The Group Evolution Multiwavelength Study (GEMS)
Duncan Fórbés
Swinnburne Univerșity

Motivation

- Groups poorly studied relative to clusters, but most galaxies in groups
- Star formation suppressed at group-like densities (2dF, SDSS)
- Are galaxies in groups pre-processed?
- What are the physical processes?
- How do groups evolve?

Physical Processes in Groups

- Ram pressure stripping
- Interactions \& Harassment
- Mergers
- Group tidal field
- Strangulation/Suffocation
- Overlapping dark matter halos

Aim: to understand how the group environment affects galaxy evolution and how groups themselves evolve.

Method: multi-wavelength data for ~60 groups and mock catalogues.

Forbes etal. 2006

GEMS People in Santiago

Swinburne:
Forbes, Kilborn and Brough

Birmingham:
Ponman and Raychaudhury

IAP:
Mamon

GEMS Sample Selection

- Optical catalogue of Galaxy Groups
- 15 < D < 130 Mpc
- ROSAT PSPC 10,000 sec
$\Rightarrow 60$ nearby groups with a range of X-ray properties, ie dynamically young to old groups.
\Rightarrow Includes both compact and loose groups.

GEMS Dataset

- ROSAT imaging (1.5 degrees)
- Wide-field optical imaging (0.5 degrees)
- Parkes HI mapping (5.5 degrees)
- ATCA HI follow-up
- 6dFGS spectra
- 2MASS K-band photometry
- XMM/Chandra imaging
- Mock catalogues

No X-ray Halo Stripping in Groups

Helsdon et al. 2001

Optical Imaging

30 Groups

B,R,I filters

HI Mapping - 16 Groups

Kilborn, Forbes et al. 2005

HI Mapping

- 16 Groups mapped with the Parkes multibeam instrument over 5.5 degrees
- Mass limit of $\sim 10^{8} \mathrm{M}_{\text {sun }}$
- 2x deeper than HIPASS survey
- 10x better velocity resolution than HIPASS
- 15 arcmin beam (hence ATCA followup)

HI Census

- In 16 groups mapped in HI:
- 204 HI detections
- 21 (10\%) new group members
=> Few gas-rich galaxies in LF faint end
\Rightarrow 'missing satellites' are not HI-rich dark galaxies

Kilborn, Forbes etal. 2006

NGC 5044 group

New group member
$M_{H I}=10^{9} M_{0}$ $M_{H I} / L_{B}=1.7$

Mock

 Catalogues:
Millennium simulation

$+$ semianalytical models

Group Dynamics - 16 groups

- Group membership from 6dFGS, new HI galaxies and NED
- 2MASS K-band luminosities
- FOF algorithm to define groups
- Calculate group properties, eg R_{500}, Mass
- Examine virialisation state
- Create composite group

NGC 5044 group

NGC 5044 group

Composite Group

R / R_{500}
Brough, Forbes etal. 2006

Mass-to-light Ratios

Isolated Galaxies

- Early-type galaxy, $V<9,000 \mathrm{~km} / \mathrm{s}, \mathrm{B}<14$

No neighbours within:

- $700 \mathrm{~km} / \mathrm{s}$
- 0.67 Mpc in plane of the sky
- 2 B mags (factor of 6 in mass)

Formation?

- old collapse, undisturbed since
- recent pair merger
- merged group ("fossil")

Hermits

Swinburne:
Forbes, Reda, Proctor

Harvard:
O'Sullivan

Durham:
Hau

Fundamental Plane

Deviant galaxies have young stellar populations and/or disturbed morphology

Reda, Forbes \& Hau 2005
was Radial Kinematics was

Hau \& Forbes 2005

Radial Ages - NGC 821

Collapsed Groups?

- Typical isolated galaxy
- $M_{B}=-20.5, L_{X} / L_{B}=30$
- One potential collapsed group:

NGC 1132
$M_{B}=-22.0, \log L_{X}=43.0 \mathrm{erg} / \mathrm{s}, L_{X} / L_{B}=32$
$\Delta M_{12}=2.2$, featureless morphology,
old stellar population

Conclusions

- X-ray halos not stripped away
- No large population of `missing' galaxies
- Lots of dark matter at large radii
- Filament galaxies beyond $R_{\text {virial }}$ have similar V and σ to group galaxies
- Galaxies beyond $\mathrm{R}_{\text {virial }}$ have field-like morphologies
- Most isolated ellipticals obey scaling relations, and are not collapsed groups

