inclinations having smaller corrections.

8. Minimum-mass recovery

A more practical application of our method is to compute the expected minimum-mass distribution. In this case we define the random variables $X=\left\{M_{\mathrm{T}}\right\}, Y=\{\sin i\}$, and $Z=X Y$, i.e., a prediction for observed masses.

- Data points: observed distribution of minimum masses over a sample of 643 RV discovered exoplanets from http://exoplanet.eu.
- Smooth line: predicted minimum-mass distribution assuming $f\left(M_{\mathrm{T}}\right) \propto M_{\mathrm{T}}^{-1}$, with $m_{\text {min }}=0.02 \mathrm{M}_{J}, m_{\max }=22 \mathrm{M}_{J}$, and $\sin 6^{\circ}<$ $y<1$.
- Although the power-law part of the predicted curve only poorly fits the data, both of its extremes do seem to better reproduce the data.
- In the low-mass end our prediction provides an alternative explanation for the observed decline, usually explained as due to sample incompleteness.

Acknowledgements

The authors have been supported by the Centro de Astrofísica FONDAP 15010003. SL has been supported by FONDECYT grant number 1100214. JSJ acknowledges funding by FONDECYT through grant 3110004. This poster has been laid out using LaTeX class baposter.

