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Summary. We study the first 100 Myr of the evolution of isolated star clusters
with 117965 single stars and 13107 primordial hard binaries. Our calculations in-
clude stellar and binary evolution. The early evolution of these clusters can be
characterized by three distinct phases, which we dubbed A, B and C. Here phase
A lasts for the first ∼ 3 Myr and is dominated by two-body relaxation, phase B lasts
to about 20–100 Myr and is dominated by stellar mass loss, after that phase C sets
in, which again is dominated by two-body relaxation. The presence of the primor-
dial binaries has little effect on these various stages, nor on the other conclusions
we draw here. The mass function of the main-sequence stars in the core becomes
as flat as x = −1.8 (initial Salpter was x = −2.35), and in the outer 10% (by
mass) of the cluster the mass function exponent is as steep as x = −2.6. Over the
lifetime of the star cluster, a large number of stellar-mass black holes and neutron
stars are formed. Roughly 50%–70% of the black holes are retained by the clusters,
whereas the neutron star retention fraction is about 7%–12%. A relatively large
fraction of black holes become members of a binary either with another black hole
(∼ 40%) or with another stellar companion (∼ 50%). We conclude that in young
(but >

∼ 50 Myr) star clusters the X-ray binaries with a black hole may outnumber
those with a neutron star by about a factor of 3.

1 Introduction

The early evolution of dense clusters of stars is of considerable interest, in part
to develop a better understanding of the conditions under which star clusters
are born, and in part to be able to identify the dynamical state of observable
star clusters. The initial conditions of star clusters have been debated actively
over the years, but no consensus has been reached either by studying or
simulating the formation process of stellar conglomerates or from simulating
or observing older systems. The main parameters which characterize a star
cluster at birth (and any time later) are the richness, mass function, stellar
velocity distribution, etc, all as a function of the three space coordinates.

Part of the problem comes from our static view of the universe, our in-
ability to run simulations backward with time and our lack of understanding
of the physics of the star(cluster) formation process. In this paper we take
the approach of starting with a pre-selected set of initial conditions, based
on observations, and compute the evolution of the star cluster.
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2 Simulations

In this study we simulate young, ≤ 100Myr, star clusters by integrating the
equations of motion of all stars and binaries. We use the Starlab environment
[15], which acquires it’s greatest speed on the GRAPE-6 special purpose
computer (GRAvity PipE, [10, 9]). We use the hardware at the university of
Tokyo, the MoDeStA1 platform in Amsterdam and the GRAPE-6 setup at
Drexel university for the calculations presented here.

The simulated star clusters are initialized by selecting the number of
stars, stellar mass function, binary fraction and their orbital elements and
the density profile. For our most concentrated model (simulation #1) we
adopt the initial conditions derived by Portegies Zwart et al. [14] to mimic
the 7-12Myr old star cluster MGG-11 in the star-burst galaxy M82, which
was observed in detail by McCrady et al [11]. In this paper, however, we
extend the evolution of this model to about 100Myr. Subsequent simulations
are performed with larger cluster radius, resulting in longer initial relaxation
times. The stellar evolution model adopted is based on [1], and the binaries
are evolved with SeBa [16].

We summarize the selection of the initial conditions for simulation #1:
first we selected 131072 stars distributed in a King [6] density profile with
W0 = 12 and with masses from a Salpeter initial mass function (x = −2.35)
between 1M� and 100M�. The total mass of the cluster is then M '

433000 M�. The location in the cluster where the stars are born is not cor-
related with the stellar mass, i.e. there is no primordial mass segregation.
Ten percent of the stars were randomly selected and provided with a com-
panion (secondary) star with a mass between 1M� and the mass of the
selected (primary) star from a flat distribution. The binary parameters were
selected as follows: first we chose a random binding energy between E = 10kT
(corresponding to a maximum separation of about 1000R�). The maximum
binding energy was selected such that the distance at pericenter exceeded
four times the radius of the primary star. At the same time we select an or-
bital eccentricity from the thermal distribution. If the distance between the
stars at pericenter is smaller than the sum of the stellar radii we select a
new semi-major axis and eccentricity. If necessary, we repeat this step until
the binary remains detached. As a result, binaries with short orbital periods
are generally less eccentric. We ignored an external tidal field of the Galaxy,
but stars are removed from the simulation if they are more than 60 initial
half-mass radii away from the density center of the cluster.

For the other simulations #2, #3 and #4, we adopt the same realization
of the initial stellar masses, position and velocities (in virial N-body units [5])
but with a different size and time scaling to the stellar evolution, such that the
two-body relaxation time (trh) for simulation #2 is four times that of #1, for
simulation #3 we used four times the two-body relaxation time of what was

1 see http://modesta.science.uva.nl
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used for simulation #2, etc. the initial conditions are summarized in Tab. 1.
The binary populations in the various initial realizations therefore have larger
maxima to the orbital separation in the clusters with a longer relaxation
time, because the adopted maximum binding energy of 10 kT shifts. For the
simulations #2, #3 and #4, the maximum orbital separations are about
2000R�, 5000R� and 104 R�, respectively.

Table 1. Conditions for the four runs performed with 144179 stars (including
10% primordial hard binaries) with a range of cluster radii. Density profiles are
taken from King with W0 = 12. The columns give the model name, the initial virial
radius and core radius followed by the initial crossing time and half-mass relaxation
time. The last column indicates the moment when core collapse happened in these
simulations.

Run rvir, rcore, tch, trh, tcc

pc pc Myr Myr Myr

#1 1.27 0.010 0.032 80 40

#2 3.2 0.026 0.129 320 77

#3 8.1 0.066 0.516 1300 >

∼ 100

#4 20 0.162 2.067 5100 >

∼ 100

After initialization we synchronously calculate the evolution of the stars
and binaries, and solve the equations of motion for the stars in the cluster.
The calculations are continued to an age of about 100Myr.

During the integration of simulation #2, the energy is conserved on aver-
age better than one part in 107.1±1.7 per crossing time, with a total of ∼ 10−4

difference between the final and initial energy. For the other runs the energy
is conserved at least an order of magnitude better.

Following the paper Star Cluster Ecology VI by Portegies Zwart, McMil-
lan & Makino (in preparation, see also [13]), we divide the evolution of star
clusters into four distinct phases, each of which is characterized by rather typ-
ical parameters. We call them phase A, B, C and phase Z. The four phases
are classified as follows: phase A is an early relaxation dominated phase,
followed by phase B in which the ∼ 1% (by number) of the most massive
stars quickly evolve and lose an appreciable fraction of their mass. Finally,
phase C starts when stellar evolution slows down and two-body relaxation
becomes dominant again. To complete this classification we introduce phase
Z in which the cluster dissolves due to tidal stripping, but we will not discuss
this phase in detail (see [7] for a more analytical approach to phase Z).
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In Fig. 1 we present the evolution of the core radius, the 5%, 25%, 50%
and 75% Lagrangian radii for simulation #2. The three phases of cluster
evolution A, B, and C are indicated by the horizontal bar near the bottom
of the figure. In phase A the cluster expands slowly followed by a more rapid
expansion in phase B. This latter phase is mainly driven by stellar mass
loss. During phase C the cluster re-collapses as relaxation processes start to
dominate again over stellar mass loss. This leads to a collapse of the cluster
core at an age of about 80Myr.

Fig. 1. Evolution of the core radius (dotted curve), 5% Lagrangian radius (lower
solid), 25% (lower dashed line), half mass radius (upper solid) and 75% Lagrangian
(upper dashed line) radii for the simulation #2. The areas for evolutionary phases
A, B, and C are indicated with the three horizontal bars near the bottom of the
plot.

3 Evolution of the Binding Energies

A seizable fraction of the total potential energy of the simulated star clusters
is locked-up in primordial binaries. This energy can be released by dynamical
encounters and by stellar evolution.

In Fig. 2 we present the evolution of the energy for simulation #3. The
lower dashed line gives the total binding energy in the binaries in dimension-
less N-body units [5]. Throughout the evolution of the cluster, this number
remains smaller than the total potential energy (lower solid curve in Fig. 2).



The Ecology of Dense Star Clusters 5

The kinetic energy in simulation #3 in the early part ( <
∼ 50Myr) is gov-

erned by supernova remnants (neutron stars and black holes) which tend to
receive high velocity kicks upon formation. Once these objects have escaped
the cluster the curve flattens out. It is interesting to note that the cluster is,
technically speaking, unbound in this early phase, but it remains bound as
most of this energy escapes the cluster without heating it effectively. Strictly
speaking, this is a bookkeeping problem in the simulation, as one could won-
der if a high-velocity neutron star should be counted as a member while it
is still within the cluster perimeter but with a velocity exceeding the escape
speed.

Fig. 2. Evolution of the kinetic, potential and total energy for the simulation #3.
The dashed line gives the evolution of the binding energy of the binary population,
which was subtracted from the potential and total energies. The dotted line, drawn
to guide the eye, indicates regions where the total kinetic energy of the cluster
exceeds the potential energy.

3.1 Evolution of the Mass Function

All simulations started with a Salpeter (x = −2.35) mass function. In due
time the mass function changes – in part globally due to stellar evolution
and selective evaporation, which is initiated by the dynamical evolution of
the cluster. With time, the mass function also starts to vary locally due to
mass segregation. It is hard to disentangle all effects and identify the rela-
tive importance of each. To qualify and quantify the changes to the global
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and local mass function we first select those stars which remain on the main
sequence during the studied cluster evolution. The turn-off mass at 100Myr
in our stellar evolution model is about 4.63M� and stars exceeding a mass
of 5.54M� have all turned into remnants. By limiting ourselves to main-
sequence stars in this rather small mass range we guarantee that the mass
function is not polluted by blue stragglers, giants or stellar remnants. There-
fore we measure the mass function exponent for main-sequence stars between
1M� and 4.5M�.

Throughout the evolution of our clusters, and irrespective of the cluster
location, the mass function between 1M� and 4.5M� remains accurately
represented by a power-law, which is another important motivation to adopt
this seemingly arbitrary mass range.

In Fig. 3 we present the evolution of the slope of the cluster mass function
between 1 M� and 4.5M� for simulation #1. The exponent was calculated
with a least-squares fit to the binned (100 bins) mass function in the appro-
priate range. The global mass function is fitted with a power-law to better
than in 2%, for the 10% Lagrangian radii the fit is always better than 6%,
consistent with the expected variation from the Poissonian noise. The var-
ious curves represent the mass function within (or outside) the 50%, 25%
and 10% Lagrangian radii, for the dashed, dotted and dash-3-dotted curves
respectively.

The global mass function (solid curve) in the adopted mass range becomes
slightly steeper with time, from x ' −2.41 at birth to about x ' −2.43 at
an age of 100Myr, for the simulation #1. The rate of change of the mass
function exponent is ẋ ' −2.7× 10−4 per Myr, and constant with time after
60Myr. Similar trends in the global mass function are observed in the other
models, though in these cases the changes in x are less regular and more
noisy, therefore we decided to show the results for the simulation #1.

The steepening of the main-sequence mass function can be explained by
dynamical activity in the cluster center, where relatively high-mass stars
tend to be ejected from the cluster more frequently than lower-mass stars.
It happens because the latter are not as abundant in the cluster core, and
lower-mass stars are less frequently participating in strong dynamical encoun-
ters. The change of the global mass function is then mainly driven by strong
dynamical encounters in the cluster core and not per se by selective evapora-
tion near the tidal radius. The change in behavior around 60Myr is caused
by the formation of white dwarfs, which tend to compete with the ∼ 1M�

main-sequence stars. Neutron stars are not participating in this competition
as the majority of these escape due to the high velocities they receive upon
birth.

The mass functions for the outer 10%, 25% and 50% Lagrangian radii
become steeper with time, with an exponent of x ' −2.56 for the outer 50%
to x ' −2.64 for the outer 10% Lagrangian radius in simulation #1. The
mass function in the inner parts of the cluster becomes flatter with time.
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Within the half-mass radius the mass function flattens to x ' −2.3 in about
100Myr and for the inner 10% Lagrangian radius the mass function flattens
to x ' −1.9.

The change in the mass function in the inner part of the cluster can be
described with

x(t) = x(0) +

(

t

τ

)0.5

. (1)

Here x(0) in the initial power-law slope, and τ is a constant. For the inner 10%
Lagrangian radius τ ∼ 400Myr; τ ∼ 1.2Gyr; for the inner 25% Lagrangian
radius and τ ∼ 10Gyr for the mass function within the half-mass radius.
This expression is presented in Fig. 3 as the upper solid curve fitting the
mass function in the inner 10% Lagrangian radius.

Fig. 3. Evolution of the power-law slope of the mass function of main-sequence
stars between 1 M� and 4.5 M� for the run #1. The solid (almost) horizontal
curve represents the entire cluster, the curves above (flatter mass function) are for
the inner part of the cluster, the lower curves (steeper mass function) are for the
outer parts outside the adopted Lagrangian radius. The dashed, dotted and dash-
3-dotted curves give the mass function exponent for the stars withing (respectively,
outside) the 50%, 25% and 10% Lagrangian radii. The thin solid line through the
upper dash-3-dotted curve (mass function within the 10% Lagrangian radius) is
calculated with x ∝

√
t (see text). Note that after 55 Myr we increased the time

interval between snapshot outputs from 1 Myr to 5 Myr.
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3.2 Black Hole and Neutron Star Retention

In Fig. 4 we present the stellar content of the simulation #2 for the entire
cluster (solid curves) and inside the inner 10% Lagrangian radius (dotted
curves). The fraction of main-sequence stars (below the lower solid curve) and
binaries (above the top solid curve) gradually decrease with time, whereas
the fraction of giants (between the lower and middle solid curve) and stellar
remnants (between the middle and top solid curve) increases with time. The
figure clarifies that at later age contribution of giants and stellar remnants is
considerable, and that in particular the number of compact remnants continue
to grow quite rapidly after about 50Myr. This change in behavior, around
50Myr, is mainly caused by the formation of white dwarfs, which quickly
start to dominate the population of stellar remnants, whereas the fraction of
evolved stars (giants) remains roughly constant. Note also that the binary
fraction decreases slightly with time.

Fig. 4. The stellar content of the simulation #2 as a function of time, for the entire
cluster (solid curves) and for the inner 10% Lagrangian radius (dotted curves). The
lower lines give the fractional contents of main-sequence stars, followed by the
evolved stars (giants) and compact objects (remnants). The top area indicates that
the binary fraction reduces only slightly from it initial value of 0.1 throughout the
simulation. All fractions add-up to 1.

In our simulations, black holes and neutron stars receive kicks upon forma-
tion. Neutron star kicks are selected from the Paczynski velocity distribution
with a dispersion of σkick = 300km s−1 [4], whereas a black hole of mass
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mbh receives a kick from the same distribution but smaller by a factor of
1.4 M�/mbh.

In each run about 1700 black holes were formed in type Ic supernovae, and
6500 neutron stars were formed in type Ib and type II supernovae. Though
the initial realizations for the various runs were identical the numbers of su-
pernovae differ slightly from run to run, with more supernovae occurring in
the larger (lower-density) clusters. This is mainly caused by selective evapo-
ration of massive stars and by variations in binary evolution. Massive stars
are preferentially ejected in strong dynamical encounters, which are more
common in the denser clusters. These clusters are also more prone to binary
evolution, as the orbital periods are on average shorter.

The retention fraction for black holes varies between 0.48 and 0.71, for
neutron stars this fraction is between 0.065 and 0.12. The difference between
the lowest and highest retention fractions is about a factor of two. In both
cases, more compact objects are retained in the denser clusters. This is a
direct consequence of the larger escape speed of the denser clusters, through
which fewer black holes and neutron star are able to escape.

A seizable fraction of the compact objects remain in binaries. While ini-
tially 10% of the stars were binary members, about 4% of the compact objects
are ultimately binary members, which is a rather large fraction considering
relatively small ( <

∼ 10%) retention fraction.
The majority of the binaries consisting of a compact object with a stellar

companion (indicated by ? in Table 2) will turn into X-ray binaries at some
moment in time. Such binaries with a black hole outnumber those with a
neutron star by about a factor of 2 to 4. Based on these numbers, we conclude
that in star clusters which are old enough to have produced most of their black
holes and neutron stars, the population of X-ray binaries with a black hole
outnumbers those with a neutron star by a factor of 2–4. Such clusters would
then be very interesting objects for further X-ray studies. Note, however,
that the choice of a lower limit of 1M� for the initial mass function tends
to boost the number of black holes and neutron stars, and the production
of black-hole X-ray binaries will be less efficient in star clusters with a lower
cut-off to the mass function.

Even though binary black holes are quite common in our simulations, they
generally have rather wide orbits. This has the interesting consequences that
these binaries will experience Roche-lobe overflow when the stellar companion
is a giant, resulting in a rather short but bright X-ray phase. On the other
hand, these binaries are not candidates for ground-based gravitational wave
detectors. Binaries with two neutron stars have difficulty to survive; none
were formed in any of our simulations.

In Fig. 5 we present the number of binaries with at least one compact
object (black hole, neutron star or white dwarf) as a function of time. The
number of black holes in binaries rises sharply shortly after the start of the
simulation with a peak near 8 Myr. This is the moment when the turn-off
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Table 2. Some characteristics of the compact objects at 100 Myr (see text).

Run NIc NIb+II Nbh Nns (bh,bh) (bh,ns) (ns,ns) (bh,?) (ns,?)

#1 1656 6584 1017 585 12 1 0 15 6
#2 1710 6446 1028 553 16 4 0 21 6
#3 1717 6387 834 365 17 2 0 20 3
#4 1728 6735 828 436 11 4 0 16 10

drops below the minimum mass for forming black holes (at ∼ 20M�), and
lower-mass stars form neutron stars. This is also visible in the sharp increase
of the number of binaries with a neutron star. The number of black holes in
binaries drops rapidly from this moment because many of their companions
form neutron stars in a supernova explosion. These newly formed neutron
stars receive a much higher asymmetric kick velocity during their formation
[8] than black holes [3]. Note here that binary containing a neutron star and
a black hole are counted twice, once among the (bh,?) and once for (ns,?).

The solid curves in the bottom panel of Fig. 5 show an interesting de-
pression between about 75Myr and 80Myr. It appears that the binaries with
a white dwarf located within 2 rcore become depleted. This is not really the
case, but rather the cluster experiences a phase of core collapse. This may
not be so surprising at first, if one imagines that core collapse tend to happen
in about 15%–20% of the half-mass relaxation time [12]. For this cluster, the
half-mass relaxation time is about 440Myr and the core collapse is therefore
expected at an age of about 65–85Myr, which is consistent with the moment
of core collapse in simulations without primordial binaries.

The moment of core collapse is therefore unaffected by the relatively rich
population of hard primordial binaries in these simulations. We conclude that
the primordial binary fraction and their distribution in hardness is relatively
unimportant for the moment of core collapse. This result is contradicted by
other Monte-Carlo simulations which tend to indicate that core collapse is
strongly delayed by the presence of a rich binary fraction [2].

White dwarfs start to dominate the population of compact binaries af-
ter about 25Myr, at a turn-off mass of about 10M�. Stars of <

∼ 8M�

which evolve in isolation, unperturbed from a companion star, turn into white
dwarfs, but in a binary system early stripping of the hydrogen envelope may
cause a more massive star to become a white dwarf instead of collapsing to a
neutron star. The population of compact binaries in clusters older than about
40Myr is dominated by white dwarfs. But it may take a long while before
they also become more common than the primordial main-sequence binaries.
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a)

b)

Fig. 5. The number of binaries with a compact object as a function of time for run
#2. The top panel (a) gives numbers for the entire cluster, and the bottom panel
(b) – within 2rcore. The top (thick solid) curve gives the total number of binaries
with at least one compact object (bh, ns or wd). The thin solid curve gives the
number of binaries with one white dwarf, the dashed curve is for neutron stars and
the dotted curve for binaries with at least one black hole. Note that binaries with
two compact objects are counted twice in this statistics and, as a consequence, the
total of thin curves does not add-up to the thick curve.
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