Simple

a high resolution NIR spectrograph for E-ELT (selected by ESO for phase-A study)

Ernesto Oliva, INAF Arcetri oliva@arcetri.astro.it on behalf of the Simple Consortium

INAF (Italy) – L. Origlia (PI), E. Oliva (PM), R. Maiolino (IS)

UAO (Sweden) - B. Gustafsson, N. Piskunov

TLS (Germany) - A. Hatzes, E. Guenther

PUC (Chile) – L. Vanzi, D. Minniti

Science Team: B. Gustafsson (Chair), K. Eriksson & O. Kochukhov (UAO); P. Molaro & A. Bragaglia (INAF); D. Minniti, M. Zoccali & M. Catelan (PUC); E. Guenther (TLS)

an ideal HR spectrometer

- resolving power R of at least 100,000
- all the wavelengths range in single frame
- high efficiency, stability and repeatability
- high radial velocity accuracy (< 1 m/s)

 a coupled to a dedicated adaptive optics system

 b in advanced stage of construction

• HR-NIR: an almost virgin field of research

- *R*~100,000 (150,000)
- 0.8-2.5 microns spectrum in a single exposure

2500 nm

order #31

6K x 2K (or 12K x 4K) arrays mosaic

Detector cutoff wavelength (μ m)

cryogenically cooled

optics in vacuum → spectral stability ~simple technology

cross-disperser prisms \rightarrow optimize λ -coverage & efficiency

Performances: main scaling laws

• Limiting flux for a given s/n ratio scales with telescope area

$$m_{lim} = \text{constant} + 5.0 \cdot \log_{10}(D_{tel})$$

• Limiting flux for a given s/n ratio linearly scales with the fraction of light falling inside the slit ("slit efficiency" *SLE*)

$$m_{lim} = \text{constant} + 2.5 \cdot \log_{10}(SLE)$$

$$m_{lim} = \text{constant} + 2.5 \cdot \log_{10}(SLE)$$

AdOpt !

(slit width using the same spectrometer on different telescopes)

expected performances on the 42m E-ELT (conservative estimates)

 Table 3.2: Limiting magnitudes in the I,J,H,K bands for different s/n.

 S(N)
 Limiting magnitudes (Vaga) for 2 hy integration

S/N	Limiting magnitudes (Vega) for 2hr integration
10	I=18.9, Y=19.3, J=19.6, H=19.6, K=19.3
30	I=17.4, Y=17.8, J=18.1, H=18.1, K=17.8
100	I=15.5 , Y=15.9 , J=16.1 , H=16.2 , K=15.9

3-3.5 mag deeper than 8-10m class telescopes $m_{lim} = \text{constant} + 5.0 \cdot \log_{10}(D_{tel})$

simple: a high res NIR spectrograph for the E-ELT science in the next decades fully complementar to JWST (only low R) an almost virgin field of research

Table 1. List of all the HR-IR spectrometers in the world					
Instrument	Telescope	R _{max}	slit width for R_{max}	Spec. coverage in single frame	
CRIRES	VLT $(8m) + AO^a$	$1 \cdot 10^{5}$	0.2"	$\lambda/70$	
PHOENIX	Gemini (8m)	$8 \cdot 10^4$	0.2"	$\lambda/200$	
$GIANO^{b}$	TNG $(3.5m)$	$5 \cdot 10^{4}$	0.5"	$\lambda/1.3$	
NIRSPEC	Keck (10m)	$3 \cdot 10^4$	0.3"	$\lambda/10$	
CSHELL	IRTF $(3m)$	$3\cdot 10^4$	0.5"	$\lambda/240$	

 a coupled to a dedicated adaptive optics system

 b in advanced stage of construction

Metals & kinematics in Ly-alpha absorbers at z>4

R~100,000 spectra of J,H,K~19 QSOs/GRBs at s/n~20

Early nucleo-synthesis and chemical enrichment in the inner Galaxy, from accurate measurements of metallicities in main sequence stars

R~100,000 spectra of J,H,K~17 mag stars at s/n>50

Spectro-astrometry of very dense, hot regions of stellar disks within ~1 AU from the star

R>100,000 with ~10 mas spatial resolution along slit

Study atmospheric absorption features during transits of earth-like planets on habitable orbits around low mass stars

Lines depth ~0.001% of continuum in J,H,K~13 objects

habitable earths: detection from Doppler shift

 $\Sigma_{\text{atm}}/\Sigma_{\text{star}} = 2\pi R_{\text{P}}H_{\text{atm}}/\pi R_{*}^{2} \sim \text{few} \times 10^{-5} \text{ for a } 0.1 \text{ M}_{\text{sun}} \text{ star}$

ELT-simple may reach J,H,K~12-13 and have a good probability of finding a suitable system. Unfeasible with JWST and 10m class telescopes.